1
|
Ba X, Ye T, Shang H, Tong Y, Huang Q, He Y, Wu J, Deng W, Zhong Z, Yang X, Wang K, Xie Y, Zhang Y, Guo X, Tang K. Recent Advances in Nanomaterials for the Treatment of Acute Kidney Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12117-12148. [PMID: 38421602 DOI: 10.1021/acsami.3c19308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Acute kidney injury (AKI) is a serious clinical syndrome with high morbidity, elevated mortality, and poor prognosis, commonly considered a "sword of Damocles" for hospitalized patients, especially those in intensive care units. Oxidative stress, inflammation, and apoptosis, caused by the excessive production of reactive oxygen species (ROS), play a key role in AKI progression. Hence, the investigation of effective and safe antioxidants and inflammatory regulators to scavenge overexpressed ROS and regulate excessive inflammation has become a promising therapeutic option. However, the unique physiological structure and complex pathological alterations in the kidneys render traditional therapies ineffective, impeding the residence and efficacy of most antioxidant and anti-inflammatory small molecule drugs within the renal milieu. Recently, nanotherapeutic interventions have emerged as a promising and prospective strategy for AKI, overcoming traditional treatment dilemmas through alterations in size, shape, charge, and surface modifications. This Review succinctly summarizes the latest advancements in nanotherapeutic approaches for AKI, encompassing nanozymes, ROS scavenger nanomaterials, MSC-EVs, and nanomaterials loaded with antioxidants and inflammatory regulator. Following this, strategies aimed at enhancing biocompatibility and kidney targeting are introduced. Furthermore, a brief discussion on the current challenges and future prospects in this research field is presented, providing a comprehensive overview of the evolving landscape of nanotherapeutic interventions for AKI.
Collapse
Affiliation(s)
- Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kangyang Wang
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, Hainan Province, China
| | - Yabin Xie
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, Hainan Province, China
| | - Yanlong Zhang
- GuiZhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
2
|
Mullen S, Movia D. The role of extracellular vesicles in non-small-cell lung cancer, the unknowns, and how new approach methodologies can support new knowledge generation in the field. Eur J Pharm Sci 2023; 188:106516. [PMID: 37406971 DOI: 10.1016/j.ejps.2023.106516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Extracellular vesicles (EVs) are nanosized particles released from most human cell types that contain a variety of cargos responsible for mediating cell-to-cell and organ-to-organ communications. Current knowledge demonstrates that EVs also play critical roles in many aspects of the progression of Non-Small-Cell Lung Cancer (NSCLC). Their roles range from increasing proliferative signalling to inhibiting apoptosis, promoting cancer metastasis, and modulating the tumour microenvironment to support cancer development. However, due to the limited availability of patient samples, intrinsic inter-species differences between human and animal EV biology, and the complex nature of EV interactions in vivo, where multiple cell types are present and several events occur simultaneously, the use of conventional preclinical and clinical models has significantly hindered reaching conclusive results. This review discusses the biological roles that EVs are currently known to play in NSCLC and identifies specific challenges in advancing today's knowledge. It also describes the NSCLC models that have been used to define currently-known EV functions, the limitations associated with their use in this field, and how New Approach Methodologies (NAMs), such as microfluidic platforms, organoids, and spheroids, can be used to overcome these limitations, effectively supporting future exciting discoveries in the NSCLC field and the potential clinical exploitation of EVs.
Collapse
Affiliation(s)
- Sive Mullen
- Applied Radiation Therapy Trinity (ARTT), Discipline of Radiation Therapy, School of Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin, Ireland; Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin, Ireland
| | - Dania Movia
- Applied Radiation Therapy Trinity (ARTT), Discipline of Radiation Therapy, School of Medicine, Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin, Ireland; Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Trinity Centre for Health Sciences, James's Street, Dublin, Ireland; Trinity St James's Cancer Institute, James's Street, Dublin, Ireland.
| |
Collapse
|
3
|
Ozbayer C, Yagci E, Ak G, Metintas S, Metintas M, Kurt H. Gene Variations of Chemokine and Chemokine Receptor CXCL12/CXCR4 in Lung Cancer. J Environ Pathol Toxicol Oncol 2023; 42:49-57. [PMID: 36749089 DOI: 10.1615/jenvironpatholtoxicoloncol.2022044374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Lung cancer is the most common type of cancer in the world and about 1 million people die from lung cancer every year in the world. Inflammation is an important factor in the onset, progression and metastasis of lung cancer. The most important regulators of inflammation are chemokines and chemokine receptors. Chemokines induce the proliferation of cancer cells and prevent their apoptosis. Chemokines may indirectly affect tumor growth by inducing growth and release of angiogenic factors from cells in the tumor microenvironment. CXCL12/CXCR4 are chemokine and chemokine receptors predicted to be involved in lung cancer pathogenesis. This study aimed to determine the relationship between CXCL12/CXCR4 gene variations and CXCL12 serum levels in disease pathogenesis in lung cancer. For this purpose, DNA samples isolated from 90 lung cancer patients (36 squamous cell carcinomas, 18 small cell carcinomas and 36 adenocarcinomas) and 90 control individuals were genotyped by PCR-RFLP method for CXCL12 (rs1801157) and CXCR4 (rs2228014). CXCL12 protein levels were determined from serum samples by the enzyme-linked immuno-sorbent assay (ELISA) method. Results were evaluated using IBM SPSS Statistics 21 software and FINNETI program. As a result, there was no significant difference between the genotype frequencies of the CXCL12 rs1801157 variant and the risk of lung cancer (P = 0.396). CXCR4 rs2228014 genotypes were significantly associated with lung cancer risk (P < 0.001). Lung cancer patients had significantly elevated serum CXCL12 levels than controls (P < 0.001). In conclusion, the rs2228014 variants localized on the chemokine receptors CXCR4 gene was found to be closely related to lung cancer risk.
Collapse
Affiliation(s)
- Cansu Ozbayer
- Kutahya Health Sciences University, Faculty of Medicine, Department of Medical Biology, Kutahya, Turkey
| | - Emine Yagci
- Eskisehir Osmangazi University, Medical Faculty, Department of Medical Biology, Eskisehir, Turkey
| | - Guntulu Ak
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pulmonary Diseases, Lung and Pleural Cancers Research and Clinical Center, Eskisehir, Turkey
| | - Selma Metintas
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Public Health, Lung and Pleural Cancers Research and Clinical Center, Eskisehir, Turkey
| | - Muzaffer Metintas
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Pulmonary Diseases, Lung and Pleural Cancers Research and Clinical Center, Eskisehir, Turkey
| | - Hulyam Kurt
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Medical Biology, Eskisehir, Turkey
| |
Collapse
|
4
|
Kogue Y, Kobayashi H, Nakamura Y, Takano T, Furuta C, Kawano O, Yasuma T, Nishimura T, D’Alessandro-Gabazza CN, Fujimoto H, Gabazza EC, Kobayashi T, Fukai I. Prognostic Value of CXCL12 in Non-Small Cell Lung Cancer Patients Undergoing Tumor Resection. Pharmaceuticals (Basel) 2023; 16:255. [PMID: 37227446 PMCID: PMC9967107 DOI: 10.3390/ph16020255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 08/30/2023] Open
Abstract
Adjuvant chemotherapy is commonly indicated in lung cancer patients undergoing surgical therapy because tumor recurrence is frequent. A biomarker that can predict tumor recurrence in the postoperative period is currently unavailable. CXCR4 receptor and its ligand CXCL12 play important roles in metastasis. This study investigated the value of tumor CXCL12 expression to predict prognosis and indicate adjuvant chemotherapy in non-small cell lung cancer patients. This study enrolled 82 non-small cell lung cancer patients. The expression of CXCL12 was evaluated by immunohistochemistry. The degree of CXCL12 expression was assessed using the Allred score system. Among all subjects, the progression-free survival and overall survival were significantly prolonged in cancer patients with low tumor expression of CXCL12 compared to patients with high tumor expression. Multivariate analysis showed that the increased level of CXCL12 is a significant predictor of progression-free survival and overall survival in NSCLC patients. Among subjects with high tumor CXCL12 expression, progression-free survival and overall survival were significantly improved in patients treated with adjuvant chemotherapy compared to untreated patients. These results suggest the potential value of tumor CXCL12 expression as a marker to predict prognosis and to indicate adjuvant chemotherapy after surgical tumor resection in non-small cell lung cancer patients.
Collapse
Affiliation(s)
- Yurie Kogue
- Department of Pulmonary Medicine, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
- Department of Pulmonary and Critical Care Medicine, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Hiroyasu Kobayashi
- Department of Pulmonary Medicine, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Yutaka Nakamura
- Department of Pathology, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Takatsugu Takano
- Department of Pulmonary Surgery, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Chihiro Furuta
- Department of Pulmonary Surgery, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Osamu Kawano
- Department of Pulmonary Surgery, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Taro Yasuma
- Department of Immunology, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Tadashi Nishimura
- Department of Pulmonary Medicine, Mie Chuo Medical Center, Hisaimyojincho, Tsu 514-1101, Japan
| | | | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Ichiro Fukai
- Department of Pulmonary Surgery, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| |
Collapse
|
5
|
Therapeutic Targeting of Cancer-Associated Fibroblasts in the Non-Small Cell Lung Cancer Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15020335. [PMID: 36672284 PMCID: PMC9856659 DOI: 10.3390/cancers15020335] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer death worldwide. The most common lung cancer is non-small cell lung cancer (NSCLC), with an overall 5-year survival rate of around 20% because NSCLC is a metastatic disease. A better understanding of the mechanism underlying lung cancer metastasis is therefore urgently needed. The tumor microenvironment involves different types of stromal cells and functions as key components in the progression of NSCLC. Through epithelial-mesenchymal transition (EMT), in which epithelial cells lose their polarity and acquire mesenchymal potential, cancer cells acquire metastatic abilities, as well as cancer stem-cell-like potential. We previously reported that cancer-associated fibroblasts (CAFs) interact with lung cancer cells to allow for the acquisition of malignancy and treatment resistance by paracrine loops via EMT signals in the tumor microenvironment. Furthermore, CAFs regulate the cytotoxic activity of immune cells via various cytokines and chemokines, creating a microenvironment of immune tolerance. Regulation of CAFs can therefore affect immune responses. Recent research has shown several roles of CAFs in NSCLC tumorigenesis, owing to their heterogeneity, so molecular markers of CAFs should be elucidated to better classify tumor-promoting subtypes and facilitate the establishment of CAF-specific targeted therapies. CAF-targeted cancer treatments may suppress EMT and regulate the niche of cancer stem cells and the immunosuppressive network and thus may prove useful for NSCLC treatment through multiple mechanisms.
