1
|
Orgil BO, Chintanaphol M, Alberson NR, Letourneau L, Martinez HR, Towbin JA, Purevjav E. Animal Models for Mechanical Circulatory Support: A Research Review. Rev Cardiovasc Med 2024; 25:351. [PMID: 39484122 PMCID: PMC11522838 DOI: 10.31083/j.rcm2510351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 06/19/2024] [Indexed: 11/03/2024] Open
Abstract
Heart failure is a clinical syndrome that has become a leading public health problem worldwide. Globally, nearly 64 million individuals are currently affected by heart failure, causing considerable medical, financial, and social challenges. One therapeutic option for patients with advanced heart failure is mechanical circulatory support (MCS) which is widely used for short-term or long-term management. MCS with various ventricular assist devices (VADs) has gained traction in end-stage heart failure treatment as a bridge-to-recovery, -decision, -transplant or -destination therapy. Due to limitations in studying VADs in humans, animal studies have substantially contributed to the development and advancement of MCS devices. Large animals have provided an avenue for developing and testing new VADs and improving surgical strategies for VAD implantation and for evaluating the effects and complications of MCS on hemodynamics and organ function. VAD modeling by utilizing rodents and small animals has been successfully implemented for investigating molecular mechanisms of cardiac unloading after the implantation of MCS. This review will cover the animal research that has resulted in significant advances in the development of MCS devices and the therapeutic care of advanced heart failure.
Collapse
Affiliation(s)
- Buyan-Ochir Orgil
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Michelle Chintanaphol
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Neely R. Alberson
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | | | - Hugo R. Martinez
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Jeffrey A. Towbin
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Enkhsaikhan Purevjav
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| |
Collapse
|
2
|
Meissner F, Galbas MC, Straky H, Vestner H, Schoen M, Schimmel M, Reuter J, Buechsel M, Dinkelaker J, Cristina Schmitz H, Czerny M, Bothe W. In Vivo Testing of a Second-Generation Prototype Accessory for Single Transapical Left Ventricular Assist Device Implantation. Bioengineering (Basel) 2024; 11:848. [PMID: 39199805 PMCID: PMC11351186 DOI: 10.3390/bioengineering11080848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
A new accessory was developed to allow implantation of left ventricular assist devices (LVADs) without requiring an anastomosis to the ascending aorta. The accessory combines the LVAD inflow and outflow into a dual-lumen device. Initial prototypes encountered reduced pump performance in vitro, but a second-generation prototype successfully addressed this issue. This feasibility study aimed to demonstrate the anatomic fit, safe implantation, and hemodynamic effectiveness of the LVAD with the accessory. The accessory was implanted in ten female pigs (104 ± 13 kg). Following sternotomy and apical coring under cardiopulmonary bypass, a balloon catheter was retrogradely inserted and exteriorized through the coring site, where it was inflated within the distal third of the outflow graft. It was utilized to pull the accessory's outflow across the aortic valve. After LVAD attachment, the catheter was removed. Echocardiography revealed no relevant valve regurgitation post-implantation. During ramp testing, pump flow increased from 3.7 ± 1.2 to 5.4 ± 1.2 L/min. Necropsy confirmed correct accessory placement in nine animals. No valve lesions or device thrombosis were observed. The accessory enabled LVAD implantation without compromising pump performance. Future work includes design refinements for implantation without cardiopulmonary bypass and long-term testing in a chronic heart failure model.
