1
|
Zhao T, Huang X, Chen W, Gao H, Feng Z, Tan C, Sun J, Ma X, Yan W, Sheng W, Huang G. Clinical implications of respiratory ciliary dysfunction in heterotaxy patients with congenital heart disease: elevated risk of postoperative airway complications. Front Cardiovasc Med 2024; 10:1333277. [PMID: 38292451 PMCID: PMC10825948 DOI: 10.3389/fcvm.2023.1333277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Objective Cardiac surgery in Congenital Heart Disease-Heterotaxy (CHD-HTX) patients often leads to increased postoperative airway complications. Abnormal respiratory ciliary function, resembling primary ciliary dyskinesia, has been observed. We expanded the sample size by retrospectively reviewing Ciliary Dysfunction (CD) in CHD-HTX patients to verify the increased risk of post-surgical respiratory complications. Methods We conducted a retrospective review of 69 CHD-HTX patients undergoing cardiac surgery, assessing abnormal respiratory function using nasal nitric oxide (nNO) levels and nasal ciliary motion observed in video microscopy. Data collected included demographics, surgical details, postoperative complications, length of stay, ICU hours, salvage procedures, intubation duration, and mortality. Results The CD and no-CD cohorts exhibited notable similarities in risk adjustment in Congenital Heart Surgery-1 (RACHS-1) risk categories, age at the time of surgery, and the duration of follow-up evaluations. We observed a trend toward an increased length of post-operative stay in the CD group (15.0 vs. 14.0; P = 0.0017). CHD-HTX patients with CD showed significantly higher rates of respiratory complications (70% vs. 44.4%; P = 0.008). There were no notable variances observed in postoperative hospitalization duration, mechanical ventilation period, or surgical mortality. Conclusion Our findings suggest that CHD-HTX patients with CD may face an elevated risk of respiratory complications. These results offer guidance for perioperative management and serve as a reference for further pathological studies.
Collapse
Affiliation(s)
- Tingting Zhao
- Children's Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Xianghui Huang
- Fujian Provincial Key Laboratory of Neonatal Diseases, Xiamen Children's Hospital Affiliated to Children's Hospital of Fudan University, Shanghai, Xiamen, China
| | - Weicheng Chen
- Children's Hospital Affiliated to Fudan University, Shanghai, China
| | - Han Gao
- Children's Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Zhiyu Feng
- Children's Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Chaozhong Tan
- Children's Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Jingwei Sun
- Bengbu First People's Hospital Affiliated to Bengbu Medical University, Hefei, Anhui, China
| | - Xiaojing Ma
- Children's Hospital Affiliated to Fudan University, Shanghai, China
| | - Weili Yan
- Children's Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defects, Shanghai, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wei Sheng
- Children's Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defects, Shanghai, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Guoying Huang
- Children's Hospital Affiliated to Fudan University, Shanghai, China
- Shanghai Key Laboratory of Birth Defects, Shanghai, China
- Research Unit of Early Intervention of Genetically Related Childhood Cardiovascular Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
2
|
Paternò S, Pisani L, Zanconato S, Ferraro VA, Carraro S. Role of Nasal Nitric Oxide in Primary Ciliary Dyskinesia and Other Respiratory Conditions in Children. Int J Mol Sci 2023; 24:16159. [PMID: 38003348 PMCID: PMC10671569 DOI: 10.3390/ijms242216159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Nitric oxide (NO) is produced within the airways and released with exhalation. Nasal NO (nNO) can be measured in a non-invasive way, with different devices and techniques according to the age and cooperation of the patients. Here, we conducted a narrative review of the literature to examine the relationship between nNO and some respiratory diseases with a particular focus on primary ciliary dyskinesia (PCD). A total of 115 papers were assessed, and 50 were eventually included in the review. nNO in PCD is low (below 77 nL/min), and its measurement has a clear diagnostic value when evaluated in a clinically suggestive phenotype. Many studies have evaluated the role of NO as a molecular mediator as well as the association between nNO values and genotype or ciliary function. As far as other respiratory diseases are concerned, nNO is low in chronic rhinosinusitis and cystic fibrosis, while increased values have been found in allergic rhinitis. Nonetheless, the role in the diagnosis and prognosis of these conditions has not been fully clarified.