Collapse
|
6
|
Li C, Qiu Y, Zhang Y. Research Progress on Therapeutic Targeting of Cancer-Associated Fibroblasts to Tackle Treatment-Resistant NSCLC. Pharmaceuticals (Basel) 2022; 15:1411. [PMID: 36422541 PMCID: PMC9696940 DOI: 10.3390/ph15111411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 08/04/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for most lung cancer cases and is the leading cause of cancer-related deaths worldwide. Treatment options for lung cancer are no longer limited to surgery, radiotherapy, and chemotherapy, as targeted therapy and immunotherapy offer a new hope for patients. However, drug resistance in chemotherapy and targeted therapy, and the low response rates to immunotherapy remain important challenges. Similar to tumor development, drug resistance occurs because of significant effects exerted by the tumor microenvironment (TME) along with cancer cell mutations. Cancer-associated fibroblasts (CAFs) are a key component of the TME and possess multiple functions, including cross-talking with cancer cells, remodeling of the extracellular matrix (ECM), secretion of various cytokines, and promotion of epithelial-mesenchymal transition, which in turn provide support for the growth, invasion, metastasis, and drug resistance of cancer cells. Therefore, CAFs represent valuable therapeutic targets for lung cancer. Herein, we review the latest progress in the use of CAFs as potential targets and mediators of drug resistance for NSCLC treatment. We explored the role of CAFs on the regulation of the TME and surrounding ECM, with particular emphasis on treatment strategies involving combined CAF targeting within the current framework of cancer treatment.
Collapse
|
7
|
Wong KY, Cheung AH, Chen B, Chan WN, Yu J, Lo KW, Kang W, To KF. Cancer-associated fibroblasts in nonsmall cell lung cancer: From molecular mechanisms to clinical implications. Int J Cancer 2022; 151:1195-1215. [PMID: 35603909 PMCID: PMC9545594 DOI: 10.1002/ijc.34127] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022]
Abstract
Lung cancer is the common and leading cause of cancer death worldwide. The tumor microenvironment has been recognized to be instrumental in tumorigenesis. To have a deep understanding of the molecular mechanism of nonsmall cell lung carcinoma (NSCLC), cancer-associated fibroblasts (CAFs) have gained increasing research interests. CAFs belong to the crucial and dominant cell population in the tumor microenvironment to support the cancer cells. The interplay and partnership between cancer cells and CAFs contribute to each stage of tumorigenesis. CAFs exhibit prominent heterogeneity and secrete different kinds of cytokines and chemokines, growth factors and extracellular matrix proteins involved in cancer cell proliferation, invasion, metastasis and chemoresistance. Many studies focused on the protumorigenic functions of CAFs, yet many challenges about the heterogeneity of CAFS remain unresolved. This review comprehensively summarized the tumor-promoting role and molecular mechanisms of CAFs in NSCLC, including their origin, phenotypic changes and heterogeneity and their functional roles in carcinogenesis. Meanwhile, we also highlighted the updated molecular classifications based on the molecular features and functional roles of CAFs. With the development of cutting-edge platforms and further investigations of CAFs, novel therapeutic strategies for accurately targeting CAFs in NSCLC may be developed based on the increased understanding of the relevant molecular mechanisms.
Collapse
Affiliation(s)
- Kit Yee Wong
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Alvin Ho‐Kwan Cheung
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Department of Medicine and TherapeuticsThe Chinese University of Hong KongHong KongSARChina
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational OncologyPrince of Wales Hospital, The Chinese University of Hong KongHong KongSARChina
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong KongHong KongSARChina
- Li Ka Shing Institute of Health Science, Sir Y.K. Pao Cancer Center, The Chinese University of Hong KongHong KongSARChina
| |
Collapse
|
8
|
Komolafe K, Pacurari M. CXC Chemokines in the Pathogenesis of Pulmonary Disease and Pharmacological Relevance. Int J Inflam 2022; 2022:4558159. [PMID: 36164329 PMCID: PMC9509283 DOI: 10.1155/2022/4558159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
Abstract
Chemokines and their receptors play important roles in the pathophysiology of many diseases by regulating the cellular migration of major inflammatory and immune players. The CXC motif chemokine subfamily is the second largest family, and it is further subdivided into ELR motif CXC (ELR+) and non-ELR motif (ELR-) CXC chemokines, which are effective chemoattractants for neutrophils and lymphocytes/monocytes, respectively. These chemokines and their receptors are expected to have a significant impact on a wide range of lung diseases, many of which have inflammatory or immunological underpinnings. As a result, manipulations of this subfamily of chemokines and their receptors using small molecular agents and other means have been explored for potential therapeutic benefit in the setting of several lung pathologies. Furthermore, encouraging preclinical data has necessitated the progression of a few of these drugs into clinical trials in order to make the most effective use of interventions in the development of viable targeted therapeutics. The current review presents the understanding of the roles of CXC ligands (CXCLs) and their cognate receptors (CXCRs) in the pathogenesis of several lung diseases such as allergic rhinitis, COPD, lung fibrosis, lung cancer, pneumonia, and tuberculosis. The potential therapeutic benefits of pharmacological or other CXCL/CXCR axis manipulations are also discussed.
Collapse
Affiliation(s)
- Kayode Komolafe
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
| | - Maricica Pacurari
- RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, Jackson, MS 39217, USA
| |
Collapse
|
9
|
Zhang S, Zhu N, Li HF, Gu J, Zhang CJ, Liao DF, Qin L. The lipid rafts in cancer stem cell: a target to eradicate cancer. Stem Cell Res Ther 2022; 13:432. [PMID: 36042526 PMCID: PMC9429646 DOI: 10.1186/s13287-022-03111-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with stem cell properties that sustain cancers, which may be responsible for cancer metastasis or recurrence. Lipid rafts are cholesterol- and sphingolipid-enriched microdomains in the plasma membrane that mediate various intracellular signaling. The occurrence and progression of cancer are closely related to lipid rafts. Emerging evidence indicates that lipid raft levels are significantly enriched in CSCs compared to cancer cells and that most CSC markers such as CD24, CD44, and CD133 are located in lipid rafts. Furthermore, lipid rafts play an essential role in CSCs, specifically in CSC self-renewal, epithelial-mesenchymal transition, drug resistance, and CSC niche. Therefore, lipid rafts are critical regulatory platforms for CSCs and promising therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Hong Fang Li
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China
| | - Jia Gu
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China
| | - Chan Juan Zhang
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China
| | - Duan Fang Liao
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China
| | - Li Qin
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, 410208, Changsha, Hunan, People's Republic of China. .,Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, China. .,Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
10
|
Chemokines and NSCLC: Emerging role in prognosis, heterogeneity, and therapeutics. Semin Cancer Biol 2022; 86:233-246. [PMID: 35787939 DOI: 10.1016/j.semcancer.2022.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022]
Abstract
Lung cancer persists to contribute to one-quarter of cancer-associated deaths. Among the different histologies, non-small cell lung cancer (NSCLC) alone accounts for 85% of the cases. The development of therapies involving immune checkpoint inhibitors and angiogenesis inhibitors has increased patients' survival probability and reduced mortality rates. Developing targeted therapies against essential genetic alterations also translates to better treatment strategies. But the benefits still seem farfetched due to the development of drug resistance and refractory tumors. In this review, we have highlighted the interplay of different tumor microenvironment components, essentially discussing the chemokine families (CC, CXC, C, and CX3C) that regulate the tumor biology in NSCLC and promote tumor growth, metastasis, and associated heterogeneity. The development of therapeutics and prognostic markers is a complex and multipronged approach. However, some essential chemokines can act as critical players for being considered potential prognostic markers and therapeutic targets.
Collapse
|
11
|
Zhuang Z, Zhong X, Chen Q, Chen H, Liu Z. Bioinformatics and System Biology Approach to Reveal the Interaction Network and the Therapeutic Implications for Non-Small Cell Lung Cancer Patients With COVID-19. Front Pharmacol 2022; 13:857730. [PMID: 35721149 PMCID: PMC9201692 DOI: 10.3389/fphar.2022.857730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the leading cause of coronavirus disease-2019 (COVID-19), is an emerging global health crisis. Lung cancer patients are at a higher risk of COVID-19 infection. With the increasing number of non-small-cell lung cancer (NSCLC) patients with COVID-19, there is an urgent need of efficacious drugs for the treatment of COVID-19/NSCLC. Methods: Based on a comprehensive bioinformatic and systemic biological analysis, this study investigated COVID-19/NSCLC interactional hub genes, detected common pathways and molecular biomarkers, and predicted potential agents for COVID-19 and NSCLC. Results: A total of 122 COVID-19/NSCLC interactional genes and 21 interactional hub genes were identified. The enrichment analysis indicated that COVID-19 and NSCLC shared common signaling pathways, including cell cycle, viral carcinogenesis, and p53 signaling pathway. In total, 10 important transcription factors (TFs) and 44 microRNAs (miRNAs) participated in regulations of 21 interactional hub genes. In addition, 23 potential candidates were predicted for the treatment of COVID-19 and NSCLC. Conclusion: This study increased our understanding of pathophysiology and screened potential drugs for COVID-19 and NSCLC.
Collapse
Affiliation(s)
- Zhenjie Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Zhong
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianying Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiqi Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhanhua Liu
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
12
|
Suzuki J, Tsuboi M, Ishii G. Cancer-associated fibroblasts and the tumor microenvironment in non-small cell lung cancer. Expert Rev Anticancer Ther 2022; 22:169-182. [PMID: 34904919 DOI: 10.1080/14737140.2022.2019018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) has a markedly poor prognosis as it progresses, and the prognosis is still unsatisfactory even with modern treatments. Cancer is composed of not only cancer cells, but also stroma consisting of various cell types. Cancer-associated fibroblasts (CAFs) are a major component of the stroma and the associated tumor microenvironment (TME). Particularly, CAFs are a critical component in elucidating the biological mechanisms of cancer progression and new therapeutic targets. This article outlines the TME formed by CAFs in NSCLC. AREAS COVERED Focusing on the TME in NSCLC, we discuss the mechanisms by which CAFs are involved in cancer progression, drug resistance, and the development of therapies targeting CAFs. EXPERT OPINION In the TME, CAFs profoundly contribute to tumor progression by interacting with cancer cells through direct contact or paracrine cytokine signaling. CAFs also interact with various other stromal components to establish a tumor-promoting immunosuppressive microenvironment and remodel the extracellular matrix. Furthermore, these effects are closely associated with drug resistance. Further elucidation of the stromal microenvironment, including CAFs, could prove to be crucial in the treatment of NSCLC.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan.,Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, Kashiwa, Japan
| | - Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|
13
|
Belluomini L, Dodi A, Caldart A, Kadrija D, Sposito M, Casali M, Sartori G, Ferrara MG, Avancini A, Bria E, Menis J, Milella M, Pilotto S. A narrative review on tumor microenvironment in oligometastatic and oligoprogressive non-small cell lung cancer: a lot remains to be done. Transl Lung Cancer Res 2021; 10:3369-3384. [PMID: 34430373 PMCID: PMC8350097 DOI: 10.21037/tlcr-20-1134] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Objective In this review, we aim to collect and discuss available data about the role and composition of tumor microenvironment (TME) in oligometastatic (OMD) and oligoprogressive (OPD) non-small cell lung cancer (NSCLC). Furthermore, we aim to summarize the ongoing clinical trials evaluating as exploratory objective the TME composition, through tissue and/or blood samples, in order to clarify whether TME and its components could explain, at least partially, the oligometastatic/oligoprogressive process and could unravel the existence of predictive and/or prognostic factors for local ablative therapy (LAT). Background OMD/OPD NSCLC represent a heterogeneous group of diseases. Several data have shown that TME plays an important role in tumor progression and therefore in treatment response. The crucial role of several types of cells and molecules such as immune cells, cytokines, integrins, protease and adhesion molecules, tumor-associated macrophages (TAMs) and mesenchymal stem cells (MSCs) has been widely established. Due to the peculiar activation of specific pathways and expression of adhesion molecules, metastatic cells seem to show a tropism for specific anatomic sites (the so-called “seed and soil” hypothesis). Based on this theory, metastases appear as a biologically driven process rather than a random release of cancer cells. Although the role and the function of TME at the time of progression in patients with NSCLC treated with tyrosine-kinase inhibitors and immune checkpoint inhibitors (ICIs) have been investigated, limited data about the role and the biological meaning of TME are available in the specific OMD/OPD setting. Methods Through a comprehensive PubMed and ClinicalTrials.gov search, we identified available and ongoing studies exploring the role of TME in oligometastatic/oligoprogressive NSCLC. Conclusions Deepening the knowledge on TME composition and function in OMD/OPD may provide innovative implications in terms of both prognosis and prediction of outcome in particular from local treatments, paving the way for future investigations of personalized approaches in both advanced and early disease settings.