Collapse
Affiliation(s)
- Florian Meissner
- Department of Cardiovascular Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Michelle Costa Galbas
- Department of Cardiovascular Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Hendrik Straky
- Department of Cardiovascular Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Heiko Vestner
- Department of Cardiovascular Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Manuela Schoen
- Department of Cardiovascular Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Marius Schimmel
- Department of Cardiovascular Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Johanna Reuter
- Department of Cardiovascular Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Martin Buechsel
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Johannes Dinkelaker
- Center for Experimental Models and Transgenic Service, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
| | - Heidi Cristina Schmitz
- Center for Experimental Models and Transgenic Service, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Stefan-Meier-Strasse 17, 79104 Freiburg, Germany
| | - Martin Czerny
- Department of Cardiovascular Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Wolfgang Bothe
- Department of Cardiovascular Surgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| |
Collapse
|
3
|
Meissner F, Szvetics S, Galbas MC, Russe M, Schibilsky D, Kaier K, Czerny M, Bothe W. Longitudinal cardiac dimensions in patients undergoing LVAD implantation. Artif Organs 2024; 48:550-558. [PMID: 38409825 DOI: 10.1111/aor.14728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND In conventional left ventricular assist devices (LVAD), a separate outflow graft is sutured to the ascending aorta. Novel device designs may include a transventricular outflow cannula crossing the aortic valve (AV). While transversal ventricular dimensions are well investigated in patients with severe heart failure, little is known about the longitudinal dimensions. These dimensions are, however, particularly critical for the design and development of mechanical circulatory support (MCS) devices with transaortic outflow cannula. METHODS In an explorative retrospective cohort study at the University Medical Center Freiburg, Germany, the longitudinal cardiac dimensions of patients undergoing computed tomography angiography (CTA) before and, if available, after LVAD implantation were analyzed. Among others, the following dimensions were assessed: (a) apex to AV, (b) apex to mitral valve, (c) AV to sinotubular junction (STJ), (d) apex to STJ, (e) apex to brachiocephalic artery (BCA), and (f) AV to BCA. RESULTS In total, 44 LVAD patients (36 male, age 55.8 years, height 1.75 m) were included. The longitudinal cardiac dimensions were (a) 114.5 ± 12.1 mm, (b) 108.0 ± 12.4 mm, (c) 20.9 ± 2.9, (d) 135.4 ± 13.4 mm, (e) 206.0 ± 18.3, and (f) 91.5 ± 9.8 mm. Postoperatively, (a) and (b) decreased by 31.5% and 39.5%, respectively (N = 14). CONCLUSIONS Longitudinal cardiac dimensions may be reduced by up to 40% after LVAD implantation. A better knowledge of these dimensions and their postoperative alterations in LVAD patients may improve surgical planning and help to design MCS devices with transventricular outflow cannula.
Collapse
Affiliation(s)
- Florian Meissner
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sophie Szvetics
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michelle Costa Galbas
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Russe
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David Schibilsky
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Kaier
- Institute of Medical Biometry and Statistics, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Czerny
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Bothe
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Smith PA, Wang Y, Frazier OH. The Evolution of Durable, Implantable Axial-Flow Rotary Blood Pumps. Tex Heart Inst J 2023; 50:492012. [PMID: 37011366 PMCID: PMC10178652 DOI: 10.14503/thij-22-7908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Left ventricular assist devices (LVADs) are increasingly used to treat patients with end-stage heart failure. Implantable LVADs were initially developed in the 1960s and 1970s. Because of technological constraints, early LVADs had limited durability (eg, membrane or valve failure) and poor biocompatibility (eg, driveline infections and high rates of hemolysis caused by high shear rates). As the technology has improved over the past 50 years, contemporary rotary LVADs have become smaller, more durable, and less likely to result in infection. A better understanding of hemodynamics and end-organ perfusion also has driven research into the enhanced functionality of rotary LVADs. This paper reviews from a historical perspective some of the most influential axial-flow rotary blood pumps to date, from benchtop conception to clinical implementation. The history of mechanical circulatory support devices includes improvements related to the mechanical, anatomical, and physiologic aspects of these devices. In addition, areas for further improvement are discussed, as are important future directions-such as the development of miniature and partial-support LVADs, which are less invasive because of their compact size. The ongoing development and optimization of these pumps may increase long-term LVAD use and promote early intervention in the treatment of patients with heart failure.
Collapse
Affiliation(s)
- P Alex Smith
- Innovative Design and Engineering Applications Laboratory, The Texas Heart Institute, Houston, Texas
| | - Yaxin Wang
- Innovative Design and Engineering Applications Laboratory, The Texas Heart Institute, Houston, Texas
| | - O H Frazier
- Innovative Design and Engineering Applications Laboratory, The Texas Heart Institute, Houston, Texas
| |
Collapse
|
5
|
Development of a Novel Adapter to Enable Less-Invasive Left Ventricular Assist Device Implantation via the Left Ventricular Apex. ASAIO J 2022; 68:e142-e144. [PMID: 35417441 DOI: 10.1097/mat.0000000000001719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The first prototype of an adapter to enable left ventricular assist device (LVAD) implantation solely via the left ventricular (LV) apex and without requiring cardiopulmonary bypass (CPB) was tested in healthy and acutely failing pig hearts. The adapter consists of a fixation, blood guiding, and connecting module fitting to a HeartMate 3 (HM3; Abbott, Chicago, IL) pump. Implantation was performed via a left thoracotomy in five pigs (96 ± 18 kg). Invasive blood pressure was measured before (CTRL), 30 minutes after HM3 initiation (HM3_CTRL), during acute heart failure (HF) induced by rapid pacing (CTRL_HF), and 5 minutes after initiating HM3 support (HM3_HF). To further estimate the LVAD performance, blood pressure amplitudes were calculated in the healthy heart without (CTRL) and with HM3 support (HM3_CTRL) as: systolic-diastolic blood pressure. Our adapter implantation and connection to the HM3 pump succeeded in all animals. Compared to the normal beating healthy heart, blood pressure amplitudes were significantly smaller during HM3 support (CTRL: 41 ± 5 mm Hg vs. HM3_CTRL: 20 ± 4 mm Hg; p < 0.05). Under HF conditions, mean blood pressure returned to normal values after pump initiation (CTRL_HF: 29 ± 6 mm Hg, HM3_HF: 83 ± 24 mm Hg). The adapter prototype allowed safe, straightforward, and less-invasive LVAD implantation solely via the LV apex without using CPB and support of the LV during acute HF in the pig heart.