Collapse
Affiliation(s)
| | | | | | | | - Silvia Carraro
- Unit of Pediatric Allergy and Respiratory Medicine, Women’s and Children’s Health Department, University of Padova, 35128 Padova, Italy; (S.P.); (L.P.); (S.Z.); (V.A.F.)
| |
Collapse
|
3
|
Deniz E, Pasha M, Guerra ME, Viviano S, Ji W, Konstantino M, Jeffries L, Lakhani SA, Medne L, Skraban C, Krantz I, Khokha MK. CFAP45, a heterotaxy and congenital heart disease gene, affects cilia stability. Dev Biol 2023; 499:75-88. [PMID: 37172641 PMCID: PMC10373286 DOI: 10.1016/j.ydbio.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/07/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Congenital heart disease (CHD) is the most common and lethal birth defect, affecting 1.3 million individuals worldwide. During early embryogenesis, errors in Left-Right (LR) patterning called Heterotaxy (Htx) can lead to severe CHD. Many of the genetic underpinnings of Htx/CHD remain unknown. In analyzing a family with Htx/CHD using whole-exome sequencing, we identified a homozygous recessive missense mutation in CFAP45 in two affected siblings. CFAP45 belongs to the coiled-coil domain-containing protein family, and its role in development is emerging. When we depleted Cfap45 in frog embryos, we detected abnormalities in cardiac looping and global markers of LR patterning, recapitulating the patient's heterotaxy phenotype. In vertebrates, laterality is broken at the Left-Right Organizer (LRO) by motile monocilia that generate leftward fluid flow. When we analyzed the LRO in embryos depleted of Cfap45, we discovered "bulges" within the cilia of these monociliated cells. In addition, epidermal multiciliated cells lost cilia with Cfap45 depletion. Via live confocal imaging, we found that Cfap45 localizes in a punctate but static position within the ciliary axoneme, and depletion leads to loss of cilia stability and eventual detachment from the cell's apical surface. This work demonstrates that in Xenopus, Cfap45 is required to sustain cilia stability in multiciliated and monociliated cells, providing a plausible mechanism for its role in heterotaxy and congenital heart disease.
Collapse
Affiliation(s)
- E Deniz
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| | - M Pasha
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - M E Guerra
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - S Viviano
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - W Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - M Konstantino
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - L Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - S A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - L Medne
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, USA
| | - C Skraban
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, USA
| | - I Krantz
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, USA
| | - M K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA; Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
4
|
Saba TG, Geddes GC, Ware SM, Schidlow DN, Del Nido PJ, Rubalcava NS, Gadepalli SK, Stillwell T, Griffiths A, Bennett Murphy LM, Barber AT, Leigh MW, Sabin N, Shapiro AJ. A multi-disciplinary, comprehensive approach to management of children with heterotaxy. Orphanet J Rare Dis 2022; 17:351. [PMID: 36085154 PMCID: PMC9463860 DOI: 10.1186/s13023-022-02515-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/04/2022] [Indexed: 11/10/2022] Open
Abstract
Heterotaxy (HTX) is a rare condition of abnormal thoraco-abdominal organ arrangement across the left-right axis of the body. The pathogenesis of HTX includes a derangement of the complex signaling at the left-right organizer early in embryogenesis involving motile and non-motile cilia. It can be inherited as a single-gene disorder, a phenotypic feature of a known genetic syndrome or without any clear genetic etiology. Most patients with HTX have complex cardiovascular malformations requiring surgical intervention. Surgical risks are relatively high due to several serious comorbidities often seen in patients with HTX. Asplenia or functional hyposplenism significantly increase the risk for sepsis and therefore require antimicrobial prophylaxis and immediate medical attention with fever. Intestinal rotation abnormalities are common among patients with HTX, although volvulus is rare and surgical correction carries substantial risk. While routine screening for intestinal malrotation is not recommended, providers and families should promptly address symptoms concerning for volvulus and biliary atresia, another serious morbidity more common among patients with HTX. Many patients with HTX have chronic lung disease and should be screened for primary ciliary dyskinesia, a condition of respiratory cilia impairment leading to bronchiectasis. Mental health and neurodevelopmental conditions need to be carefully considered among this population of patients living with a substantial medical burden. Optimal care of children with HTX requires a cohesive team of primary care providers and experienced subspecialists collaborating to provide compassionate, standardized and evidence-based care. In this statement, subspecialty experts experienced in HTX care and research collaborated to provide expert- and evidence-based suggestions addressing the numerous medical issues affecting children living with HTX.