Collapse
Affiliation(s)
- Lorenzo Belluomini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Alessandra Dodi
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Alberto Caldart
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Dzenete Kadrija
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Marco Sposito
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Miriam Casali
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Giulia Sartori
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Miriam Grazia Ferrara
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Alice Avancini
- Biomedical, Clinical and Experimental Sciences, Department of Medicine, University of Verona Hospital Trust, Verona, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy; Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Jessica Menis
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Medical Oncology Department, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| |
Collapse
|
14
|
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q, Deng S, Zhou H. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther 2021; 6:218. [PMID: 34108441 PMCID: PMC8190181 DOI: 10.1038/s41392-021-00641-0] [Citation(s) in RCA: 348] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023] Open
Abstract
To flourish, cancers greatly depend on their surrounding tumor microenvironment (TME), and cancer-associated fibroblasts (CAFs) in TME are critical for cancer occurrence and progression because of their versatile roles in extracellular matrix remodeling, maintenance of stemness, blood vessel formation, modulation of tumor metabolism, immune response, and promotion of cancer cell proliferation, migration, invasion, and therapeutic resistance. CAFs are highly heterogeneous stromal cells and their crosstalk with cancer cells is mediated by a complex and intricate signaling network consisting of transforming growth factor-beta, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin, mitogen-activated protein kinase, Wnt, Janus kinase/signal transducers and activators of transcription, epidermal growth factor receptor, Hippo, and nuclear factor kappa-light-chain-enhancer of activated B cells, etc., signaling pathways. These signals in CAFs exhibit their own special characteristics during the cancer progression and have the potential to be targeted for anticancer therapy. Therefore, a comprehensive understanding of these signaling cascades in interactions between cancer cells and CAFs is necessary to fully realize the pivotal roles of CAFs in cancers. Herein, in this review, we will summarize the enormous amounts of findings on the signals mediating crosstalk of CAFs with cancer cells and its related targets or trials. Further, we hypothesize three potential targeting strategies, including, namely, epithelial-mesenchymal common targets, sequential target perturbation, and crosstalk-directed signaling targets, paving the way for CAF-directed or host cell-directed antitumor therapy.
Collapse
Affiliation(s)
- Fanglong Wu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jingtian Mu
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Qingxiang Zeng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shuzhi Deng
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
15
|
Characterization of the Endometrial MSC Marker Ectonucleoside Triphosphate Diphosphohydrolase-2 (NTPDase2/CD39L1) in Low- and High-Grade Endometrial Carcinomas: Loss of Stromal Expression in the Invasive Phenotypes. J Pers Med 2021; 11:jpm11050331. [PMID: 33922226 PMCID: PMC8146812 DOI: 10.3390/jpm11050331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Ectonucleoside triphosphate diphosphohydrolase-2 (NTPDase2/CD39L1) has been described in human non-pathological endometrium in both epithelial and stromal components without changes along the cycle. It was identified as a stromal marker of basalis. In the present study, we aimed to evaluate NTPDase2 distribution, using immunolabeling and in situ enzyme activity approaches, in endometrial carcinoma (EC) at different tumor grades. NTPDase2 was present in tumor epithelial EC cells, as in the non-pathological endometria, but the expression underwent changes in subcellular distribution and also tended to decrease with the tumor grade. In stroma, NTPDase2 was identified exclusively at the tumor-myometrial junction but this expression was lost in tumors of invasive phenotype. We have also identified in EC samples the presence of the perivascular population of endometrial mesenchymal stem cells (eMSCs) positive for sushi domain containing 2 (SUSD2) and for NTPDase2, already described in non-tumoral endometrium. Our results point to NTPDase2 as a histopathological marker of tumor invasion in EC, with diagnostic relevance especially in cases of EC coexisting with other endometrial disorders, such as adenomyosis, which occasionally hampers the assessment of tumor invasion parameters.
Collapse
|
16
|
Yang P, Hu Y, Zhou Q. The CXCL12-CXCR4 Signaling Axis Plays a Key Role in Cancer Metastasis and is a Potential Target for Developing Novel Therapeutics against Metastatic Cancer. Curr Med Chem 2020; 27:5543-5561. [PMID: 31724498 DOI: 10.2174/0929867326666191113113110] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Metastasis is the main cause of death in cancer patients; there is currently no effective treatment for cancer metastasis. This is primarily due to our insufficient understanding of the metastatic mechanisms in cancer. An increasing number of studies have shown that the C-X-C motif chemokine Ligand 12 (CXCL12) is overexpressed in various tissues and organs. It is a key niche factor that nurtures the pre-metastatic niches (tumorigenic soil) and recruits tumor cells (oncogenic "seeds") to these niches, thereby fostering cancer cell aggression and metastatic capabilities. However, the C-X-C motif chemokine Receptor 4 (CXCR4) is aberrantly overexpressed in various cancer stem/progenitor cells and functions as a CXCL12 receptor. CXCL12 activates CXCR4 as well as multiple downstream multiple tumorigenic signaling pathways, promoting the expression of various oncogenes. Activation of the CXCL12-CXCR4 signaling axis promotes Epithelial-Mesenchymal Transition (EMT) and mobilization of cancer stem/progenitor cells to pre-metastatic niches. It also nurtures cancer cells with high motility, invasion, and dissemination phenotypes, thereby escalating multiple proximal or distal cancer metastasis; this results in poor patient prognosis. Based on this evidence, recent studies have explored either CXCL12- or CXCR4-targeted anti-cancer therapeutics and have achieved promising results in the preclinical trials. Further exploration of this new strategy and its potent therapeutics effect against metastatic cancer through the targeting of the CXCL12- CXCR4 signaling axis may lead to a novel therapy that can clean up the tumor microenvironment ("soil") and kill the cancer cells, particularly the cancer stem/progenitor cells ("seeds"), in cancer patients. Ultimately, this approach has the potential to effectively treat metastatic cancer.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pathophysiology, School of Medicine (School of Nursing), Nantong University, Nantong, Jiangsu 226000, China
| | - Yae Hu
- Department of Pathophysiology, School of Medicine (School of Nursing), Nantong University, Nantong, Jiangsu 226000, China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University; Suzhou, Jiangsu 215123, China
| |
Collapse
|
17
|
Bianchi ME, Mezzapelle R. The Chemokine Receptor CXCR4 in Cell Proliferation and Tissue Regeneration. Front Immunol 2020; 11:2109. [PMID: 32983169 PMCID: PMC7484992 DOI: 10.3389/fimmu.2020.02109] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
The CXCR4 receptor upon binding its ligands triggers multiple signaling pathways that orchestrate cell migration, hematopoiesis and cell homing, and retention in the bone marrow. However, CXCR4 also directly controls cell proliferation of non-hematopoietic cells. This review focuses on recent reports pointing to its pivotal role in tissue regeneration and stem cell activation, and discusses the connection to the known role of CXCR4 in promoting tumor growth. The mechanisms may be similar in all cases, since regeneration often recapitulates developmental processes, and cancer often exploits developmental pathways. Moreover, cell migration and cell proliferation appear to be downstream of the same signaling pathways. A deeper understanding of the complex signaling originating from CXCR4 is needed to exploit the opportunities to repair damaged organs safely and effectively.
Collapse
Affiliation(s)
- Marco E Bianchi
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Rosanna Mezzapelle
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
18
|
Emerging Therapeutic RNAs for the Targeting of Cancer Associated Fibroblasts. Cancers (Basel) 2020; 12:cancers12061365. [PMID: 32466591 PMCID: PMC7352655 DOI: 10.3390/cancers12061365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor mass consists of a complex ensemble of malignant cancer cells and a wide variety of resident and infiltrating cells, secreted factors, and extracellular matrix proteins that are referred as tumor microenvironment (TME). Cancer associated fibroblasts (CAFs) are key TME components that support tumor growth, generating a physical barrier against drugs and immune infiltration, and contributing to regulate malignant progression. Thus, it is largely accepted that therapeutic approaches aimed at hampering the interactions between tumor cells and CAFs can enhance the effectiveness of anti-cancer treatments. In this view, nucleic acid therapeutics have emerged as promising molecules. Here, we summarize recent knowledge about their role in the regulation of CAF transformation and tumor-promoting functions, highlighting their therapeutic utility and challenges.