Collapse
|
6
|
Quintana-Villamandos B, Barranco M, Fernández I, Ruiz M, Del Cañizo JF. New Advances in Monitoring Cardiac Output in Circulatory Mechanical Assistance Devices. A Validation Study in a Porcine Model. Front Physiol 2021; 12:634779. [PMID: 33746776 PMCID: PMC7969803 DOI: 10.3389/fphys.2021.634779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/11/2021] [Indexed: 01/04/2023] Open
Abstract
Cardiac output (CO) measurement by continuous pulmonary artery thermodilution (COCTD) has been studied in patients with pulsatile-flow LVADs (left ventricular assist devices), confirming the clinical utility. However, it has not been validated in patients with continuous-flow LVADs. Therefore, the aim of this study was to assess the validity of COCTD in continuous-flow LVADs. Continuous-flow LVADs were implanted in six miniature pigs for partial assistance of the left ventricle. Both methods of measuring CO—measurement by COCTD and intermittent pulmonary artery thermodilution, standard technique (COITD)—were used in four consecutive moments of the study: before starting the LVAD (basal moment), and with the LVAD started in normovolemia, hypervolemia (fluid overloading), and hypovolemia (shock hemorrhage). At the basal moment, COCTD and COITD were closely correlated (r2 = 0.97), with a mean bias of −0.13 ± 0.16 L/min and percentage error of 11%. After 15 min of partial support LVAD, COCTD and COITD were closely correlated (r2 = 0.91), with a mean bias of 0.31 ± 0.35 L/min and percentage error of 20%. After inducing hypervolemia, COCTD and COITD were closely correlated (r2 = 0.99), with a mean bias of 0.04 ± 0.07 L/min and percentage error of 5%. After inducing hypovolemia, COCTD and COITD were closely correlated (r2 = 0.74), with a mean bias of 0.08 ± 0.22 L/min and percentage error of 19%. This study shows that continuous pulmonary thermodilution could be an alternative method of monitoring CO in a porcine model with a continuous-flow LVAD.
Collapse
Affiliation(s)
- Begoña Quintana-Villamandos
- Department of Anesthesiology and Intensive Care, Gregorio Marañón Hospital, Madrid, Spain.,Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - Mónica Barranco
- Department of Anesthesiology and Intensive Care, Gregorio Marañón Hospital, Madrid, Spain
| | - Ignacio Fernández
- Department of Anesthesiology and Intensive Care, Gregorio Marañón Hospital, Madrid, Spain
| | - Manuel Ruiz
- Department of Cardiovascular Surgery, Gregorio Marañón Hospital, Madrid, Spain.,Department of Surgery, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | | |
Collapse
|
7
|
Kado Y, Smith WA, Miyamoto T, Adams J, Polakowski AR, Dessoffy R, Horvath DJ, Fukamachi K, Karimov JH. Use of a Virtual Mock Loop model to evaluate a new left ventricular assist device for transapical insertion. Int J Artif Organs 2020; 43:677-683. [PMID: 32089074 DOI: 10.1177/0391398820907104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We are developing a novel type of miniaturized left ventricular assist device that is configured for transapical insertion. The aim of this study was to assess the performance and function of a new pump by using a Virtual Mock Loop system for device characterization and mapping. The results, such as pressure-flow performance curves, from pump testing in a physical mock circulatory loop were used to analyze its function as a left ventricular assist device. The Virtual Mock Loop system was programmed to mimic the normal heart condition, systolic heart failure, diastolic heart failure, and both systolic and diastolic heart failure, and to provide hemodynamic pressure values before and after the activation of several left ventricular assist device pump speeds (12,000, 14,000, and 16,000 r/min). With pump support, systemic flow and mean aortic pressure increased, and mean left atrial pressure and pulmonary artery pressure decreased for all heart conditions. Regarding high pump-speed support, the systemic flow, aortic pressure, left atrial pressure, and pulmonary artery pressure returned to the level of the normal heart condition. Based on the test results from the Virtual Mock Loop system, the new left ventricular assist device for transapical insertion may be able to ease the symptoms of patients with various types of heart failure. The Virtual Mock Loop system could be helpful to assess pump performance before in vitro bench testing.