Collapse
Affiliation(s)
- Thomas G Saba
- Department of Pediatrics, Pulmonary Division, University of Michigan Medical School, 1500 E. Medical Center Drive, Ann Arbor, MI, USA.
| | - Gabrielle C Geddes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie M Ware
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David N Schidlow
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nathan S Rubalcava
- Department of Surgery, Section of Pediatric Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Samir K Gadepalli
- Department of Surgery, Section of Pediatric Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Terri Stillwell
- Department of Pediatrics, Infectious Disease Division, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anne Griffiths
- Department of Pediatrics, Pulmonary/Critical Care Division, Children's Minnesota and Children's Respiratory and Critical Care Specialists, Minneapolis, MN, USA
| | - Laura M Bennett Murphy
- Department of Pediatrics, Division of Pediatric Psychiatry and Behavioral Health, University of Utah, Primary Children's Hospital, Salt Lake City, UT, USA
| | - Andrew T Barber
- Department of Pediatrics, Division of Pulmonology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Margaret W Leigh
- Department of Pediatrics, Division of Pulmonology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Necia Sabin
- Heterotaxy Connection, Eagle Mountain, UT, USA
| | - Adam J Shapiro
- Department of Pediatrics, McGill University Health Centre Research Institute, Montreal, QC, Canada
| |
Collapse
|
5
|
Adams PS, Corcoran TE, Lin JH, Weiner DJ, Sanchez-de-Toledo J, Lo CW. Mucociliary Clearance Scans Show Infants Undergoing Congenital Cardiac Surgery Have Poor Airway Clearance Function. Front Cardiovasc Med 2021; 8:652158. [PMID: 33969015 PMCID: PMC8102682 DOI: 10.3389/fcvm.2021.652158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Infants undergoing congenital cardiac surgery with cardiopulmonary bypass are at high risk for respiratory complications. As impaired airway mucociliary clearance (MCC) can potentially contribute to pulmonary morbidity, our study objective was to measure airway clearance in infants undergoing congenital cardiac surgery and examine correlation with clinical covariables that may impair airway clearance function. Materials and Methods: Airway clearance in infants was measured over 30 min using inhaled nebulized Technetium 99m sulfur colloid administered either via a nasal cannula or the endotracheal tube in intubated infants. This was conducted bedside with a portable gamma camera. No difficulty was encountered in positioning the gamma camera over the patient, and neither the camera nor the MCC scan interfered with routine medical care or caused any adverse events. Patient and perioperative variables were examined relative to the MCC measurements. Results: We prospectively enrolled 57 infants undergoing congenital cardiac surgery and conducted a single MCC scan per patient. MCC data from 42 patients were analyzable, including five pre-operative, 15 (40.5%) in the immediate post-operative period (days 1-2), and 22 (59.5%) were later post-operative (≥3 days). Pre-operative MCC was inversely proportional to days requiring post-operative mechanical ventilation (p = 0.006) and non-invasive positive pressure ventilation (p = 0.017). MCC was higher at later post-operative days (p = 0.002) with immediate post-operative MCC being lower (3%; 0-13%) than either pre-operative (21%; 4-25%) (p = 0.091) or later post-operative MCC (18%; 0-29%) (p = 0.054). Among the infants with low post-operative MCC, significantly more were pre-mature [5/19 (26%) vs. 0/18 (0%); p = 0.046], were intubated [14/19 (75%) vs. only 7/18 (39%); p = 0.033] and were receiving higher FiO2 (40%, 27-47% vs. 26%, 21-37%; p = 0.015). Conclusions: This is the first study to show that infants undergoing congenital cardiac surgery have impaired MCC. MCC appeared lowest in the immediate post-operative period. Worse MCC was associated with pre-maturity, mechanical ventilation, or receiving higher FiO2. These findings suggest MCC scans should be further explored for informing clinical decision making to improve post-surgical respiratory outcomes. The possible therapeutic benefit of airway clearance maneuvers for infants with poor MCC function should also be investigated.
