1
|
Huang K, Yang W, Shi M, Wang S, Li Y, Xu Z. The Role of TPM3 in Protecting Cardiomyocyte from Hypoxia-Induced Injury via Cytoskeleton Stabilization. Int J Mol Sci 2024; 25:6797. [PMID: 38928503 PMCID: PMC11203979 DOI: 10.3390/ijms25126797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Ischemic heart disease (IHD) remains a major global health concern, with ischemia-reperfusion injury exacerbating myocardial damage despite therapeutic interventions. In this study, we investigated the role of tropomyosin 3 (TPM3) in protecting cardiomyocytes against hypoxia-induced injury and oxidative stress. Using the AC16 and H9c2 cell lines, we established a chemical hypoxia model by treating cells with cobalt chloride (CoCl2) to simulate low-oxygen conditions. We found that CoCl2 treatment significantly upregulated the expression of hypoxia-inducible factor 1 alpha (HIF-1α) in cardiomyocytes, indicating the successful induction of hypoxia. Subsequent morphological and biochemical analyses revealed that hypoxia altered cardiomyocyte morphology disrupted the cytoskeleton, and caused cellular damage, accompanied by increased lactate dehydrogenase (LDH) release and malondialdehyde (MDA) levels, and decreased superoxide dismutase (SOD) activity, indicative of oxidative stress. Lentivirus-mediated TPM3 overexpression attenuated hypoxia-induced morphological changes, cellular damage, and oxidative stress imbalance, while TPM3 knockdown exacerbated these effects. Furthermore, treatment with the HDAC1 inhibitor MGCD0103 partially reversed the exacerbation of hypoxia-induced injury caused by TPM3 knockdown. Protein-protein interaction (PPI) network and functional enrichment analysis suggested that TPM3 may modulate cardiac muscle development, contraction, and adrenergic signaling pathways. In conclusion, our findings highlight the therapeutic potential of TPM3 modulation in mitigating hypoxia-associated cardiac injury, suggesting a promising avenue for the treatment of ischemic heart disease and other hypoxia-related cardiac pathologies.
Collapse
Affiliation(s)
- Ke Huang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China;
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (W.Y.); (M.S.); (S.W.)
| | - Weijia Yang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (W.Y.); (M.S.); (S.W.)
| | - Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (W.Y.); (M.S.); (S.W.)
| | - Shiqi Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (W.Y.); (M.S.); (S.W.)
| | - Yi Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (W.Y.); (M.S.); (S.W.)
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China;
| |
Collapse
|
2
|
Eltobshy SAG, Messiha R, Metias E, Sarhan M, El-Gamal R, El-Shaieb A, Ghalwash M. Effect of SGLT2 Inhibitor on Cardiomyopathy in a Rat Model of T2DM: Possible involvement of Cardiac Aquaporins. Tissue Cell 2023; 85:102200. [PMID: 37660414 DOI: 10.1016/j.tice.2023.102200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023]
Abstract
Diabetic cardiomyopathy (DCM) causes arrhythmia, heart failure, and sudden death. Empagliflozin, an SGLT-2 (Sodium glucose co-transporter) inhibitor, is an anti-diabetic medication that decreases blood glucose levels by stimulating urinary glucose excretion. Several aquaporins (AQPs) including AQP-1-3 and - 4 and their involvement in the pathogenesis in different cardiac diseases were detected. In the current study the effect of Empagliflozin on diabetic cardiomyopathy and the possible involvement of cardiac AQPs were investigated. METHODS 56 adult male Sprague-Dawley rats were divided into 4 groups: Control, DCM: type 2 diabetic rats, low EMPA+DCM received empagliflozin (10 mg/kg/day) and high EMPA+DCM received empagliflozin (30 mg/kg/day) for 6 weeks. RESULTS Administration of both EMPA doses, especially in high dose group, led to significant improvement in ECG parameters. Also, a significant improvement in biochemical and cardiac oxidative stress markers (significant decrease in serum CK-MB, and malondialdehyde while increasing catalase) with decreased fibrosis and edema in histopathological examination and a significant attenuation in apoptosis (caspase-3) and edema (AQP-1& -4). CONCLUSION Both doses of Empagliflozin have a cardioprotective effect and reduced myocardial tissue edema with high dose having a greater effect. This might be due to attenuation of oxidative stress, fibrosis and edema mediated through AQP-1, - 3& - 4 expression.