Collapse
Affiliation(s)
- Yuichiro Kado
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Takuma Miyamoto
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph Adams
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Anthony R Polakowski
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Raymond Dessoffy
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Kiyotaka Fukamachi
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jamshid H Karimov
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
8
|
Lazoglu I, Kucukaksu DS, Ozturk C, Aka IB, Bakuy V, Arat N, Yalcin O, Ugurel E, Celikbilek Erkasap P, Aksoy E, Ruacan S. A Short-Term In Vivo Evaluation of the Istanbul Heart Left Ventricular Assist Device in a Pig Model. EXP CLIN TRANSPLANT 2019. [PMID: 31580231 DOI: 10.6002/ect.2019.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES A continuous-flow centrifugal blood pump system has been recently developed as an implantable left ventricular assist device for patients with endstage heart failure. The objective of this study was to evaluate the initial in vivo performance of a newly developed left ventricular assist device (iHeart or Istanbul heart; Manufacturing and Automation Research Center, Koc University, Istanbul, Turkey) in an acute setting using a pig model. MATERIALS AND METHODS Three pigs (77, 83, 92 kg) received implants via a median sternotomy, with animals supported for up to 6 hours. An outflow cannula was anastomosed to the ascending aorta. Anticoagulation was applied by intravenous heparin administration. During the support period, pump performance was evaluated under several flow and operating conditions. All pigs were humanely sacrificied after the experiments, and organs were examined macroscopically and histopathologically. RESULTS Flow rate ranged between 1.5 and 3.6 L/min with pump speeds of 1500 to 2800 revolutions/min and motor current of 0.6 to 1.3 A. Initial findings confirmed thatthe iHeart ventricular assist device had sufficient hydraulic performance to support the circulation. During the experimental period, plasma free hemoglobin levels were found to be within normalranges.Thrombus formation was not observed inside the pump in all experiments. CONCLUSIONS The iHeart ventricular assist device demonstrated encouraging hemodynamic performance and good biocompatibility in the pig model for use as an implantable left ventricular assist device. Further acute in vivo studies will evaluate the short-term pump performance prior to chronic studies for long-term evaluation.
Collapse
Affiliation(s)
- Ismail Lazoglu
- From the Manufacturing and Automation Research Center, College of Engineering, Koc University, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Radley G, Pieper IL, Thornton CA. The effect of ventricular assist device-associated biomaterials on human blood leukocytes. J Biomed Mater Res B Appl Biomater 2017; 106:1730-1738. [PMID: 28888071 DOI: 10.1002/jbm.b.33981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/01/2017] [Accepted: 08/16/2017] [Indexed: 12/29/2022]
Abstract
Ventricular assist devices (VADs) are an effective bridging or destination therapy for patients with advanced stage heart failure. These devices remain susceptible to adverse events including infection, bleeding, and thrombus; events linked to the foreign body response. Therefore, the biocompatibility of all biomaterials used is crucial to the success of medical devices. Biomaterials common in VADs-DLC: diamond-like carbon coated stainless steel; Sap: single-crystal sapphire; SiN: silicon nitride; Ti: titanium alloy; and ZTA: zirconia-toughened alumina-were tested for their biocompatibility through incubation with whole human blood for 2 h with mild agitation. Blood was then removed and used for: complete cell counts; leukocyte activation and death, and the production of key inflammatory cytokines. All were compared to time 0 and an un-exposed 2 h sample. Monocyte numbers were lower after exposure to DLC, SiN, and ZTA and monocytes showed evidence of activation with DLC, Sap, and SiN. Neutrophils and lymphocytes were unaffected. This approach allows comprehensive analysis of the potential blood damaging effects of biomaterials. Monocyte activation by DLC, Sap, ZTA, and SiN warrants further investigation linking effects on this cell type to unfavorable inflammatory/thrombogenic responses to VADs and other blood handling devices. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1730-1738, 2018.