Collapse
Affiliation(s)
- Phillip S Adams
- Division of Pediatric Anesthesiology, Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Timothy E Corcoran
- Division of Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Jiuann-Huey Lin
- Division of Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Daniel J Weiner
- Division of Pulmonary Medicine, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Joan Sanchez-de-Toledo
- Division of Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Feldman KS, Kim E, Czachowski MJ, Wu Y, Lo CW, Zahid M. Differential effect of anesthetics on mucociliary clearance in vivo in mice. Sci Rep 2021; 11:4896. [PMID: 33649513 PMCID: PMC7921682 DOI: 10.1038/s41598-021-84605-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/18/2021] [Indexed: 11/09/2022] Open
Abstract
Respiratory mucociliary clearance (MCC) is a key defense mechanism that functions to entrap and transport inhaled pollutants, particulates, and pathogens away from the lungs. Previous work has identified a number of anesthetics to have cilia depressive effects in vitro. Wild-type C57BL/6 J mice received intra-tracheal installation of 99mTc-Sulfur colloid, and were imaged using a dual-modality SPECT/CT system at 0 and 6 h to measure baseline MCC (n = 8). Mice were challenged for one hour with inhalational 1.5% isoflurane, or intraperitoneal ketamine (100 mg/kg)/xylazine (20 mg/kg), ketamine (0.5 mg/kg)/dexmedetomidine (50 mg/kg), fentanyl (0.2 mg/kg)/1.5% isoflurane, propofol (120 mg/Kg), or fentanyl/midazolam/dexmedetomidine (0.025 mg/kg/2.5 mg/kg/0.25 mg/kg) prior to MCC assessment. The baseline MCC was 6.4%, and was significantly reduced to 3.7% (p = 0.04) and 3.0% (p = 0.01) by ketamine/xylazine and ketamine/dexmedetomidine challenge respectively. Importantly, combinations of drugs containing fentanyl, and propofol in isolation did not significantly depress MCC. Although no change in cilia length or percent ciliation was expected, we tried to correlate ex-vivo tracheal cilia ciliary beat frequency and cilia-generated flow velocities with MCC and found no correlation. Our results indicate that anesthetics containing ketamine (ketamine/xylazine and ketamine/dexmedetomidine) significantly depress MCC, while combinations containing fentanyl (fentanyl/isoflurane, fentanyl/midazolam/dexmedetomidine) and propofol do not. Our method for assessing MCC is reproducible and has utility for studying the effects of other drug combinations.