Collapse
Affiliation(s)
- Somaia A G Eltobshy
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Refka Messiha
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Emile Metias
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Sarhan
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Randa El-Gamal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed El-Shaieb
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura university, Mansoura 35516, Egypt
| | - Mohammad Ghalwash
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Warner RM, Yang J, Drake A, Lee Y, Nemanic S, Scott D, Higgins AZ. Osmotic response during kidney perfusion with cryoprotectant in isotonic or hypotonic vehicle solution. PeerJ 2023; 11:e16323. [PMID: 38025736 PMCID: PMC10668850 DOI: 10.7717/peerj.16323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Organ cryopreservation would revolutionize transplantation by overcoming the shelf-life limitations of conventional organ storage. To prepare an organ for cryopreservation, it is first perfused with cryoprotectants (CPAs). These chemicals can enable vitrification during cooling, preventing ice damage. However, CPAs can also cause toxicity and osmotic damage. It is a major challenge to find the optimal balance between protecting the cells from ice and avoiding CPA-induced damage. In this study, we examined the organ perfusion process to shed light on phenomena relevant to cryopreservation protocol design, including changes in organ size and vascular resistance. In particular, we compared perfusion of kidneys (porcine and human) with CPA in either hypotonic or isotonic vehicle solution. Our results demonstrate that CPA perfusion causes kidney mass changes consistent with the shrink-swell response observed in cells. This response was observed when the kidneys were relatively fresh, but disappeared after prolonged warm and/or cold ischemia. Perfusion with CPA in a hypotonic vehicle solution led to a significant increase in vascular resistance, suggesting reduced capillary diameter due to cell swelling. This could be reversed by switching to perfusion with CPA in isotonic vehicle solution. Hypotonic vehicle solution did not cause notable osmotic damage, as evidenced by low levels of lactate dehydrogenase (LDH) in the effluent, and it did not have a statistically significant effect on the delivery of CPA into the kidney, as assessed by computed tomography (CT). Overall, our results show that CPA vehicle solution tonicity affects organ size and vascular resistance, which may have important implications for cryopreservation protocol design.
Collapse
Affiliation(s)
- Ross M. Warner
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States
| | - Jun Yang
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States
| | - Andrew Drake
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States
| | - Youngjoo Lee
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States
| | - Sarah Nemanic
- Veterinary Radiology Consulting LLC, Lebanon, Oregon, United States
| | - David Scott
- Department of Abdominal Transplantation, Oregon Health & Science University, Portland, Oregon, United States
| | - Adam Z. Higgins
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, United States
| |
Collapse
|
4
|
Shi RY, An DA, Chen BH, Wu R, Du L, Jiang M, Xu JR, Wu LM. Diffusion-weighted imaging in hypertrophic cardiomyopathy: association with high T2-weighted signal intensity in addition to late gadolinium enhancement. Int J Cardiovasc Imaging 2020; 36:2229-2238. [PMID: 32666169 DOI: 10.1007/s10554-020-01933-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
Diffusion-weighted imaging (DWI) has been confirmed to be associated with late gadolinium enhancement (LGE) in hypertrophic cardiomyopathy (HCM). In this context, we aimed to study whether DWI could reflect the active tissue injury and edema information of HCM which were usually indicated by T2 weighted images. Forty HCM patients were examined using a 3.0 T magnetic resonance scanner. Cine, T2-weighted short tau inversion recovery (T2-STIR), DWI and LGE sequences were acquired. T1 mapping was also included to quantify the focal and diffuse fibrosis. Cardiac troponin I (cTnI) was tested to assess the recently myocardial injury. Student's t-test, Mann-Whitney U test, One-way analysis, Kruskal-Wallis analysis, the Spearman correlation analysis, and multivariable regression were used in this study. The apparent diffusion coefficient (ADC) was significantly elevated in the cTnI positive group (P = 0.01) and correlated with LGE (ρ = 0.312, P = 0.049) and HighT2 extent (ρ = 0.443, P = 0.004) in the global level. In the segmental analysis, the ADC significantly differentiated the segments with and without HighT2/LGE presence (P = 0.00). The average ADC values were higher in segments with HighT2 and LGE coexistence than in those with only LGE presence (P < 0.05). Multivariable regression indicated that segmental HighT2 and LGE were both contributing factors to the ADC values. In this study of HCM, we confirmed that ADC as a molecular diffusion parameter reflects the replacement fibrosis of myocardium. Moreover, it also reveals edema extent and its association with serum cTnI.