Collapse
Affiliation(s)
- Gemma Radley
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK.,Calon Cardio - Technology Ltd., Institute of Life Science, Swansea, Wales, UK
| | - Ina Laura Pieper
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK.,Calon Cardio - Technology Ltd., Institute of Life Science, Swansea, Wales, UK
| | - Catherine A Thornton
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK
| |
Collapse
|
10
|
Ensminger SM, Gerosa G, Gummert JF, Falk V. Mechanical Circulatory Support: Heart Failure Therapy “in Motion”. INNOVATIONS-TECHNOLOGY AND TECHNIQUES IN CARDIOTHORACIC AND VASCULAR SURGERY 2016. [DOI: 10.1177/155698451601100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Stephan M. Ensminger
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetescenter NRW, Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Gino Gerosa
- Department of Cardiac Surgery, Padova University Hospital, Padova, Italy
| | - Jan F. Gummert
- Department of Thoracic and Cardiovascular Surgery, Heart and Diabetescenter NRW, Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Berlin, Berlin, Germany
| |
Collapse
|
11
|
Mechanical Circulatory Support: Heart Failure Therapy “in Motion”. INNOVATIONS-TECHNOLOGY AND TECHNIQUES IN CARDIOTHORACIC AND VASCULAR SURGERY 2016; 11:305-314. [DOI: 10.1097/imi.0000000000000305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Because the first generation of pulsatile-flow devices was primarily used to bridge the sickest patients to transplantation (bridge-to-transplant therapy), the current generation of continuous-flow ventricular assist devices qualifies for destination therapy for patients with advanced heart failure who are ineligible for transplantation. The first-generation devices were associated with frequent adverse events, limited mechanical durability, and patient discomfort due device size. In contrast, second-generation continuous-flow devices are smaller, more quiet, and durable, thus resulting in less complications and significantly improved survival rates. Heart transplantation remains an option for a limited number of patients only, and this fact has also triggered the discussion about the optimal timing for device implantation. The increasing use of continuous-flow devices has resulted in new challenges, such as adverse events during long-term support, and high hospital readmission rates. In addition, there are a number of device-related complications including mechanical problems such as device thrombosis, percutaneous driveline damage, as well as conditions such as hemolysis, infection, and cerebrovascular accidents. This review provides an overview of the evolution of mechanical circulatory support systems from bridge to transplantation to destination therapy including technological advances and clinical improvements in long-term patient survival and quality of life. In addition, recent changes in device implant strategies and current trials are reviewed and discussed. A brief glimpse into the future of mechanical circulatory support therapy will summarize the innovations that may soon enter clinical practice.
Collapse
|
12
|
Gossman MS, Graham JD, Depot S, Zheng H, Li J, Ng CK, Tamez D. In Vitro PET Imaging of a Miniature Ventricular Assist Device. J Nucl Med Technol 2016; 44:190-4. [PMID: 27363444 DOI: 10.2967/jnmt.116.175885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/04/2016] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Interactions between the life-sustaining ventricular assist devices and diagnostic therapies must be carefully considered to decrease the risk of inaccurate diagnostic imaging or pump failure. METHODS The MVAD(®) pump, currently under investigational use, was tested for interaction with radiotracers in an in vitro flow-loop study. The radiotracers (18)F-sodium fluoride and (18)F-FDG were injected into a closed loop to determine the feasibility of direct imaging of the MVAD(®) pump in a PET scanner. RESULTS No real-time changes were observed in pump operation, and there were no statistical differences in pump parameters (power consumption, speed, and estimated flow rate) between the baseline and circulation conditions. In addition, no effect was observed on any external components, including the permissive-action-link controller and the batteries powering the device. Imaging of the internal pump components was possible, with obscuration observed only in the portion of the pump where the spinning impeller is located. Retention of radiotracer in the pump components after circulation was minimal (<1%). CONCLUSION PET imaging is an attractive diagnostic tool for patients with a ventricular assist device and may have additional utility outside its current use, detection of infection.
Collapse
Affiliation(s)
| | | | | | - Huaiyu Zheng
- Department of Radiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Junling Li
- Department of Radiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Chin K Ng
- Department of Radiology, University of Louisville School of Medicine, Louisville, Kentucky
| | | |
Collapse
|
13
|
Sajgalik P, Grupper A, Edwards BS, Kushwaha SS, Stulak JM, Joyce DL, Joyce LD, Daly RC, Kara T, Schirger JA. Current Status of Left Ventricular Assist Device Therapy. Mayo Clin Proc 2016; 91:927-40. [PMID: 27378038 DOI: 10.1016/j.mayocp.2016.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/22/2016] [Accepted: 05/03/2016] [Indexed: 02/05/2023]
Abstract
Congestive heart failure (HF) remains a serious burden in the Western World. Despite advances in pharmacotherapy and resynchronization, many patients have progression to end-stage HF. These patients may be candidates for heart transplant or left ventricular assist device (LVAD) therapy. Heart transplants are limited by organ shortages and in some cases by patient comorbidities; therefore, LVAD therapy is emerging as a strategy of bridge to transplant or as a destination therapy in patients ineligible for transplant. Patients initially ineligible for a transplant may, in certain cases, become eligible for transplant after physiologic improvement with LVAD therapy, and a small number of patients with an LVAD may have sufficient recovery of myocardial function to allow device explantation. This clinically oriented review will describe (1) the most frequently used pump types and aspects of the continuous-flow physiology and (2) the clinical indications for and the shift toward the use of LVADs in less sick patients with HF. Additionally, we review complications of LVAD therapy and project future directions in this field. We referred to the Interagency Registry for Mechanically Assisted Circulatory Support, landmark trials, and results from recently published studies as major sources in obtaining recent outcomes, and we searched for related published literature via PubMed. This review focuses primarily on clinical practice for primary care physicians and non-HF cardiologists in the United States.