Collapse
Affiliation(s)
- Kyle S Feldman
- Department of Developmental Biology, Rangos Research Center, University of Pittsburgh School of Medicine, 530 45th St., Pittsburgh, PA, 15201, USA
| | - Eunwon Kim
- Department of Developmental Biology, Rangos Research Center, University of Pittsburgh School of Medicine, 530 45th St., Pittsburgh, PA, 15201, USA
| | | | - Yijen Wu
- Department of Developmental Biology, Rangos Research Center, University of Pittsburgh School of Medicine, 530 45th St., Pittsburgh, PA, 15201, USA
| | - Cecilia W Lo
- Department of Developmental Biology, Rangos Research Center, University of Pittsburgh School of Medicine, 530 45th St., Pittsburgh, PA, 15201, USA
| | - Maliha Zahid
- Department of Developmental Biology, Rangos Research Center, University of Pittsburgh School of Medicine, 530 45th St., Pittsburgh, PA, 15201, USA.
| |
Collapse
|
7
|
Abstract
Respiratory motile cilia, specialized organelles of the cell, line the apical surface of epithelial cells lining the respiratory tract. By beating in a metachronal, synchronal fashion, these multiple, motile, actin-based organelles generate a cephalad fluid flow clearing the respiratory tract of inhaled pollutants and pathogens. With increasing environmental pollution, novel viral pathogens and emerging multi-drug resistant bacteria, cilia generated mucociliary clearance (MCC) is essential for maintaining lung health. MCC is also depressed in multiple congenital disorders like primary ciliary dyskinesia, cystic fibrosis as well as acquired disorders like chronic obstructive pulmonary disease. All these disorders have established, in some case multiple, mouse models. In this publication, we detail a method using a small amount of radioactivity and dual-modality SPECT/CT imaging to accurately and reproducibly measure MCC in mice in vivo. The method allows for recovery of mice after imaging, making serial measurements possible, and testing potential therapeutics longitudinally over time. The data in wild-type mice demonstrates the reproducibility of the MCC measurement as long as adequate attention to detail is paid, and the protocol strictly adhered to.
Collapse
Affiliation(s)
- Kyle S Feldman
- Department of Developmental Biology, University of Pittsburgh School of Medicine
| | - Maliha Zahid
- Department of Developmental Biology, University of Pittsburgh School of Medicine;
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW This article reviews the current understanding and limitations in knowledge of the effect genetics and genetic diagnoses have on perioperative and postoperative surgical outcomes in patients with congenital heart disease (CHD). RECENT FINDINGS Presence of a known genetic diagnosis seems to effect multiple significant outcome metrics in CHD surgery including length of stay, need for extracorporeal membrane oxygenation, mortality, bleeding, and heart failure. Data regarding the effects of genetics in CHD is complicated by lack of standard genetic assessment resulting in inaccurate risk stratification of patients when analyzing data. Only 30% of variation in CHD surgical outcomes are explained by currently measured variables, with 2.5% being attributed to diagnosed genetic disorders, it is thought a significant amount of the remaining outcome variation is because of unmeasured genetic factors. SUMMARY Genetic diagnoses clearly have a significant effect on surgical outcomes in patients with CHD. Our current understanding is limited by lack of consistent genetic evaluation and assessment as well as evolving knowledge and discovery regarding the genetics of CHD. Standardizing genetic assessment of patients with CHD will allow for the best risk stratification and ultimate understanding of these effects.