Collapse
Affiliation(s)
- Ruo-Yang Shi
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China
| | - Dong-Aolei An
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China
| | - Bing-Hua Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China
| | - Rui Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China
| | - Liang Du
- Robotics Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Jiang
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Rong Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China.
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
5
|
Myocardial Fluid Balance and Pathophysiology of Myocardial Edema in Coronary Artery Bypass Grafting. Cardiol Res Pract 2020; 2020:3979630. [PMID: 32550020 PMCID: PMC7256715 DOI: 10.1155/2020/3979630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/05/2020] [Indexed: 12/11/2022] Open
Abstract
Myocardial edema is one of the most common complications of coronary artery bypass grafting (CABG) that is linearly related to many coronary artery diseases. Myocardial edema can cause several consequences including systolic dysfunction, diastolic dysfunction, arrhythmia, and cardiac tissue fibrosis that can increase mortality in CABG. Understanding myocardial fluid balance and tissue and systemic fluid regulation is crucial in order to ultimately link how coronary artery bypass grafting can cause myocardial edema in such a setting. The identification of susceptible patients by using imaging modalities is still challenging. Future studies about the technique of imaging modalities, examination protocols, prevention, and treatment of myocardial edema should be carried out, in order to limit myocardial edema occurrence and prevent complications.
Collapse
|
6
|
PEDF decreases cardiomyocyte edema during oxygen‑glucose deprivation and recovery via inhibiting lactate accumulation and expression of AQP1. Int J Mol Med 2019; 43:1979-1990. [PMID: 30864707 PMCID: PMC6445592 DOI: 10.3892/ijmm.2019.4132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/28/2019] [Indexed: 01/13/2023] Open
Abstract
Myocardial edema is divided into cellular edema and interstitial edema; however, the dynamic change of cardiomyocyte edema has not been described in detail. Pigment epithelium-derived factor (PEDF) is known for its protective effects on ischemic cardiomyocytes; however, the association between PEDF and cardiomyocyte edema remains to be fully elucidated. In the present study, rat neonatal left ventricular cardiomyocytes were isolated and treated with oxygen-glucose deprivation (OGD) and recovery. During OGD and recovery, the cardiomyocytes exhibited significant edema following 30 min of OGD (OGD 30 min) and OGD 30 min with recovery for 6 h. PEDF significantly decreased the lactate content and extracellular acidification rate of the OGD-treated cardiomyocytes, thereby reducing cellular osmotic gradients and preventing the occurrence of cell edema. In addition, the glycolytic agonist, fructose-1, 6-diphosphate, eliminated the effect of PEDF on inhibiting edema in the OGD-treated cardiomyocytes. Furthermore, PEDF reduced the protein and mRNA expression of aquaporin 1 (AQP1), and thus downregulated cardiomyocyte edema during the OGD/recovery period. The addition of AQP1 agonist, arginine vasopressin, inhibited the inhibitory effect of PEDF on cardiomyocyte edema during OGD/recovery. In conclusion, the present study revealed a novel mechanism for the regulation of cardiomyocyte edema by PEDF involving lactate levels and the expression of AQP1 during OGD/recovery. The reduction of lactate content during OGD was associated with a decrease in the protein level of AQP1 during OGD/recovery; therefore, PEDF decreased cardiomyocyte edema and cellular apoptosis, prolonging the viability of the cells.