Collapse
Affiliation(s)
- Pavol Sajgalik
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN; Department of Internal Medicine, Cardioangiology, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Avishay Grupper
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Brook S Edwards
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | | | - John M Stulak
- Division of Cardiovascular Surgery, Mayo Clinic, Rochester, MN
| | - David L Joyce
- Division of Cardiovascular Surgery, Mayo Clinic, Rochester, MN
| | - Lyle D Joyce
- Division of Cardiovascular Surgery, Mayo Clinic, Rochester, MN
| | - Richard C Daly
- Division of Cardiovascular Surgery, Mayo Clinic, Rochester, MN
| | - Tomas Kara
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN; Department of Internal Medicine, Cardioangiology, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - John A Schirger
- Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN.
| |
Collapse
|
14
|
Pieper IL, Radley G, Chan CHH, Friedmann Y, Foster G, Thornton CA. Quantification methods for human and large animal leukocytes using DNA dyes by flow cytometry. Cytometry A 2016; 89:565-74. [DOI: 10.1002/cyto.a.22874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/19/2016] [Accepted: 04/26/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Ina Laura Pieper
- Institute of Life Science, Swansea University Medical School; Swansea SA2 8PP United Kingdom
- Calon Cardio-Technology, Institute of Life Science; Swansea SA2 8PP United Kingdom
| | - Gemma Radley
- Institute of Life Science, Swansea University Medical School; Swansea SA2 8PP United Kingdom
- Calon Cardio-Technology, Institute of Life Science; Swansea SA2 8PP United Kingdom
| | - Chris H. H. Chan
- Institute of Life Science, Swansea University Medical School; Swansea SA2 8PP United Kingdom
- Calon Cardio-Technology, Institute of Life Science; Swansea SA2 8PP United Kingdom
| | - Yasmin Friedmann
- Institute of Life Science, Swansea University Medical School; Swansea SA2 8PP United Kingdom
| | - Graham Foster
- Calon Cardio-Technology, Institute of Life Science; Swansea SA2 8PP United Kingdom
| | - Catherine A. Thornton
- Institute of Life Science, Swansea University Medical School; Swansea SA2 8PP United Kingdom
| |
Collapse
|
15
|
Granegger M, Aigner P, Haberl T, Mahr S, Tamez DA, Graham J, Nunez NJ, Schima H, Moscato F. Interaction of a Transapical Miniaturized Ventricular Assist Device With the Left Ventricle: Hemodynamic Evaluation and Visualization in an Isolated Heart Setup. Artif Organs 2016; 40:1113-1120. [PMID: 27230977 DOI: 10.1111/aor.12730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 11/26/2022]
Abstract
New left ventricular assist devices (LVADs) offer both important advantages and potential hazards. VAD development requires better and expeditious ways to identify these advantages and hazards. We validated in an isolated working heart the hemodynamic performance of an intraventricular LVAD and investigated how its outflow cannula interacted with the aortic valve. Hearts from six pigs were explanted and connected to an isolated working heart setup. A miniaturized LVAD was implanted within the left ventricle (tMVAD, HeartWare Inc., Miami Lakes, FL, USA). In four experiments blood was used to investigate hemodynamics under various loading conditions. In two experiments crystalloid perfusate was used, allowing visualization of the outflow cannula within the aortic valve. In all hearts the transapical miniaturized ventricular assist device (tMVAD) implantation was successful. In the blood experiments hemodynamics similar to those observed clinically were achieved. Pump speeds ranged from 9 to 22 krpm with a maximum of 7.6 L/min against a pressure difference between ventricle and aorta of ∼50 mm Hg. With crystalloid perfusate, central positioning of the outflow cannula in the aortic root was observed during full and partial support. With decreasing aortic pressures the cannula tended to drift toward the aortic root wall. The tMVAD could unload the ventricle similarly to LVADs under conventional cannulation. Aortic pressure influenced central positioning of the outflow cannula in the aortic root. The isolated heart is a simple, accessible evaluation platform unaffected by complex reactions within a whole, living animal. This platform allowed detection and visualization of potential hazards.