Collapse
|
9
|
Sherman F, Wodrich M, Zampi JD, Lee J, McCaffery H, Saba TG. Phenotypic features of ciliary dyskinesia among patients with congenital cardiovascular malformations. Pediatr Pulmonol 2020; 55:2674-2682. [PMID: 32662935 DOI: 10.1002/ppul.24959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/11/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cilia are cell membrane-bound organelles responsible for airway mucus clearance, establishment of left-right organ asymmetry, cardiogenesis, and many other functions in utero. Phenotypic features suggestive of respiratory ciliary dyskinesia among patients with heterotaxy syndrome, defined as complex cardiovascular malformations (CVM) and situs ambiguus (SA), has not been adequately explored. OBJECTIVES We hypothesized that there is a greater incidence of phenotypic features consistent with ciliary dyskinesia among patients with heterotaxy syndrome compared to patients with other CVM and laterality defects without heterotaxy syndrome. METHODS Thirty six subjects were identified by medical record search and divided into four groups based on situs status and type of CVM as follows: SA and complex CVM (group 1); SA and simple CVM (group 2); situs solitus and complex CVM (group 3); and situs solitus and simple CVM (group 4). Phenotype was assessed with a clinical questionnaire, nasal nitric oxide (NO) level, and pulmonary function testing. Those with complex CVM underwent additional testing for variants in genes involved in ciliary structure and function. RESULTS The mean nasal NO level was significantly lower among all subjects with complex CVM regardless of situs anomalies (groups 1 and 3). There was no significant difference in respiratory symptoms or lung function among the four groups. No bi-allelic genetic mutations were detected among patients with complex CVM. CONCLUSIONS This study identified a relatively lower mean nasal NO level, suggestive of relative ciliary dyskinesia, among subjects with complex CVM. Pulmonary function and clinical symptoms did not reflect significant pulmonary disease among those with complex CVM.
Collapse
Affiliation(s)
- Forrest Sherman
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Mitchel Wodrich
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey D Zampi
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Julie Lee
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Harlan McCaffery
- Center for Human Growth and Development, University of Michigan, Ann Arbor, Michigan
| | - Thomas G Saba
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
10
|
Zahid M, Feinstein TN, Oro A, Schwartz M, Lee AD, Lo CW. Rapid Ex-Vivo Ciliogenesis and Dose-Dependent Effect of Notch Inhibition on Ciliogenesis of Respiratory Epithelia. Biomolecules 2020; 10:E1182. [PMID: 32823934 PMCID: PMC7464104 DOI: 10.3390/biom10081182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Cilia are actin based cellular protrusions conserved from algae to complex multicellular organisms like Homo sapiens. Respiratory motile cilia line epithelial cells of the tracheobronchial tree, beat in a synchronous, metachronal wave, moving inhaled pollutants and pathogens cephalad. Their role in both congenital disorders like primary ciliary dyskinesia (PCD) to acquired disorders like chronic obstructive pulmonary disease (COPD) continues to evolve. In this current body of work we outline a protocol optimized to reciliate human nasal epithelial cells and mouse tracheal cells in vitro. Using this protocol, we knocked down known cilia genes, as well as use a small molecule inhibitor of Notch, N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl Ester (DAPT), to assess the effect of these on ciliogenesis in order to show the validity of our protocol. Methods: Tracheas were harvested from wild-type, adult C57B6 mice, pronase digested and sloughed off epithelial cells grown to confluence in stationary culture on rat-tail collagen coated wells. Upon reaching confluence, collagen was digested and cells placed suspension culture protocol to reciliate the cells. Using this suspension culture protocol, we employed siRNA gene knockdown to assay gene functions required for airway ciliogenesis. Knock down of Dynein axonemal heavy chain 5 (Dnah5), a ciliary structural protein, was confirmed using immunostaining. Mouse tracheal cells were treated in suspension with varying doses of DAPT, an inhibitor of Notch, with the purpose of evaluating its effect and dose response on ciliogenesis. The optimum dose was then used on reciliating human nasal epithelial cells. Results: siRNA knockdown of Foxj1 prevented ciliation, consistent with its role as a master regulator of motile cilia. Knockdown of Dnai1 and Dnah5 resulted in immotile cilia, and Cand1 knockdown, a centrosome protein known to regulate centrosome amplification, inhibited airway ciliogenesis. Dnah5 knockdown was confirmed with significantly decreased immunostaining of cilia for this protein. Inhibiting Notch signaling by inhibiting gamma secretase with DAPT enhanced the percentage of ciliation, and resulted in longer cilia that beat with higher frequency in both mouse and human airway epithelia. Conclusions: Modifying existing reciliation protocols to suit both human nasal epithelial and mouse tracheal tissue, we have shown that knockdown of known cilia-related genes have the expected effects. Additionally, we have demonstrated the optimal dosage for significantly improving reciliation of airway epithelia using DAPT. Given that cilia length and function are significantly compromised in COPD, these findings open up interesting avenues for further exploration.