Collapse
|
7
|
Li Y, Zhang Z, Zhou X, Li R, Cheng Y, Shang B, Han Y, Liu B, Xie X. Histone Deacetylase 1 Inhibition Protects Against Hypoxia-Induced Swelling in H9c2 Cardiomyocytes Through Regulating Cell Stiffness. Circ J 2017; 82:192-202. [PMID: 28747611 DOI: 10.1253/circj.cj-17-0022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The process of cardiomyocyte swelling involves changes of biomechanical properties and profiles of cellular genes. Although many genes have been proved to regulate cell edema of cardiomyocyte, the mechanisms involved in this event, as well as the biomechanical properties of swelling cell, remain unknown.Methods and Results:Whether histone deacetylase 1 (HDAC1) inhibition protects against hypoxia-induced H9c2 cardiomyocyte swelling is examined in this study. Hypoxia-induced changes in the biomechanical properties and cytoskeletal structure that are relevant to cell swelling were also determined. H9c2 cells were treated under a chemical hypoxia situation (cobalt chloride) with HDAC1 inhibition (chemical inhibitor or siRNA) for 5 h, followed by in vitro biological and mechanical characterization. The results showed that expression of HDAC1 instead of HDAC4 was upregulated by chemical hypoxia. HDAC1 inhibition protects H9c2 cells against chemical hypoxia-induced hypoxic injury and cell swelling. HDAC1 inhibition improved cell viability, decreased lactate dehydrogenase leakage, cell apoptosis, malondialdehyde concentration, cell volume, and particles on the cell surface, and increased superoxide dismutase activity. Moreover, chemical hypoxia induced a decrease of Young's modulus, accompanied by alterations in the integrity of acetylated histone and organization of the cytoskeletal network. HDAC1 inhibition significantly reversed these processes. CONCLUSIONS Based on the ideal physical model, HDAC1 inhibition protects against hypoxia-induced swelling in H9c2 cardiomyocytes through enhancing cell stiffness. Overall, HDAC1 is a potential therapeutic target for myocardial edema.
Collapse
Affiliation(s)
- Yi Li
- The Institute of Medical Genetics, School of Basic Medical Sciences, Lanzhou University.,Gansu Cardiovascular Institute
| | - Zhengyi Zhang
- Cardiac Hospital, Lanzhou University Second Hospital
| | - Xiangnan Zhou
- School of Physics and Information Engineering, Shanxi Normal University
| | - Rui Li
- School of Stomatology, Lanzhou University
| | - Yan Cheng
- Experimental Center, Northwest University for Nationalities.,Department of Biochemistry and Medical Genetics, University of Manitoba
| | - Bo Shang
- Cardiac Hospital, Lanzhou University Second Hospital
| | - Yu Han
- College of Life Science & Technology, Huazhong University of Science & Technology
| | - Bin Liu
- School of Stomatology, Lanzhou University
| | - Xiaodong Xie
- The Institute of Medical Genetics, School of Basic Medical Sciences, Lanzhou University.,Gansu Cardiovascular Institute
| |
Collapse
|
8
|
Khokhlova A, Iribe G, Yamaguchi Y, Naruse K, Solovyova O. Effects of simulated ischemia on the transmural differences in the Frank-Starling relationship in isolated mouse ventricular cardiomyocytes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:323-332. [PMID: 28571718 DOI: 10.1016/j.pbiomolbio.2017.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 12/26/2022]
Abstract
The electrical and mechanical functions of cardiomyocytes differ in relation to the spatial locations of cells in the ventricular wall. This physiological heterogeneity may change under pathophysiological conditions, providing substrates for arrhythmia and contractile dysfunctions. Previous studies have reported distinctions in the electrophysiological and mechanical responses to ischemia of unloaded subendocardial (ENDO) and subepicardial (EPI) single cardiomyocytes. In this paper, we briefly recapitulated the available experimental data on the ischemia effects on the transmural cellular gradient in the heart ventricles and for the first time evaluated the preload-dependent changes in passive and active forces in ENDO and EPI cardiomyocytes isolated from mouse hearts subjected to simulated ischemia. Combining the results obtained in mechanically loaded contracting cardiomyocytes with data from previous studies, we showed that left ventricular ENDO and EPI cardiomyocytes are different in their mechanical responses to metabolic inhibition. Simulated ischemia showed opposite effects on the stiffness of ENDO and EPI cells and greatly prolonged the time course of contraction in EPI cells than in ENDO cells, thereby changing the normal transmural gradient in the cellular mechanics.
Collapse
Affiliation(s)
- Anastasia Khokhlova
- Ural Federal University, 620002, Mira 19, Ekaterinburg, Russia; Institute of Immunology and Physiology, Russian Academy of Sciences, 620049, Pervomajskaya 106, Ekaterinburg, Russia.