Collapse
|
19
|
Lei G, Wu Z, Jiang W, Luo J, Xu H, Luo S, Peng Z, Wang W, Chen M, Yu L. Effect of CXCL12/CXCR4 on migration of decidua‐derived mesenchymal stem cells from pregnancies with preeclampsia. Am J Reprod Immunol 2019; 82:e13180. [PMID: 31397035 DOI: 10.1111/aji.13180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Guo‐Qin Lei
- Department of Clinical Laboratory Institute of Surgery Research Daping Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Zhi‐Yu Wu
- Department of Clinical Laboratory Institute of Surgery Research Daping Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Wen‐Bin Jiang
- Department of Clinical Laboratory Institute of Surgery Research Daping Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Jie Luo
- Department of Clinical Laboratory The 954th Hospital of Chinese People's Liberation Army Xizang China
| | - Huan Xu
- Department of Clinical Laboratory Southwest Hospital Army Medical University Chongqing China
| | - Shi‐Fu Luo
- Department of Gynaecology and Obstetrics Institute of Surgery Research Daping Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Zhu‐Yun Peng
- Department of Gynaecology and Obstetrics Institute of Surgery Research Daping Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Wan Wang
- Department of Gynaecology and Obstetrics Institute of Surgery Research Daping Hospital Army Medical University (Third Military Medical University) Chongqing China
| | - Ming Chen
- Department of Clinical Laboratory Southwest Hospital Army Medical University Chongqing China
- College of Pharmacy and Laboratory Army Medical University (Third Military Medical University) Chongqing China
- State Key Laboratory of Trauma Burn and Combined Injury Army Medical University Chongqing China
| | - Li‐Li Yu
- Department of Gynaecology and Obstetrics The Third Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
20
|
Liao Z, Tan ZW, Zhu P, Tan NS. Cancer-associated fibroblasts in tumor microenvironment – Accomplices in tumor malignancy. Cell Immunol 2019; 343:103729. [DOI: https:/doi.org/10.1016/j.cellimm.2017.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
21
|
Movia D, Bazou D, Prina-Mello A. ALI multilayered co-cultures mimic biochemical mechanisms of the cancer cell-fibroblast cross-talk involved in NSCLC MultiDrug Resistance. BMC Cancer 2019; 19:854. [PMID: 31464606 PMCID: PMC6714313 DOI: 10.1186/s12885-019-6038-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related deaths worldwide. This study focuses on its most common form, Non-Small-Cell Lung Cancer (NSCLC). No cure exists for advanced NSCLC, and patient prognosis is extremely poor. Efforts are currently being made to develop effective inhaled NSCLC therapies. However, at present, reliable preclinical models to support the development of inhaled anti-cancer drugs do not exist. This is due to the oversimplified nature of currently available in vitro models, and the significant interspecies differences between animals and humans. Methods We have recently established 3D Multilayered Cell Cultures (MCCs) of human NSCLC (A549) cells grown at the Air-Liquid Interface (ALI) as the first in vitro tool for screening the efficacy of inhaled anti-cancer drugs. Here, we present an improved in vitro model formed by growing A549 cells and human fibroblasts (MRC-5 cell line) as an ALI multilayered co-culture. The model was characterized over 14-day growth and tested for its response to four benchmarking chemotherapeutics. Results ALI multilayered co-cultures showed an increased resistance to the four drugs tested as compared to ALI multilayered mono-cultures. The signalling pathways involved in the culture MultiDrug Resistance (MDR) were influenced by the cancer cell-fibroblast cross-talk, which was mediated through TGF-β1 release and subsequent activation of the PI3K/AKT/mTOR pathway. As per in vivo conditions, when inhibiting mTOR phosphorylation, MDR was triggered by activation of the MEK/ERK pathway activation and up-regulation in cIAP-1/2 expression. Conclusions Our study opens new research avenues for the development of alternatives to animal-based inhalation studies, impacting the development of anti-NSCLC drugs. Electronic supplementary material The online version of this article (10.1186/s12885-019-6038-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dania Movia
- Department of Clinical Medicine/Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, University of Dublin Trinity College, James's Street, D8, Dublin, Ireland.
| | - Despina Bazou
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Adriele Prina-Mello
- Department of Clinical Medicine/Trinity Translational Medicine Institute (TTMI), Trinity Centre for Health Sciences, University of Dublin Trinity College, James's Street, D8, Dublin, Ireland.,AMBER Centre, CRANN Institute, University of Dublin Trinity College, Dublin, Ireland
| |
Collapse
|
22
|
Zhou W, Guo S, Liu M, Burow ME, Wang G. Targeting CXCL12/CXCR4 Axis in Tumor Immunotherapy. Curr Med Chem 2019; 26:3026-3041. [PMID: 28875842 PMCID: PMC5949083 DOI: 10.2174/0929867324666170830111531] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/08/2017] [Accepted: 06/14/2017] [Indexed: 12/14/2022]
Abstract
Chemokines, which have chemotactic abilities, are comprised of a family of small cytokines with 8-10 kilodaltons. Chemokines work in immune cells by trafficking and regulating cell proliferation, migration, activation, differentiation, and homing. CXCR-4 is an alpha-chemokine receptor specific for stromal-derived-factor-1 (SDF-1, also known as CXCL12), which has been found to be expressed in more than 23 different types of cancers. Recently, the SDF-1/CXCR-4 signaling pathway has emerged as a potential therapeutic target for human tumor because of its critical role in tumor initiation and progression by activating multiple signaling pathways, such as ERK1/2, ras, p38 MAPK, PLC/ MAPK, and SAPK/ JNK, as well as regulating cancer stem cells. CXCL12/CXCR4 antagonists have been produced, which have shown encouraging results in anti-cancer activity. Here, we provide a brief overview of the CXCL12/CXCR4 axis as a molecular target for cancer treatment. We also review the potential utility of targeting CXCL12/CXCR4 axis in combination of immunotherapy and/or chemotherapy based on up-to-date literature and ongoing research progress.
Collapse
Affiliation(s)
- Weiqiang Zhou
- Key Laboratory of Environmental Pollution and Microecology of Liaoning Province, Shenyang Medical College, No.146 North Huanghe St, Huanggu District, Shenyang, Liaoning Province 110034, P. R. China
| | - Shanchun Guo
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Mingli Liu
- Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Matthew E. Burow
- Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Guangdi Wang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA
| |
Collapse
|
23
|
Morgan MA, Schambach A. Engineering CAR-T Cells for Improved Function Against Solid Tumors. Front Immunol 2018; 9:2493. [PMID: 30420856 PMCID: PMC6217729 DOI: 10.3389/fimmu.2018.02493] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/09/2018] [Indexed: 12/27/2022] Open
Abstract
Genetic engineering T cells to create clinically applied chimeric antigen receptor (CAR) T cells has led to improved patient outcomes for some forms of hematopoietic malignancies. While this has inspired the biomedical community to develop similar strategies to treat solid tumor patients, challenges such as the immunosuppressive character of the tumor microenvironment, CAR-T cell persistence and trafficking to the tumor seem to limit CAR-T cell efficacy in solid cancers. This review provides an overview of mechanisms that tumors exploit to evade eradication by CAR-T cells as well as emerging approaches that incorporate genetic engineering technologies to improve CAR-T cell activity against solid tumors.
Collapse
Affiliation(s)
- Michael A Morgan
- Hannover Medical School, Institute of Experimental Hematology, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Hannover Medical School, Institute of Experimental Hematology, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
24
|
Wald O. CXCR4 Based Therapeutics for Non-Small Cell Lung Cancer (NSCLC). J Clin Med 2018; 7:jcm7100303. [PMID: 30257500 PMCID: PMC6210654 DOI: 10.3390/jcm7100303] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/16/2018] [Accepted: 09/23/2018] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is the second most common malignancy. Unfortunately, despite advances in multimodality therapeutics for the disease, the overall five-year survival rate among newly diagnosed lung cancer patients remains in the range region of 15%. In addition, although immune checkpoint inhibitors are increasingly being incorporated into lung cancer treatment protocols, the proportion of patients that respond to these agents remains low and the duration of response is often short. Therefore, novel methodologies to enhance the efficacy of immunotherapy in lung cancer are highly desirable. Chemokines are small chemotactic cytokines that interact with their 7 transmembrane G-protein⁻coupled receptors, to guide immune cell trafficking in the body under both physiologic and pathologic conditions. Tumor cells highjack a small repertoire of the chemokine/chemokine receptor system and utilize it in a manner that benefits local tumor growth and distant spread. The chemokine receptor, CXCR4 is expressed in over 30 types of malignant tumors and, through interaction with its ligand CXCL12, was shown exert pleotropic pro-tumorigenic effects. In this review, the pathologic roles that CXCL12/CXCR4 play in lung cancer propagation are presented. Furthermore, the challenges and potential benefits of incorporating drugs that target CXCL12/CXCR4 into immune-based lung cancer therapeutic protocols are discussed.
Collapse
Affiliation(s)
- Ori Wald
- Department of Cardiothoracic Surgery, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel.
- Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Hospital, Jerusalem 91120, Israel.
| |
Collapse
|
25
|
Cancer-associated fibroblasts in tumor microenvironment - Accomplices in tumor malignancy. Cell Immunol 2018; 343:103729. [PMID: 29397066 DOI: 10.1016/j.cellimm.2017.12.003] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/15/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022]
Abstract
There is much cellular heterogeneity in the tumor microenvironment. The tumor epithelia and stromal cells co-evolve, and this reciprocal relationship dictates almost every step of cancer development and progression. Despite this, many anticancer therapies are designed around druggable features of tumor epithelia, ignoring the supportive role of stromal cells. Cancer-associated fibroblasts (CAFs) are the dominant cell type within the reactive stroma of many tumor types. Numerous previous studies have highlighted a pro-tumorigenic role for CAFs via secretion of various growth factors, cytokines, chemokines, and the degradation of extracellular matrix. Recent works showed that CAFs secrete H2O2 to effect stromal-mediated field cancerization, transform primary epithelial cells, and aggravate cancer cell aggressiveness, in addition to inflammatory and mitogenic factors. Molecular characterization of CAFs also underscores the importance of Notch and specific nuclear receptor signaling in the activation of CAFs. This review consolidates recent findings of CAFs and highlights areas for future investigations.
Collapse
|
26
|
Abstract
The expanding spectrum of both established and candidate oncogenic driver mutations identified in non-small-cell lung cancer (NSCLC), coupled with the increasing number of clinically available signal transduction pathway inhibitors targeting these driver mutations, offers a tremendous opportunity to enhance patient outcomes. Despite these molecular advances, advanced-stage NSCLC remains largely incurable due to therapeutic resistance. In this Review, we discuss alterations in the targeted oncogene ('on-target' resistance) and in other downstream and parallel pathways ('off-target' resistance) leading to resistance to targeted therapies in NSCLC, and we provide an overview of the current understanding of the bidirectional interactions with the tumour microenvironment that promote therapeutic resistance. We highlight common mechanistic themes underpinning resistance to targeted therapies that are shared by NSCLC subtypes, including those with oncogenic alterations in epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), ROS1 proto-oncogene receptor tyrosine kinase (ROS1), serine/threonine-protein kinase b-raf (BRAF) and other less established oncoproteins. Finally, we discuss how understanding these themes can inform therapeutic strategies, including combination therapy approaches, and overcome the challenge of tumour heterogeneity.