Collapse
Affiliation(s)
- Marcus Granegger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna.,Ludwig Boltzmann Cluster for Cardiovascular Research
| | - Philipp Aigner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna.,Ludwig Boltzmann Cluster for Cardiovascular Research
| | - Thomas Haberl
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Stephane Mahr
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Heinrich Schima
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna.,Ludwig Boltzmann Cluster for Cardiovascular Research.,Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna.,Ludwig Boltzmann Cluster for Cardiovascular Research
| |
Collapse
|
16
|
Abstract
UNLABELLED Investigation of the miniature ventricular assist device (MVAD) pump motor stator core loss behavior was conducted. During operation, the ferromagnetic core in the pump's motor is magnetized by alternating magnetic fields, which, in turn, create intrinsic energy losses in the core material; these losses are known as core losses. A core loss fixture and a method to characterize the magnetic behavior of the MVAD pump stator over a range of frequencies were developed. The MVAD pump motor design features a three phase brushless DC stator with ferromagnetic laminations and copper wire windings arranged in a six slot configuration. The stator's magnetic behavior is important because its core magnetic losses impact pump system efficiency. A system to measure the core loss of MVAD pump stators was developed using a custom core loss fixture consisting of 16 copper wire turns wound in a closed loop geometry bundle; the stator under test was then placed within this bundle. The instrumentation consisted of a signal generator, a power amplifier, and a power analyzer. Power analyzer parameters of current, voltage, and power were collected for several runs with a sinusoidal frequency sweep of 0 to 50 kHz; data were collected for the fixture with and without stators. The magnetic losses inherent to the fixture were characterized independently as a baseline presenting a flat frequency response. The core loss power measurements of individual stators yielded a characteristic bandpass frequency response morphology with a peak core loss found around 2.3 to 2.5 kHz. In conclusion, this method could be used to describe the transfer function of the stator's core magnetic behavior. It also has the potential to be used for future motor evaluation and for investigation of core loss performance variability between different stators during manufacturing operations. CAUTION Investigational device. Limited by United States law to investigational use.
Collapse
|
17
|
Miera O, Potapov E, Alexi-Meskishvili V, Hübler M, Weng Y, Hetzer R. Temporäre mechanische Kreislaufunterstützung bei Kindern und Patienten mit angeborenen Herzfehlern. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2014. [DOI: 10.1007/s00398-014-1076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Lala A, Mehra MR. Durable mechanical circulatory support in advanced heart failure: a critical care cardiology perspective. Cardiol Clin 2014; 31:581-93, viii-ix. [PMID: 24188222 DOI: 10.1016/j.ccl.2013.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Though cardiac transplantation for advanced heart disease patients remains definitive therapy for patients with advanced heart failure, it is challenged by inadequate donor supply, causing durable mechanical circulatory support (MCS) to slowly become a new primary standard. Selecting appropriate patients for MCS involves meeting a number of prespecifications as is required in evaluation for cardiac transplant candidacy. As technology evolves to bring forth more durable smaller devices, selection criteria for appropriate MCS recipients will likely expand to encompass a broader, less sick population. The "Holy Grail" for MCS will be a focus on clinical recovery and explantation of devices rather than the currently more narrowly defined indications of bridge to transplantation or lifetime device therapy.
Collapse
Affiliation(s)
- Anuradha Lala
- Department of Medicine, Division of Cardiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, A3, Boston, MA 02115, USA
| | | |
Collapse
|
19
|
Schima H, Zrunek P, Stoiber M, LaRose J, Shambaugh C, Tamez D, Deckert Z, Plasenzotti R, Bergmeister H, Wieselthaler G. Extended in vivo evaluation of a miniaturized axial flow pump with a novel inflow cannula for a minimal invasive implantation procedure. J Heart Lung Transplant 2014; 33:422-8. [DOI: 10.1016/j.healun.2013.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/18/2013] [Accepted: 10/18/2013] [Indexed: 11/28/2022] Open
|
20
|
Tamez D, LaRose JA, Shambaugh C, Chorpenning K, Soucy KG, Sobieski MA, Sherwood L, Giridharan GA, Monreal G, Koenig SC, Slaughter MS. Early feasibility testing and engineering development of the transapical approach for the HeartWare MVAD ventricular assist system. ASAIO J 2014; 60:170-7. [PMID: 24399057 PMCID: PMC4120071 DOI: 10.1097/mat.0000000000000038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Implantation of ventricular assist devices (VADs) for the treatment of end-stage heart failure (HF) falls decidedly short of clinical demand, which exceeds 100,000 HF patients per year. Ventricular assist device implantation often requires major surgical intervention with associated risk of adverse events and long recovery periods. To address these limitations, HeartWare, Inc. has developed a platform of miniature ventricular devices with progressively reduced surgical invasiveness and innovative patient peripherals. One surgical implant concept is a transapical version of the miniaturized left ventricular assist device (MVAD). The HeartWare MVAD Pump is a small, continuous-flow, full-support device that has a displacement volume of 22 ml. A new cannula configuration has been developed for transapical implantation, where the outflow cannula is positioned across the aortic valve. The two primary objectives for this feasibility study were to evaluate anatomic fit and surgical approach and efficacy of the transapical MVAD configuration. Anatomic fit and surgical approach were demonstrated using human cadavers (n = 4). Efficacy was demonstrated in acute (n = 2) and chronic (n = 1) bovine model experiments and assessed by improvements in hemodynamics, biocompatibility, flow dynamics, and histopathology. Potential advantages of the MVAD Pump include flow support in the same direction as the native ventricle, elimination of cardiopulmonary bypass, and minimally invasive implantation.