| | - Gentaro Iribe
- Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1700-8558, Shikata Cho 2-5-1, Okayama, Japan
| | - Yohei Yamaguchi
- Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1700-8558, Shikata Cho 2-5-1, Okayama, Japan
| | - Keiji Naruse
- Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1700-8558, Shikata Cho 2-5-1, Okayama, Japan
| | - Olga Solovyova
- Ural Federal University, 620002, Mira 19, Ekaterinburg, Russia; Institute of Immunology and Physiology, Russian Academy of Sciences, 620049, Pervomajskaya 106, Ekaterinburg, Russia
| |
Collapse
|
9
|
Andrés-Villarreal M, Barba I, Poncelas M, Inserte J, Rodriguez-Palomares J, Pineda V, Garcia-Dorado D. Measuring Water Distribution in the Heart: Preventing Edema Reduces Ischemia-Reperfusion Injury. J Am Heart Assoc 2016; 5:JAHA.116.003843. [PMID: 27988498 PMCID: PMC5210447 DOI: 10.1161/jaha.116.003843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background Edema is present in many heart diseases, and differentiation between intracellular (ICW) and extracellular (ECW) myocardial water compartments would be clinically relevant. In this work we developed a magnetic resonance imaging–based method to differentiate ICW and ECW and applied it to analyze ischemia–reperfusion–induced edema. Methods and Results Isolated rat hearts were perfused with gadolinium chelates as a marker of extracellular space. Total water content was measured by desiccation. Gadolinium quantification provided ECW, and ICW was calculated by subtraction of ECW from total water content. In separate experiments, T1, T2, diffusion‐weighted imaging and proton‐density parameters were measured in isolated saline‐perfused hearts. In in‐situ rat hearts, ECW and ICW were 79±10 mL and 257±8 mL of water per 100 g of dry tissue, respectively. After perfusion for 40 minutes, ECW increased by 92.4±3% without modifying ICW (−1±3%). Hyposmotic buffer (248 mOsm/L) increased ICW by 16.7±2%, while hyperosmotic perfusion (409 mOsm/L) reduced ICW by 26.5±3%. Preclinical imaging showed good correlation between T2 and diffusion‐weighted imaging with ECW, and proton‐density correlated with total water content. Ischemia–reperfusion resulted in marked myocardial edema at the expense of ECW, because of cellular membrane rupture. When cell death was prevented by blebbistatin, water content and distribution were similar to normoxic perfused hearts. Furthermore, attenuation of intracellular edema with hyperosmotic buffer reduced cell death. Conclusions We devised a method to determine edema and tissue water distribution. This method allowed us to demonstrate a role of edema in reperfusion‐induced cell death and could serve as a basis for the study of myocardial water distribution using magnetic resonance imaging.
Collapse
Affiliation(s)
- Mireia Andrés-Villarreal
- Cardiology Department, Vall d'Hebron University Hospital and Research Institute, Universitat Autòmoma de Barcelona, Spain.,Institut Diagnostic per la Imatge, Barcelona, Spain
| | - Ignasi Barba
- Cardiology Department, Vall d'Hebron University Hospital and Research Institute, Universitat Autòmoma de Barcelona, Spain
| | - Marcos Poncelas
- Cardiology Department, Vall d'Hebron University Hospital and Research Institute, Universitat Autòmoma de Barcelona, Spain
| | - Javier Inserte
- Cardiology Department, Vall d'Hebron University Hospital and Research Institute, Universitat Autòmoma de Barcelona, Spain
| | - José Rodriguez-Palomares
- Cardiology Department, Vall d'Hebron University Hospital and Research Institute, Universitat Autòmoma de Barcelona, Spain
| | | | - David Garcia-Dorado
- Cardiology Department, Vall d'Hebron University Hospital and Research Institute, Universitat Autòmoma de Barcelona, Spain
| |
Collapse
|
10
|
Fukushima A, Alrob OA, Zhang L, Wagg CS, Altamimi T, Rawat S, Rebeyka IM, Kantor PF, Lopaschuk GD. Acetylation and succinylation contribute to maturational alterations in energy metabolism in the newborn heart. Am J Physiol Heart Circ Physiol 2016; 311:H347-63. [PMID: 27261364 DOI: 10.1152/ajpheart.00900.2015] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/25/2016] [Indexed: 11/22/2022]
Abstract