Collapse
Affiliation(s)
- Julia Rotow
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
| | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
- Cellular and Molecular Pharmacology, University of California San Francisco, Box 2140, San Francisco, California 94158, USA
| |
Collapse
|
27
|
Pang T, Wang X, Gao J, Chen W, Shen XJ, Nie MM, Luo T, Yin K, Fang G, Wang KX, Xue XC. Fiber-modified hexon-chimeric oncolytic adenovirus targeting cancer associated fibroblasts inhibits tumor growth in gastric carcinoma. Oncotarget 2017; 8:76468-76478. [PMID: 29100326 PMCID: PMC5652720 DOI: 10.18632/oncotarget.20273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/11/2017] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE To evaluate the effects of fiber-modified hexon-chimeric recombinant oncolytic adenovirus targeting cancer associated fibroblasts (CAFs) on the gastric CAFs and the transplantation tumor mice model of gastric carcinoma (GC). RESULTS Compared with BJ cells and GPFs, the reproduction and infectivity of P9, P9-4C or GP adenoviruses were markedly higher in gastric CAFs. In addition, P9, P9-4C or GP had a significantly relatively more killing effect on gastric CAFs compared with GPFs, and have less oncolytic effect in BJ cells. Furthermore, in transplantation tumor mice model of GC we found significantly higher hexon protein expression in tumor tissues, more decreasing tumor growth and increasing inhibitory rates after treatment of P9, P9-4C or GP adenoviruses compared with Ad adenovirus. MATERIALS AND METHODS Based on the construction of the recombinant oncolytic adenoviruses pRCAdHVR48-SDF1p-Ad/EGFP (Ad, as control) with the E1A gene transcription regulated by stromal-derived factor 1 (SDF1) promoter and the hexon replaced by hexon-chimeric (H5HVR48) gene, three fiber-modified hexon-chimeric oncolytic adenovirus through the modification fiber protein by insertion of different short peptides specifically binding to fibroblast activation protein (FAP), including pRCAdHVR48-SDF1p-FAP-P9/EGFP (P9), pRCAdHVR48-SDF1p-FAP-P9-4C/EGFP (P9-4C), pRCAdHVR48-SDF1p-FAP-GP/EGFP (GP), and their corresponding replication-defective adenovirus in parallel were reconstructed. Then the reproduction, infectivity and killing ability of the four above recombinant adenoviruses were evaluated in gastric CAFs compared with gastric para-mucosa fibroblasts (GPFs) and neonatal human foreskin fibroblasts (BJ). Furthermore, transplantation tumor mice model of GC was established, and then treated by the four above recombinant adenoviruses. Tumor size and tumor growth inhibitory rates were calculated, and histomorphology by HE staining and hexon expressions by immunohistochemistry were evaluated in tumor tissues. CONCLUSIONS The fiber-modified hexon-chimeric recombinant oncolytic adenovirus targeting CAFs can relatively specifically kill gastric CAFs and inhibit GC cells growth in vivo.
Collapse
Affiliation(s)
- Tao Pang
- Department of Gastrointestinal Surgery, ChangHai Hospital, Second Military Medical University, ShangHai, China
| | - Xinghua Wang
- Department of Microbiology, Second Military Medical University, ShangHai, China
| | - Jun Gao
- Department of Gastroenterology, ChangHai Hospital, Second Military Medical University, ShangHai, China
| | - Wei Chen
- Department of Cardiology, ChangZheng Hospital, Second Military Medical University, ShangHai, China
| | - Xiao Jun Shen
- Department of Gastrointestinal Surgery, ChangHai Hospital, Second Military Medical University, ShangHai, China
| | - Ming Ming Nie
- Department of Gastrointestinal Surgery, ChangHai Hospital, Second Military Medical University, ShangHai, China
| | - Tianhang Luo
- Department of Gastrointestinal Surgery, ChangHai Hospital, Second Military Medical University, ShangHai, China
| | - Kai Yin
- Department of Gastrointestinal Surgery, ChangHai Hospital, Second Military Medical University, ShangHai, China
| | - Guoen Fang
- Department of Gastrointestinal Surgery, ChangHai Hospital, Second Military Medical University, ShangHai, China
| | - Kai Xuan Wang
- Department of Gastroenterology, ChangHai Hospital, Second Military Medical University, ShangHai, China
| | - Xu Chao Xue
- Department of Gastrointestinal Surgery, ChangHai Hospital, Second Military Medical University, ShangHai, China
| |
Collapse
|
28
|
Rodriguez-Lara V, Ignacio GS, Cerbón Cervantes MA. Estrogen induces CXCR4 overexpression and CXCR4/CXL12 pathway activation in lung adenocarcinoma cells in vitro. Endocr Res 2017; 42:219-231. [PMID: 28318328 DOI: 10.1080/07435800.2017.1292526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE This study was designed to investigate whether estradiol is related to the expression of the chemokine receptor CXCR4 and its activation in lung adenocarcinoma in vitro, since lung adenocarcinomas from premenopausal women have shown high levels of CXCR4, and this expression has been associated with worse prognosis and poor survival. METHODS The effect of 17-β-estradiol (E2) (0.03 nM-10 nM) on CXCR4 expression was analyzed in lung adenocarcinoma cell lines (SK-LU-1, H1435, H23, A549) by immunofluorescence after 24 and 72-h poststimulation. Tamoxifen treatment was applied to corroborate the estrogenic effect. The wound-healing assay was performed to investigate whether E2 treatment increased CXCR4/CXL12 pathway activity. A549 and SK-LU-1 cells were stimulated with E2, CXCL12, and CXCL12 combined with E2. Tamoxifen and AMD3100 were applied to corroborate estrogen and chemokine pathway activation. RESULTS Estradiol stimulated significantly CXCR4 overexpression in all the cell lines analyzed in a dose- and a time-dependent manner. Tamoxifen treatment inhibited the CXCR4 overexpression observed in estrogen-treated groups, demonstrating that estrogen strongly influences CXCR4 expression in lung adenocarcinoma cells. Cells treated with E2, CXCL12 and E2 combined with CXCL12 exhibited significant cell migration, which was suppressed when tamoxifen and AMD3100 were present. CONCLUSION Overexpression of CXCR4 induced by estrogen and the activity of CXCL12/CXCR4 pathway could be a new mechanism by which this hormone supports tumor progression and metastasis. These findings may partly explain the worse prognosis observed in premenopausal women and suggest considering the role of estrogen in lung cancer for the design of more specific treatment schemes.
Collapse
Affiliation(s)
- Vianey Rodriguez-Lara
- a Departamento de Biología Celular y Tisular, Facultad de Medicina , UNAM , Mexico , D.F ., Mexico
| | | | | |
Collapse
|
29
|
Cheng ZH, Shi YX, Yuan M, Xiong D, Zheng JH, Zhang ZY. Chemokines and their receptors in lung cancer progression and metastasis. J Zhejiang Univ Sci B 2017; 17:342-51. [PMID: 27143261 DOI: 10.1631/jzus.b1500258] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lung cancer is the leading cause of cancer-related mortality around the world. Despite advancements in diagnosis, surgical techniques, and neoadjuvant chemoradiotherapy over the last decade, the mortality rate is still high and the 5-year survival is a dismal 15%. Fortunately, early detection by low-dose computed tomography (LDCT) scans has reduced mortality by 20%; yet, overall, 5-year-survival remains low at less than 20%. Therefore, in order to ameliorate this situation, a thorough understanding of the underlying molecular mechanisms is urgently needed. Chemokines and their receptors, crucial microenvironmental factors, play important roles in lung tumor genesis, progression, and metastasis, and exploring the mechanisms of this might bring new insights into early diagnosis and precisely targeted treatment. Consequently, this review will mainly focus on recent advancements on the axes of chemokines and their receptors of lung cancer.
Collapse
Affiliation(s)
- Zeng-Hui Cheng
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.,Department of Radiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, China
| | - Yu-Xin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Min Yuan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Dan Xiong
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jiang-Hua Zheng
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zhi-Yong Zhang
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
30
|
Li J, Yin G, Chen M, Yang S, Wu A, Liang J, Yuan Z. Expression of CXCL12 and its receptor CXCR4 in patients with adenomyosis. Oncol Lett 2017; 13:2731-2736. [PMID: 28454459 DOI: 10.3892/ol.2017.5762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/09/2016] [Indexed: 01/21/2023] Open
Abstract
The aim of the present study was to investigate the role of chemokine (C-X-C motif) ligand 12 (CXCL12) and its receptor, chemokine (C-X-C motif) receptor 4 (CXCR4) in the pathogenesis of adenomyosis (AD). Immunohistochemistry and reverse transcription-quantitative polymerase chain reaction analysis were used to measure the protein and mRNA expression of CXCL12 and CXCR4 in eutopic endometrial and ectopic foci tissue samples. Samples from a total of 36 patients with AD (study group) were compared with endometrial tissue samples from 33 patients who underwent uterine fibroids surgery (control group) during the same period. All data are presented as the mean ± standard deviation and were analyzed with SPSS software (version 16.0). Analysis of variance was used for between group analysis and pairwise comparison was performed using Fisher's least significant difference post hoc test. The results of the present study revealed that CXCL12 and CXCR4 protein expression was significantly increased in ectopic foci tissue compared with eutopic endometrial tissue samples from patients with AD. CXCL12 and CXCR4 protein expression in ectopic foci and eutopic endometrial tissue samples were significantly increased compared with the control group (P<0.05 for between group comparisons). No significant differences were identified in CXCL12 and CXCR4 protein expression between the proliferative and secretory phases within each group. Furthermore, CXCL12 and CXCR4 mRNA expression was significantly increased in ectopic foci tissue and eutopic endometrial tissue compared with the control group (P<0.05 for between group comparisons). CXCL12 mRNA expression was markedly increased in ectopic foci tissue compared with eutopic endometrial tissue of patients with AD. The expression of CXCR4 mRNA was significantly increased in eutopic endometrial tissue compared with ectopic foci tissue and the control group (P<0.05 for between group comparisons). No significant differences were identified in CXCL12 and CXCR4 mRNA expression between proliferative and secretory phase within each group. In conclusion, CXCL12 and CXCR4 may induce the ectopia, and promote the spread and localized growth of endometrial cells in the development of AD.