Collapse
Affiliation(s)
- Daniel Tamez
- From the *HeartWare, Inc., Miami Lakes, Florida; †Division of Thoracic and Cardiovascular Surgery, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky; ‡Department of Bioengineering, University of Louisville, Louisville, Kentucky; and §Research Resources Facilities (RRF), University of Louisville, Louisville, Kentucky
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Molina EJ, Boyce SW. Current Status of Left Ventricular Assist Device Technology. Semin Thorac Cardiovasc Surg 2013; 25:56-63. [DOI: 10.1053/j.semtcvs.2013.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2013] [Indexed: 11/11/2022]
|
23
|
Miller LW, Guglin M. Patient selection for ventricular assist devices: a moving target. J Am Coll Cardiol 2013; 61:1209-21. [PMID: 23290542 DOI: 10.1016/j.jacc.2012.08.1029] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 02/09/2023]
Abstract
The number of patients with advanced heart failure that has become unresponsive to conventional medical therapy is increasing rapidly. One of the most promising new alternatives to heart transplantation is use of ventricular assist devices (VADs). To date, there are no guidelines for appropriate selection for use of these devices that are approved by national societies in the field. This review addresses all of the general criteria for clinicians to keep in mind regarding when to refer a patient for evaluation and the specific issues addressed in patient selection. The field of mechanical circulatory support has advanced significantly over the past 10 years, resulting in rapid expansion of patients with advanced heart failure who can benefit from implantable devices. With progress of technology, limitations associated with age, body size, and comorbidities gradually become less prohibitive. The continuing simplification of design along with continued reduction in size of the devices, plus eventual elimination of the external drive line will make the use of VADs a superior option to heart transplant and even to medical management in many patients. We anticipate that the patient selection process outlined in the present review will continue to shift toward less advanced cases of heart failure.
Collapse
Affiliation(s)
- Leslie W Miller
- Department of Cardiovascular Sciences, University of South Florida, Tampa, FL 33606, USA.
| | | |
Collapse
|
24
|
Giridharan GA, Lee TJ, Ising M, Sobieski MA, Koenig SC, Gray LA, Slaughter MS. Miniaturization of mechanical circulatory support systems. Artif Organs 2012; 36:731-9. [PMID: 22882443 PMCID: PMC3810069 DOI: 10.1111/j.1525-1594.2012.01523.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heart failure (HF) is increasing worldwide and represents a major burden in terms of health care resources and costs. Despite advances in medical care, prognosis with HF remains poor, especially in advanced stages. The large patient population with advanced HF and the limited number of donor organs stimulated the development of mechanical circulatory support (MCS) devices as a bridge to transplant and for destination therapy. However, MCS devices require a major operative intervention, cardiopulmonary bypass, and blood component exposure, which have been associated with significant adverse event rates, and long recovery periods. Miniaturization of MCS devices and the development of an efficient and reliable transcutaneous energy transfer system may provide the vehicle to overcome these limitations and usher in a new clinical paradigm in heart failure therapy by enabling less invasive beating heart surgical procedures for implantation, reduce cost, and improve patient outcomes and quality of life. Further, it is anticipated that future ventricular assist device technology will allow for a much wider application of the therapy in the treatment of heart failure including its use for myocardial recovery and as a platform for support for cell therapy in addition to permanent long-term support.
Collapse
Affiliation(s)
- Guruprasad A Giridharan
- Departments of Bioengineering & Surgery, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Garbade J, Bittner HB, Lehmann S, Mohr FW, Barten MJ. Miniaturization of left ventricular assist devices: the ongoing trend. Expert Rev Med Devices 2011; 9:49-58. [PMID: 22145840 DOI: 10.1586/erd.11.62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The shortage of appropriate donor hearts and the expanding pool of patients waiting for a heart transplantation have led to growing interest in alternative strategies, particularly in mechanical circulatory support. With expanding clinical experience and continued technical advances, continuous-flow pumps are evolving from bridge to transplantation to destination therapy for advanced heart failure. This review describes the clinical use and outcome of currently available miniaturized left ventricular assist devices (LVADs). It provides an outlook of the ongoing process of the miniaturization of LVADs, new concepts of partial support and, furthermore, it commentates on the current challenges with LVADs and the 5-year perspective.
Collapse
Affiliation(s)
- Jens Garbade
- Department of Cardiac Surgery, Heart Center Leipzig, University of Leipzig, Germany.
| | | | | | | | | |
Collapse
|