Dramatic maturational changes in cardiac energy metabolism occur in the newborn period, with a shift from glycolysis to fatty acid oxidation. Acetylation and succinylation of lysyl residues are novel posttranslational modifications involved in the control of cardiac energy metabolism. We investigated the impact of changes in protein acetylation/succinylation on the maturational changes in energy metabolism of 1-, 7-, and 21-day-old rabbit hearts. Cardiac fatty acid β-oxidation rates increased in 21-day vs. 1- and 7-day-old hearts, whereas glycolysis and glucose oxidation rates decreased in 21-day-old hearts. The fatty acid oxidation enzymes, long-chain acyl-CoA dehydrogenase (LCAD) and β-hydroxyacyl-CoA dehydrogenase (β-HAD), were hyperacetylated with maturation, positively correlated with their activities and fatty acid β-oxidation rates. This alteration was associated with increased expression of the mitochondrial acetyltransferase, general control of amino acid synthesis 5 like 1 (GCN5L1), since silencing GCN5L1 mRNA in H9c2 cells significantly reduced acetylation and activity of LCAD and β-HAD. An increase in mitochondrial ATP production rates with maturation was associated with the decreased acetylation of peroxisome proliferator-activated receptor-γ coactivator-1α, a transcriptional regulator for mitochondrial biogenesis. In addition, hypoxia-inducible factor-1α, hexokinase, and phosphoglycerate mutase expression declined postbirth, whereas acetylation of these glycolytic enzymes increased. Phosphorylation rather than acetylation of pyruvate dehydrogenase (PDH) increased in 21-day-old hearts, accounting for the low glucose oxidation postbirth. A maturational increase was also observed in succinylation of PDH and LCAD. Collectively, our data are the first suggesting that acetylation and succinylation of the key metabolic enzymes in newborn hearts play a crucial role in cardiac energy metabolism with maturation.
Collapse
Affiliation(s)
- Arata Fukushima
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada; and
| | - Osama Abo Alrob
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada; and Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Liyan Zhang
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada; and
| | - Cory S Wagg
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada; and
| | - Tariq Altamimi
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada; and
| | - Sonia Rawat
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada; and
| | - Ivan M Rebeyka
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada; and
| | - Paul F Kantor
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada; and
| | - Gary D Lopaschuk
- Cardiovascular Translational Science Institute, University of Alberta, Edmonton, Alberta, Canada; and
| |
Collapse
|
11
|
Lam VH, Zhang L, Huqi A, Fukushima A, Tanner BA, Onay-Besikci A, Keung W, Kantor PF, Jaswal JS, Rebeyka IM, Lopaschuk GD. Activating PPARα prevents post-ischemic contractile dysfunction in hypertrophied neonatal hearts. Circ Res 2015; 117:41-51. [PMID: 25977309 DOI: 10.1161/circresaha.117.306585] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/14/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Post-ischemic contractile dysfunction is a contributor to morbidity and mortality after the surgical correction of congenital heart defects in neonatal patients. Pre-existing hypertrophy in the newborn heart can exacerbate these ischemic injuries, which may partly be due to a decreased energy supply to the heart resulting from low fatty acid β-oxidation rates. OBJECTIVE We determined whether stimulating fatty acid β-oxidation with GW7647, a peroxisome proliferator-activated receptor-α (PPARα) activator, would improve cardiac energy production and post-ischemic functional recovery in neonatal rabbit hearts subjected to volume overload-induced cardiac hypertrophy. METHODS AND RESULTS Volume-overload cardiac hypertrophy was produced in 7-day-old rabbits via an aorto-caval shunt, after which, the rabbits were treated with or without GW7647 (3 mg/kg per day) for 14 days. Biventricular working hearts were subjected to 35 minutes of aerobic perfusion, 25 minutes of global no-flow ischemia, and 30 minutes of aerobic reperfusion. GW7647 treatment did not prevent the development of cardiac hypertrophy, but did prevent the decline in left ventricular ejection fraction in vivo. GW7647 treatment increased cardiac fatty acid β-oxidation rates before and after ischemia, which resulted in a significant increase in overall ATP production and an improved in vitro post-ischemic functional recovery. A decrease in post-ischemic proton production and endoplasmic reticulum stress, as well as an activation of sarcoplasmic reticulum calcium ATPase isoform 2 and citrate synthase, was evident in GW7647-treated hearts. CONCLUSIONS Stimulating fatty acid β-oxidation in neonatal hearts may present a novel cardioprotective intervention to limit post-ischemic contractile dysfunction.