Collapse
Affiliation(s)
- Juan Li
- Department of Obstetrics and Gynecology, Jinan Military General Hospital, Jinan, Shandong 250031, P.R. China
| | - Geping Yin
- Department of Obstetrics and Gynecology, Jinan Military General Hospital, Jinan, Shandong 250031, P.R. China
| | - Ming Chen
- Department of Obstetrics and Gynecology, Jinan Military General Hospital, Jinan, Shandong 250031, P.R. China
| | - Shujun Yang
- Department of Obstetrics and Gynecology, Jinan Military General Hospital, Jinan, Shandong 250031, P.R. China
| | - Aifang Wu
- Department of Obstetrics and Gynecology, Jinan Military General Hospital, Jinan, Shandong 250031, P.R. China
| | - Jing Liang
- Department of Obstetrics and Gynecology, Jinan Military General Hospital, Jinan, Shandong 250031, P.R. China
| | - Zheng Yuan
- Department of Obstetrics and Gynecology, Jinan Military General Hospital, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
31
|
Goto M, Naito M, Saruwatari K, Hisakane K, Kojima M, Fujii S, Kuwata T, Ochiai A, Nomura S, Aokage K, Hishida T, Yoshida J, Yokoi K, Tsuboi M, Ishii G. The ratio of cancer cells to stroma after induction therapy in the treatment of non-small cell lung cancer. J Cancer Res Clin Oncol 2017; 143:215-223. [PMID: 27640003 DOI: 10.1007/s00432-016-2271-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 09/11/2016] [Indexed: 12/25/2022]
Abstract
PURPOSE Induction therapy induces degenerative changes of various degrees in both cancerous and non-cancerous cells of non-small cell lung cancer (NSCLC). The effect of induction therapy on histological characteristics, in particular the ratio of residual cancer cells to non-cancerous components, is unknown. METHODS Seventy-four NSCLC patients treated with induction therapy followed by surgery were enrolled. Residual cancer cells were identified using anti-pan-cytokeratin antibody (AE1/AE3). We analyzed and quantified the following three factors via digital image analysis; (1) the tumor area containing cancer cells and non-cancerous components (TA), (2) the total area of AE1/AE3 positive cancer cells (TACC), (3) the percentage of TACC to TA (%TACC). These factors were also analyzed in a matched control group (surgery alone, n = 80). RESULTS The median TACC of the induction therapy group was significantly lower than that of the control group (p < 0.01). In addition, the median %TACC of the induction therapy group (5.9 %) was significantly lower than that of the control group (58.6 %) (p < 0.01). TACC had a strong positive correlation with TA in the control group (r = 0.93), but not in the induction therapy group. Conversely, TACC had a strong positive correlation with %TACC in the induction therapy group (r = 0.95), but not in the control group. CONCLUSION Unlike the control group, the smaller the total area of residual cancer cells, the higher residual tumor contained non-cancerous components in the induction group, which may be the characteristic histological feature of NSCLC after induction therapy.
Collapse
Affiliation(s)
- Masaki Goto
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
- Department of Thoracic Surgery, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, Japan
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, Japan
| | - Masahito Naito
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
- Department of Thoracic Surgery, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Koichi Saruwatari
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Kakeru Hisakane
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
- Department of Thoracic Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Motohiro Kojima
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Satoshi Fujii
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Takeshi Kuwata
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Atsushi Ochiai
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Shogo Nomura
- Biostatistics Division, Center for Research Administration and Support, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Keiju Aokage
- Department of Thoracic Surgery, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Tomoyuki Hishida
- Department of Thoracic Surgery, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Junji Yoshida
- Department of Thoracic Surgery, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Kohei Yokoi
- Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho Showa-ku, Nagoya, Aichi, Japan
| | - Masahiro Tsuboi
- Department of Thoracic Surgery, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, Japan
| | - Genichiro Ishii
- Division of Pathology, Exploratory Oncology Research & Clinical Trial Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| |
Collapse
|
32
|
Metabolic hijacking: A survival strategy cancer cells exploit? Crit Rev Oncol Hematol 2017; 109:1-8. [DOI: 10.1016/j.critrevonc.2016.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022] Open
|
33
|
Kuźnar-Kamińska B, Mikuła-Pietrasik J, Sosińska P, Książek K, Batura-Gabryel H. COPD promotes migration of A549 lung cancer cells: the role of chemokine CCL21. Int J Chron Obstruct Pulmon Dis 2016; 11:1061-6. [PMID: 27307721 PMCID: PMC4888725 DOI: 10.2147/copd.s96490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patients with COPD develop lung cancer more frequently than healthy smokers. At the same time, molecular mediators promoting various aspects of cancer cell progression are still elusive. In this report, we examined whether COPD can be coupled with increased migration of non-small-cell lung cancer cells A549 and, if so, whether this effect may be related to altered production and activity of chemokines CCL21, CXCL5, and CXCL12. The study showed that the migration of A549 cells through the polycarbonate membrane and basement membrane extract toward a chemotactic gradient elicited by serum from patients with COPD was markedly higher as compared with serum from healthy donors. The concentration of CCL21 and CXCL12, but not CXCL5, in serum from patients with COPD was also increased. Experiments in which CCL21- and CXCL12-dependent signaling was blocked revealed that increased migration of the cancer cells upon treatment with serum from patients with COPD was mediated exclusively by CCL21. Collectively, our results indicate that COPD may contribute to the progression of lung cancer via CCL21-dependent intensification of cancer cell migration.
Collapse
Affiliation(s)
| | | | - Patrycja Sosińska
- Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Krzysztof Książek
- Department of Pathophysiology, Poznań University of Medical Sciences, Poznań, Poland
| | | |
Collapse
|
34
|
Choi WT, Yang Y, Xu Y, An J. Targeting chemokine receptor CXCR4 for treatment of HIV-1 infection, tumor progression, and metastasis. Curr Top Med Chem 2016; 14:1574-89. [PMID: 25159167 DOI: 10.2174/1568026614666140827143541] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/30/2014] [Accepted: 06/06/2014] [Indexed: 12/17/2022]
Abstract
The chemokine receptor CXCR4 is required for the entry of human immunodeficiency virus type 1 (HIV-1) into target cells and for the development and dissemination of various types of cancers, including gastrointestinal, cutaneous, head and neck, pulmonary, gynecological, genitourinary, neurological, and hematological malignancies. The T-cell (T)-tropic HIV-1 strains use CXCR4 as the entry coreceptor; consequently, multiple CXCR4 antagonistic inhibitors have been developed for the treatment of acquired immune deficiency syndrome (AIDS). However, other potential applications of CXCR4 antagonists have become apparent since its discovery in 1996. In fact, increasing evidence demonstrates that epithelial and hematopoietic tumor cells exploit the interaction between CXCR4 and its natural ligand, stromal cellderived factor (SDF)-1α, which normally regulates leukocyte migration. The CXCR4 and/or SDF-1α expression patterns in tumor cells also determine the sites of metastatic spread. In addition, the activation of CXCR4 by SDF-1α promotes invasion and proliferation of tumor cells, enhances tumor-associated neoangiogenesis, and assists in the degradation of the extracellular matrix and basement membrane. As such, the evaluation of CXCR4 and/or SDF-1α expression levels has a significant prognostic value in various types of malignancies. Several therapeutic challenges remain to be overcome before the use of CXCR4 inhibitors can be translated into clinical practice, but promising preclinical data demonstrate that CXCR4 antagonists can mobilize tumor cells from their protective microenvironments, interfere with their metastatic and tumorigenic potentials, and/or make tumor cells more susceptible to chemotherapy.
Collapse
Affiliation(s)
| | | | | | - Jing An
- Department of Pharmacology, State University of New York, Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
35
|
Oncogenic roles and drug target of CXCR4/CXCL12 axis in lung cancer and cancer stem cell. Tumour Biol 2016; 37:8515-28. [PMID: 27079871 DOI: 10.1007/s13277-016-5016-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Although the great progress has been made in diagnosis and therapeutic in lung cancer, it induces the most cancer death worldwide in both males and females. Chemokines, which have chemotactic abilities, contain up to 50 family members. By binding to G protein-coupled receptors (GPCR), holding seven-transmembrane domain, they function in immune cell trafficking and regulation of cell proliferation, differentiation, activation, and migration, homing under both physiologic and pathologic conditions. The alpha-chemokine receptor CXCR4 for the alpha-chemokine stromal cell-derived-factor-1 (SDF-1) is most widely expressed by tumors. In addition to human tissues of the bone marrow, liver, adrenal glands, and brain, the CXC chemokine SDF-1 or CXCL12 is also highly expressed in lung cancer tissues and is associated with lung metastasis. Lung cancer cells have the capabilities to utilize and manipulate the CXCL12/CXCR system to benefit growth and distant spread. CXCL12/CXCR4 axis is a major culprit for lung cancer and has a crucial role in lung cancer initiation and progression by activating cancer stem cell. This review provides an evaluation of CXCL12/CXCR4 as the potential therapeutic target for lung cancers; it also focuses on the synergistic effects of inhibition of CXCL12/CXCR4 axis and immunotherapy as well as chemotherapy. Together, CXCL12/CXCR4 axis can be a potential therapeutic target for lung cancers and has additive effects with immunotherapy.
Collapse
|
36
|
Li J, Jia Z, Kong J, Zhang F, Fang S, Li X, Li W, Yang X, Luo Y, Lin B, Liu T. Carcinoma-Associated Fibroblasts Lead the Invasion of Salivary Gland Adenoid Cystic Carcinoma Cells by Creating an Invasive Track. PLoS One 2016; 11:e0150247. [PMID: 26954362 PMCID: PMC4782997 DOI: 10.1371/journal.pone.0150247] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/11/2016] [Indexed: 02/04/2023] Open
Abstract
Carcinoma-associated fibroblasts (CAFs) are critical in determining tumor invasion and metastasis. However the role of CAFs in the invasion of salivary gland adenoid cystic carcinoma (ACC) is poorly understood. In this study, we isolated primary CAFs from two ACC patients. ACC-derived CAFs expressed typical CAF biomarkers and showed increased migration and invasion activity. Conditioned medium collected from CAFs significantly promoted ACC cell migration and invasion. Co-culture of CAFs with ACC cells in a microfluidic device further revealed that CAFs localized at the invasion front and ACC cells followed the track behind the CAFs. Interfering of both matrix metalloproteinase and CXCL12/CXCR4 pathway inhibited ACC invasion promoted by CAFs. Overall, our study demonstrates that ACC-derived CAFs exhibit the most important defining feature of CAFs by promoting cancer invasion. In addition to secretion of soluble factors, CAFs also lead ACC invasion by creating an invasive track in the ECM.