Collapse
Affiliation(s)
- Victoria H Lam
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Liyan Zhang
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Alda Huqi
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Arata Fukushima
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Brandon A Tanner
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Arzu Onay-Besikci
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Wendy Keung
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Paul F Kantor
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Jagdip S Jaswal
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Ivan M Rebeyka
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.)
| | - Gary D Lopaschuk
- From the Cardiovascular Translational Science Institute (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.) and Department of Pediatrics (V.H.L., L.Z., A.H., A.F., B.A.T., W.K., P.F.K., J.S.J., I.M.R., G.D.L.), University of Alberta, Edmonton, Canada; and Department of Medical Pharmacology, Ankara University, Ankara, Turkey (A.O.-B.).
| |
Collapse
|
12
|
Ozcinar E, Okatan EN, Tuncay E, Eryilmaz S, Turan B. Improvement of functional recovery of donor heart following cold static storage with doxycycline cardioplegia. Cardiovasc Toxicol 2014; 14:64-73. [PMID: 24104944 PMCID: PMC3936127 DOI: 10.1007/s12012-013-9231-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Injury to the donor heart during cold preservation has a negative impact on graft survival before transplantation. This study aims to examine whether doxycycline, known as an MMP-2 inhibitor, has a positive effect on donor heart preservation via its antioxidant action when added to standard preservation solution. Hearts were obtained from 3-month-old male Wistar rats and randomly divided into three groups: hearts stored for 1 h at 4 °C (1) with doxycycline preservation solution (DOX cardioplegia) with low Ca(2+); (2) with standard cardioplegia with low Ca(2+); and (3) unstored hearts. All hearts were perfused in working mode, arrested at 37 °C, removed from the perfusion system, reattached in Langendorff perfusion system, and converted to working mode for 1 h. At the end of the storage period, hearts preserved in DOX cardioplegia had significantly less weight gain than those preserved in the standard cardioplegia. DOX cardioplegia-induced preservation resulted in significantly higher heart rates and better recovery quality during reperfusion in aortic flow compared to the standard cardioplegia group. Recovery in the left ventricular function and Lambeth Convention Arrhythmia scores during 1 h reperfusion were also significantly better in the DOX cardioplegia group. Biochemical data showed that DOX cardioplegia prevented an increase in MMP-2 activity and blocked apoptosis through increased activity of the pro-survival kinase Akt in the donor heart homogenates. DOX cardioplegia also led to a balanced oxidant/antioxidant level in the heart homogenates. This is the first study to report that cardioplegia solution containing doxycycline provides better cardioprotection via the preservation of heart function, through its role in controlling cellular redox status during static cold storage.
Collapse
Affiliation(s)
- Evren Ozcinar
- Department of Cardiovascular Surgery, Ankara Diskapi Training and Research Hospital, Ministry of Health, 06330, Ankara, Turkey
| | | | | | | | | |
Collapse
|
13
|
Stehn JR, Haass NK, Bonello T, Desouza M, Kottyan G, Treutlein H, Zeng J, Nascimento PRBB, Sequeira VB, Butler TL, Allanson M, Fath T, Hill TA, McCluskey A, Schevzov G, Palmer SJ, Hardeman EC, Winlaw D, Reeve VE, Dixon I, Weninger W, Cripe TP, Gunning PW. A novel class of anticancer compounds targets the actin cytoskeleton in tumor cells. Cancer Res 2014; 73:5169-82. [PMID: 23946473 DOI: 10.1158/0008-5472.can-12-4501] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The actin cytoskeleton is a potentially vulnerable property of cancer cells, yet chemotherapeutic targeting attempts have been hampered by unacceptable toxicity. In this study, we have shown that it is possible to disrupt specific actin filament populations by targeting isoforms of tropomyosin, a core component of actin filaments, that are selectively upregulated in cancers. A novel class of anti-tropomyosin compounds has been developed that preferentially disrupts the actin cytoskeleton of tumor cells, impairing both tumor cell motility and viability. Our lead compound, TR100, is effective in vitro and in vivo in reducing tumor cell growth in neuroblastoma and melanoma models. Importantly, TR100 shows no adverse impact on cardiac structure and function, which is the major side effect of current anti-actin drugs. This proof-of-principle study shows that it is possible to target specific actin filament populations fundamental to tumor cell viability based on their tropomyosin isoform composition. This improvement in specificity provides a pathway to the development of a novel class of anti-actin compounds for the potential treatment of a wide variety of cancers.