Collapse
Affiliation(s)
- Jiao Li
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Zhuqiang Jia
- Department of Oral Surgery, the First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jing Kong
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Fuyin Zhang
- Department of Oral Surgery, the Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Shimeng Fang
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Xiaojie Li
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Wuwei Li
- College of Stomatology, Dalian Medical University, Dalian, China
| | - Xuesong Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Yong Luo
- Faculty of Chemical, Environmental and Biological Science and Technology, Dalian Technology University, Dalian, China
| | - Bingcheng Lin
- Faculty of Chemical, Environmental and Biological Science and Technology, Dalian Technology University, Dalian, China
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Tingjiao Liu
- College of Stomatology, Dalian Medical University, Dalian, China
- * E-mail:
| |
Collapse
|
37
|
Expression of the CXCR4 ligand SDF-1/CXCL12 is prognostically important for adenocarcinoma and large cell carcinoma of the lung. Virchows Arch 2016; 468:463-71. [PMID: 26818832 DOI: 10.1007/s00428-015-1900-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/08/2015] [Accepted: 12/29/2015] [Indexed: 12/27/2022]
Abstract
The SDF-1/CXCR4 axis is associated with tumor progression and has been reported as a prognostic parameter, although with conflicting data for non-small cell lung cancer (NSCLC). This study examines a large cohort of clinically and pathologically well-characterized NSCLC patients and includes the activated form of CXCR4 (pCXCR4), which has not been studied in this context so far. SDF-1, CXCR4, and pCXCR4 were assessed immunohistochemically in 371 surgically resected NSCLC using a standardized tissue microarray platform. Extensive clinical and pathological data and a postoperative follow-up period of 17 years enabled detailed correlations. CXCR4 and pCXCR4 were frequently expressed on squamous cell carcinoma. Membranous expression of SDF-1 was a marker of poor prognosis and proved to be an independent prognostic parameter for the entire cohort and for patients with adenocarcinoma (ACA) and large cell carcinoma (LCC). Targeted cancer therapies blocking SDF-1/CXCR4 interaction already exist, and our data suggest that expression of SDF-1, especially on poorer prognosis subgroups of LCC and ACA, indicates patients that might benefit more than others. This should be taken into account when assessing the effectiveness of such targeted approaches for NSCLC patients and could lead to important implications.
Collapse
|
38
|
Choe C, Shin YS, Kim C, Choi SJ, Lee J, Kim SY, Cho YB, Kim J. Crosstalk with cancer-associated fibroblasts induces resistance of non-small cell lung cancer cells to epidermal growth factor receptor tyrosine kinase inhibition. Onco Targets Ther 2015; 8:3665-78. [PMID: 26676152 PMCID: PMC4676617 DOI: 10.2147/ott.s89659] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although lung cancers with activating mutations in the epidermal growth factor receptor (EGFR) are highly sensitive to selective EGFR tyrosine kinase inhibitors (TKIs), these tumors invariably develop acquired drug resistance. Host stromal cells have been found to have a considerable effect on the sensitivity of cancer cells to EGFR TKIs. Little is known, however, about the signaling mechanisms through which stromal cells contribute to the response to EGFR TKI in non-small cell lung cancer. This work examined the role of hedgehog signaling in cancer-associated fibroblast (CAF)-mediated resistance of lung cancer cells to the EGFR TKI erlotinib. PC9 cells, non-small cell lung cancer cells with EGFR-activating mutations, became resistant to the EGFR TKI erlotinib when cocultured in vitro with CAFs. Polymerase chain reaction and immunocytochemical assays showed that CAFs induced epithelial to mesenchymal transition phenotype in PC9 cells, with an associated change in the expression of epithelial to mesenchymal transition marker proteins including vimentin. Importantly, CAFs induce upregulation of the 7-transmembrane protein smoothened, the central signal transducer of hedgehog, suggesting that the hedgehog signaling pathway is active in CAF-mediated drug resistance. Indeed, downregulation of smoothened activity with the smoothened antagonist cyclopamine induces remodeling of the actin cytoskeleton independently of Gli-mediated transcriptional activity in PC9 cells. These findings indicate that crosstalk with CAFs plays a critical role in resistance of lung cancer to EGFR TKIs through induction of the epithelial to mesenchymal transition and may be an ideal therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Chungyoul Choe
- Samsung Biomedical Research Institute, Samsung Medical Center Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea
| | - Yong-Sung Shin
- Samsung Biomedical Research Institute, Samsung Medical Center Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea
| | - Changhoon Kim
- Department of Biomedical Science, Graduate School of Biomedical & Engineering, Hanyang University, Seoul, Republic of Korea
| | - So-Jung Choi
- Samsung Biomedical Research Institute, Samsung Medical Center Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea
| | - Jinseon Lee
- Samsung Biomedical Research Institute, Samsung Medical Center Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea
| | - So Young Kim
- Samsung Biomedical Research Institute, Samsung Medical Center Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea
| | - Jhingook Kim
- Samsung Biomedical Research Institute, Samsung Medical Center Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea ; Department of Thoracic Surgery, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
39
|
Izumi D, Ishimoto T, Miyake K, Sugihara H, Eto K, Sawayama H, Yasuda T, Kiyozumi Y, Kaida T, Kurashige J, Imamura Y, Hiyoshi Y, Iwatsuki M, Iwagami S, Baba Y, Sakamoto Y, Miyamoto Y, Yoshida N, Watanabe M, Takamori H, Araki N, Tan P, Baba H. CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin β1 clustering and invasiveness in gastric cancer. Int J Cancer 2015; 138:1207-19. [PMID: 26414794 DOI: 10.1002/ijc.29864] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/03/2015] [Accepted: 09/07/2015] [Indexed: 12/11/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are reportedly involved in invasion and metastasis in several types of cancer, including gastric cancer (GC), through the stimulation of CXCL12/CXCR4 signaling. However, the mechanisms underlying these tumor-promoting effects are not well understood, which limits the potential to develop therapeutic targets against CAF-mediated CXCL12/CXCR4 signaling. CXCL12 expression was analyzed in resected GC tissues from 110 patients by immunohistochemistry (IHC). We established primary cultures of normal fibroblasts (NFs) and CAFs from the GC tissues and examined the functional differences between these primary fibroblasts using co-culture assays with GC cell lines. We evaluated the efficacy of a CXCR4 antagonist (AMD3100) and a FAK inhibitor (PF-573,228) on the invasive ability of GC cells. High CXCL12 expression levels were significantly associated with larger tumor size, increased tumor depth, lymphatic invasion and poor prognosis in GC. CXCL12/CXCR4 activation by CAFs mediated integrin β1 clustering at the cell surface and promoted the invasive ability of GC cells. Notably, AMD3100 was more efficient than PF-573,228 at inhibiting GC cell invasion through the suppression of integrin β1/FAK signaling. These results suggest that CXCL12 derived from CAFs promotes GC cell invasion by enhancing the clustering of integrin β1 in GC cells, resulting in GC progression. Taken together, the inhibition of CXCL12/CXCR4 signaling in GC cells may be a promising therapeutic strategy against GC cell invasion.
Collapse
Affiliation(s)
- Daisuke Izumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Keisuke Miyake
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetaka Sugihara
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kojiro Eto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Sawayama
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadahito Yasuda
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kiyozumi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takayoshi Kaida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yu Imamura
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukiharu Hiyoshi
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Surgery, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Shiro Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuo Sakamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiroshi Takamori
- Department of Surgery, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
40
|
Gandellini P, Andriani F, Merlino G, D'Aiuto F, Roz L, Callari M. Complexity in the tumour microenvironment: Cancer associated fibroblast gene expression patterns identify both common and unique features of tumour-stroma crosstalk across cancer types. Semin Cancer Biol 2015; 35:96-106. [PMID: 26320408 DOI: 10.1016/j.semcancer.2015.08.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/17/2015] [Accepted: 08/21/2015] [Indexed: 12/21/2022]
Abstract
Cancer is a complex disease, driven by the accumulation of several somatic aberrations but fostered by a two-way interaction between tumour cells and the surrounding microenvironment. Cancer associated fibroblasts (CAFs) represent one of the major players in tumour-stroma crosstalk. Recent in vitro and in vivo studies, often conducted by employing high throughput approaches, have started unravelling the key pathways involved in their functional effects. This review focus on open challenges in the study of CAF properties and function, highlighting at the same time the existence of common mechanisms as well as peculiarities in different cancer types (breast, prostate and lung cancer). Although still limited by current experimental models, which are unable to deal with the full level of complexity of the tumour microenvironment, a better understanding of these mechanisms may enable the identification of new biomarkers and therapeutic targets, to improve current strategies for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Paolo Gandellini
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Andriani
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Merlino
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca D'Aiuto
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Roz
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maurizio Callari
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
41
|
Liu Y, Wu BQ, Geng H, Xu ML, Zhong HH. Association of chemokine and chemokine receptor expression with the invasion and metastasis of lung carcinoma. Oncol Lett 2015; 10:1315-1322. [PMID: 26622670 DOI: 10.3892/ol.2015.3402] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 05/29/2015] [Indexed: 01/09/2023] Open
Abstract
The chemokine system has been reported to be utilized and manipulated by tumor cells in order to promote local tumor growth and distant dissemination. The present study aimed to investigate the expression of three chemokine ligand-receptor axes in lung carcinoma tissues. Tumor and healthy normal tissue samples were obtained from 120 lung carcinoma patients following surgical resection. Immunohistochemistry and reverse transcription quantitative polymerase chain reaction were used in order to identify the protein and messenger (m)RNA expression of chemokines, including chemokine (C-X-C motif) ligand (CXCL)12/stromal cell-derived factor (SDF)-1, CXCL8/interleukin (IL)-8, chemokine (C-C motif) ligand (CCL)19 and CCL21, and the corresponding chemokine receptors, chemokine (C-X-C motif) receptor (CXCR)4, CXCR1, CXCR2 and chemokine (C-C motif) receptor (CCR)7, respectively. The results revealed that compared with the normal lung tissues, lung carcinoma tissues expressed significantly higher mRNA levels of CXCL12/SDF-1, CXCR4, CXCL8/IL-8, CXCR2, CCL19 and CCR7 (P<0.01). In four histological subtypes, adenocarcinoma presented dominant expression of CXCR4, CXCR2, CXCL8/IL-8 and CCL19 (P<0.05). In addition, it was demonstrated that tumor staging was inversely correlated with chemokine receptor CCR7 and CXCR2 mRNA expression as well as positively correlated with CXCL12/SDF-1, CXCL8/IL-8 and CCL19 mRNA levels (P<0.05). Lymph node metastasis presented a positive correlation with CXCR4, CXCR2 and CXCL8/IL-8 expression and a negative correlation with CCL19 and CCR7 expression (P<0.05). Furthermore, vascular invasion was more prevalent in patients with higher expression levels of CXCR4, CCR7 or CCL19 (P<0.01). In conclusion, these data suggested that the ligand-receptor interaction of CXCL8-CXCR2, CXCL12-CXCR4 and CCL19-CCR7 may be involved in the tumorigenesis of lung carcinoma. Higher expression levels of chemokines and lower expression of chemokine receptors indicated poor tumor staging. The CXC chemokine receptors, CXCR4 and CXCR2, promoted lymphatic metastasis through the activation of their specific ligands, while CCL19 and its receptor CCR7 had an essential role in hematogenous metastasis of lung carcinoma.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pathology, Peking University Health Science Center, Beijing 100191, P.R. China ; Department of Pathology, Tianjin Chest Hospital, Tianjin 300051, P.R. China
| | - Bing-Quan Wu
- Department of Pathology, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Hua Geng
- Department of Pathology, Tianjin Chest Hospital, Tianjin 300051, P.R. China
| | - Mei-Lin Xu
- Department of Pathology, Tianjin Chest Hospital, Tianjin 300051, P.R. China
| | - Hao-Hao Zhong
- Department of Pathology, Peking University Health Science Center, Beijing 100191, P.R. China
| |
Collapse
|
42
|
|
43
|
Sugihara H, Ishimoto T, Yasuda T, Izumi D, Eto K, Sawayama H, Miyake K, Kurashige J, Imamura Y, Hiyoshi Y, Iwatsuki M, Iwagami S, Baba Y, Sakamoto Y, Miyamoto Y, Yoshida N, Watanabe M, Takamori H, Baba H. Cancer-associated fibroblast-derived CXCL12 causes tumor progression in adenocarcinoma of the esophagogastric junction. Med Oncol 2015; 32:618. [DOI: 10.1007/s12032-015-0618-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 04/10/2015] [Indexed: 01/18/2023]
|
44
|
Wang Y, Hazeldine ST, Li J, Oupický D. Development of functional poly(amido amine) CXCR4 antagonists with the ability to mobilize leukocytes and deliver nucleic acids. Adv Healthc Mater 2015; 4:729-38. [PMID: 25491178 DOI: 10.1002/adhm.201400608] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/18/2014] [Indexed: 12/21/2022]
Abstract
CXCR4 chemokine receptor plays a crucial role in metastatic spread of multiple types of cancer. The present study reports on synthesis of functional polymers based on newly synthesized CXCR4-inhibiting monomers. The resultant linear polymeric CXCR4 antagonists (PCX) show improved ability to inhibit CXCR4 when compared with the monomers. The CXCR4 antagonism provides PCX with the ability to mobilize leukocytes from bone marrow to peripheral blood and to inhibit cancer cell invasion. Due to their cationic nature, PCX can form polyplexes with DNA and mediate efficient transfection. The reported findings validate PCX as promising dual-function polymeric drugs that can deliver therapeutic nucleic acids and improve cancer therapy by simultaneously inhibiting CXCR4 chemokine receptor.