Collapse
Affiliation(s)
- Justine R Stehn
- School of Medical Sciences, University of New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dobson GP, Faggian G, Onorati F, Vinten-Johansen J. Hyperkalemic cardioplegia for adult and pediatric surgery: end of an era? Front Physiol 2013; 4:228. [PMID: 24009586 PMCID: PMC3755226 DOI: 10.3389/fphys.2013.00228] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/05/2013] [Indexed: 12/16/2022] Open
Abstract
Despite surgical proficiency and innovation driving low mortality rates in cardiac surgery, the disease severity, comorbidity rate, and operative procedural difficulty have increased. Today's cardiac surgery patient is older, has a "sicker" heart and often presents with multiple comorbidities; a scenario that was relatively rare 20 years ago. The global challenge has been to find new ways to make surgery safer for the patient and more predictable for the surgeon. A confounding factor that may influence clinical outcome is high K(+) cardioplegia. For over 40 years, potassium depolarization has been linked to transmembrane ionic imbalances, arrhythmias and conduction disturbances, vasoconstriction, coronary spasm, contractile stunning, and low output syndrome. Other than inducing rapid electrochemical arrest, high K(+) cardioplegia offers little or no inherent protection to adult or pediatric patients. This review provides a brief history of high K(+) cardioplegia, five areas of increasing concern with prolonged membrane K(+) depolarization, and the basic science and clinical data underpinning a new normokalemic, "polarizing" cardioplegia comprising adenosine and lidocaine (AL) with magnesium (Mg(2+)) (ALM™). We argue that improved cardioprotection, better outcomes, faster recoveries and lower healthcare costs are achievable and, despite the early predictions from the stent industry and cardiology, the "cath lab" may not be the place where the new wave of high-risk morbid patients are best served.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Department of Physiology and Pharmacology, Heart and Trauma Research Laboratory, James Cook UniversityTownsville, QLD, Australia
| | - Giuseppe Faggian
- Division of Cardiac Surgery, University of Verona Medical SchoolVerona, Italy
| | - Francesco Onorati
- Division of Cardiac Surgery, University of Verona Medical SchoolVerona, Italy
| | - Jakob Vinten-Johansen
- Cardiothoracic Research Laboratory of Emory University Hospital Midtown, Carlyle Fraser Heart CenterAtlanta, GA, USA
| |
Collapse
|
15
|
Garcia-Dorado D, Andres-Villarreal M, Ruiz-Meana M, Inserte J, Barba I. Myocardial edema: A translational view. J Mol Cell Cardiol 2012; 52:931-9. [DOI: 10.1016/j.yjmcc.2012.01.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/09/2012] [Accepted: 01/10/2012] [Indexed: 12/21/2022]
|
16
|
Choy JS, Svendsen M, Lu X, Zheng H, Sulkin MS, Sinha AK, Morales C, Moussa I, Navia JA, Kassab GS. Selective autoretroperfusion preserves myocardial function during coronary artery ligation in swine. ACUTE CARDIAC CARE 2011; 13:99-108. [PMID: 21539459 DOI: 10.3109/17482941.2011.578748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND External pumps have been previously used to minimize edema and hemorrhage caused by coronary retroperfusion. The objective of this study was to use a pump-less approach (selective autoretroperfusion, SARP) to preserve myocardial function after acute coronary artery ligation. METHODS In five experimental pigs, the LAD artery was ligated distal to the first diagonal and retroperfusion was instituted for three hours from a brachiocephalic artery at 50 mmHg pressure through an adjustable occluder on the cannula. In eight control pigs, the LAD artery was ligated distal to the second diagonal for the same duration with no SARP. RESULTS ECG showed more prominent S-T segment elevation in the untreated control group despite the more distal ligation. The degree of myocardial contraction was significantly attenuated in the control group but was largely preserved in the SARP treated group. The myocytes were well preserved in the SARP group with no rupture of venous microvessels. Myocyte edema and disruption was observed in the control group with only mild extracellular edema in the SARP treated group. CONCLUSION SARP preserved myocardial function with no damage to the myocyte and venules during three hours of acute LAD ligation.
Collapse
Affiliation(s)
- Jenny S Choy
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Butler TL, Egan JR, Winlaw DS. Reply to the Editor. J Thorac Cardiovasc Surg 2010. [DOI: 10.1016/j.jtcvs.2009.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Lawton JS. Edema does matter. J Thorac Cardiovasc Surg 2010; 139:510; author reply 510-1. [PMID: 20106407 DOI: 10.1016/j.jtcvs.2009.08.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 08/17/2009] [Indexed: 11/19/2022]
|