Collapse
Affiliation(s)
- Yan Wang
- Center for Drug Delivery and Nanomedicine; Department of Pharmaceutical Sciences; University of Nebraska Medical Center; Omaha NE 68198 USA
| | - Stuart T. Hazeldine
- Department of Pharmaceutical Sciences; Wayne State University; Detroit MI USA
| | - Jing Li
- Center for Drug Delivery and Nanomedicine; Department of Pharmaceutical Sciences; University of Nebraska Medical Center; Omaha NE 68198 USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine; Department of Pharmaceutical Sciences; University of Nebraska Medical Center; Omaha NE 68198 USA
- Department of Pharmaceutical Sciences; Wayne State University; Detroit MI USA
| |
Collapse
|
45
|
Du H, Chen D, Zhou Y, Han Z, Che G. Fibroblast phenotypes in different lung diseases. J Cardiothorac Surg 2014; 9:147. [PMID: 25189096 PMCID: PMC4173054 DOI: 10.1186/s13019-014-0147-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 08/18/2014] [Indexed: 01/26/2023] Open
Abstract
Background The “seed and soil” hypothesis emphasizes the importance of interactions between tumor cells and their microenvironment. CAFs (Cancer associated fibroblasts) are important components of the tumor microenvironment. They were widely involved in cancer cells growth and metastasis. Fibroblasts may also play a role in inflammatory disease. The phenotype conversion of fibroblasts in lung diseases has not been investigated previously. We hypothesized that fibroblasts phenotypes may vary among different types of lung disease. Methods The study included six types of lung tissues, ranging from normal lung to lung adenocarcinoma with lymphatic metastasis. Para-carcinoma tissues which were 2-cm-away from the tumor focus were also included in the analysis. The expression of target proteins including alpha-SMA (smooth muscle actin), FAP (fibroblast activation protein), vimentin, E-cadherin, and CK-19 (cytokeratin-19) were examined by immunohistochemistry. TGF-beta(transforming growth factor) and Twist were detected simultaneously in all samples. Results A progressive increase in the levels of alpha-SMA, vimentin and CK-19 was observed in correlation to the degree of malignancy from normal lung tissue to lung adenocarcinoma with lymphatic metastasis, whereas E-cadherin expression showed the opposite trend. TGF-beta and Twist were detected in cancer tissues and inflammatory pseudotumors. None of the proteins were detected in para-carcinoma tissues. Conclusions Fibroblast phenotypes varied according to the type and degree of lung malignancy and fibroblasts phenotypic conversion occurs as a gradual process with specific spatiotemporal characteristics. Similar fibroblast phenotypes in inflammatory diseases and cancer tissues suggested a correlation between inflammation and cancer and implied a common mechanism underlying the formation of fibroblasts in inflammatory diseases and lung cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13019-014-0147-z) contains supplementary material, which is available to authorized users.
Collapse
|
46
|
Ueda K, Murakami J, Sano F, Hayashi M, Suga K, Hamano K. Similar radiopathological features, but different postoperative recurrence rates, between Stage I lung cancers arising in emphysematous lungs and those arising in nonemphysematous lungs. Eur J Cardiothorac Surg 2014; 47:905-11. [DOI: 10.1093/ejcts/ezu311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/07/2014] [Indexed: 11/14/2022] Open
|
47
|
Manenti A, Roncati L, Sighinolfi P, Barbolini G. Absence of Immune Response as a Sign of Tissue Tolerance in Small-Cell Lung Cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.17795/gct-20330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Wang Y, Li J, Oupický D. Polymeric Plerixafor: effect of PEGylation on CXCR4 antagonism, cancer cell invasion, and DNA transfection. Pharm Res 2014; 31:3538-48. [PMID: 24942536 DOI: 10.1007/s11095-014-1440-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/10/2014] [Indexed: 12/26/2022]
Abstract
PURPOSE To determine the effect of PEG modification on pharmacologic and gene delivery properties of polymeric CXCR4 antagonist based on Plerixafor. METHODS Polymeric Plerixafor (PAMD) was synthesized from Plerixafor (AMD3100) and grafted with different amounts of PEG (2 kDa). CXCR4 antagonism of the synthesized polymers was determined using receptor redistribution assay. Inhibition of cancer cell invasion by the polyplexes of the synthesized polymers was assessed using Boyden-chamber method. Transfection activity of DNA polyplexes formed with the synthesized polymers was evaluated in U2OS osteosarcoma and B16F10 melanoma cells. RESULTS Our results demonstrate that modification of PAMD with PEG decreased toxicity of the polymers, while preserving their CXCR4 antagonism. Polyplexes prepared with PEG-PAMD inhibited invasion of cancer cells to an extent similar to the commercial CXCR4 antagonist Plerixafor. Negative effect of PEG on transfection activity of PEG-PAMD polyplexes could be overcome by using polyplexes formulated with a mixture of PAMD and PEG-PAMD. CONCLUSION Modification of PAMD with PEG is a viable strategy to preserve the desirable CXCR4 antagonism and ability to inhibit cancer cell invasion of PAMD, while improving safety and colloidal stability of the PAMD polyplexes.
Collapse
Affiliation(s)
- Yan Wang
- Center for Drug Delivery and Nanomedicine Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | | | | |
Collapse
|
49
|
Li J, Lepadatu AM, Zhu Y, Ciobanu M, Wang Y, Asaftei SC, Oupický D. Examination of structure-activity relationship of viologen-based dendrimers as CXCR4 antagonists and gene carriers. Bioconjug Chem 2014; 25:907-17. [PMID: 24821372 PMCID: PMC4032196 DOI: 10.1021/bc500191q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
Chemokine receptors and their ligands
play a central role in cancer
metastasis, inflammatory disorders, and viral infections. Viologen
dendrimers (VGD) emerged recently as a promising class of synthetic
polycationic ligands for chemokine receptor CXCR4. The objective of
this study was to evaluate the potential of VGD as novel dual-function
polycations capable of simultaneous CXCR4 antagonism and gene delivery.
As part of our systematic studies, we have synthesized a library of
VGD with differences in molecular architecture, number of positive
charges, and type of capping group. The ability of VGD to condense
DNA was evaluated, and physicochemical and biological properties of
the resulting polyplexes were studied. We have evaluated the effect
of VGD surface charge, size, capping group, and molecular architecture
on physicochemical properties of polyplexes, transfection efficiency,
CXCR4 antagonism, and cytotoxicity in human epithelial osteosarcoma
(U2OS) and in human liver hepatocellular carcinoma (HepG2) cells.
We found that properties and behavior of the polyplexes are most dependent
on the number of positive charges and molecular weight of VGD and
to a lesser extent on the type of a capping group. Using TNFα
plasmid, we have demonstrated that VGD prevents CXCR4-mediated cancer
cell invasion and facilitates TNFα-mediated cancer cell killing.
Such dual-function carriers have potential to enhance the overall
therapeutic outcomes of cancer gene therapy.
Collapse
Affiliation(s)
- Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | | | | | | | | | | | | |
Collapse
|
50
|
Xie S, Zeng W, Fan G, Huang J, Kang G, Geng Q, Cheng B, Wang W, Dong P. Effect of CXCL12/CXCR4 on increasing the metastatic potential of non-small cell lung cancer in vitro is inhibited through the downregulation of CXCR4 chemokine receptor expression. Oncol Lett 2014; 7:941-947. [PMID: 24944647 PMCID: PMC3961461 DOI: 10.3892/ol.2014.1837] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 10/25/2013] [Indexed: 11/26/2022] Open
Abstract
Lung cancer ranks as the most common type of cancer in males worldwide. Although great advances have been achieved in chemotherapy and radiotherapy, the long-term survival rate of lung cancer patients has not improved significantly. Dissemination of lung cancer in the thoracic cavity and metastatic spread to the liver, bone and brain are characteristic of non-small cell lung cancer (NSCLC), constituting the primary source of morbidity and mortality in lung cancer. Increasing evidence also indicates that the CXC chemokine receptor 4 (CXCR4)/chemokine CXC motif ligand 12 (CXCL12) chemokine axis is important for the cell invasion and migration of lung cancer. CXCR4 is a G protein-coupled receptor with a major role in lymphocyte homing. Its ligand, CXCL12, is secreted by target organs and functions as a highly efficient chemotactic factor for T cells, monocytes, pre-B cells, dendritic cells and myeloid bone marrow-derived cells. In the current study, recombinant CXCR4-specific small interfering RNA-pBSilence1.1 plasmids were constructed and transfected into the A549 NSCLC cell line in vitro. Reverse transcription polymerase chain reaction and western blotting revealed that CXCR4 was downregulated in transfected cells compared with control cells. The results of MTT and Transwell migration assays indicated that the specific downregulation of CXCR4 inhibited cell growth, invasiveness and migration. Thus, siRNA targeting of CXCR4 may effectively inhibit the effect of CXCL12/CXCR4 on increasing the metastatic potential of NSCLC.
Collapse
Affiliation(s)
- Songping Xie
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wenhui Zeng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Guohua Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Huang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ganjun Kang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bangchang Cheng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ping Dong
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|