Collapse
Affiliation(s)
| | | | | | | | | | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, 530 45th St, Pittsburgh, PA 15201, USA; (M.Z.); (T.N.F.); (A.O.); (M.S.); (A.D.L.)
| |
Collapse
|
11
|
Gabriel GC, Lo CW. Left-right patterning in congenital heart disease beyond heterotaxy. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:90-96. [PMID: 31999049 DOI: 10.1002/ajmg.c.31768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Congenital heart defect is one of the most common structural birth defects in the human population. It is highly associated with heterotaxy, a birth defect involving randomized left-right patterning of visceral organ situs. Large scale mouse forward genetics have led to the finding of a central role for cilia in CHD pathogenesis, with some cilia and non-cilia mutations causing CHD with heterotaxy. Interestingly, many of the mutations causing CHD with heterotaxy can give rise to three laterality outcomes comprising normal situs solitus, mirror symmetric situs inversus totalis, or randomized situs with heterotaxy. Given CHD is largely observed only with heterotaxy, this suggests a new paradigm is needed for investigating the genetics of CHD associated with heterotaxy. Furthermore, analysis of data from multiple large birth cohorts have independently confirmed a broader involvement of laterality disturbance in CHD. This was demonstrated by the common cooccurrence of rare laterality defects with CHD lesions of a wide spectrum. These findings suggest left-right patterning is tightly intertwined with the developmental processes that regulate cardiac morphogenesis and its disturbance may contribute to all types of CHD even in the absence of laterality defects.
Collapse
Affiliation(s)
- George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
12
|
Gabriel GC, Lo CW. Novel insights into the genetic landscape of congenital heart disease with systems genetics. PROGRESS IN PEDIATRIC CARDIOLOGY 2019; 54. [PMID: 34404969 DOI: 10.1016/j.ppedcard.2019.101128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We recently conducted a large-scale mouse mutagenesis screen and uncovered a central role for cilia in the pathogenesis of congenital heart disease (CHD). Though our screen was phenotype based, most of the genes recovered were cilia-related, including genes encoding proteins important for ciliogenesis, cilia-transduced cell signaling, and vesicular trafficking. Also unexpected, many of the cilia related genes recovered are known direct protein-protein interactors, even though each gene was recovered independently in unrelated mouse lines. These findings suggest a cilia-based protein-protein interactome network may provide the context for congenital heart disease pathogenesis. This could explain the incomplete penetrance and variable expressivity of human CHD, and account for its complex non-Mendelian etiology. Supporting these findings in mice, a preponderance of cilia and cilia related cell signaling genes were observed among de novo pathogenic variants identified in a CHD patient cohort. Further clinical relevance unfolded with the observation of a high prevalence of respiratory cilia dysfunction in CHD patients. This was associated with increased postsurgical respiratory complications. Together these findings highlight the importance of cilia in CHD pathogenesis and suggest possible clinical translation with instituting pulmonary therapy to improve outcome for CHD patients undergoing congenital cardiac surgeries.
Collapse
Affiliation(s)
- George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States of America
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, United States of America
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The aim of this study is to review genetics of congenital heart disease (CHD) with a focus on clinical applications, genetic testing and clinical challenges. RECENT FINDINGS With improved clinical care, there is a rapidly expanding population of adults, especially women, with CHD who have not undergone contemporary genetic assessment and do not understand their risk for having a child with CHD. Many patients have never undergone assessment or had genetic testing. A major barrier is medical geneticist availability, resulting in this burden of care shifting to providers outside of genetics. Even with current understanding, the cause for the majority of cases of CHD is still not known. There are significant gaps in knowledge in the realms of more complex causes such as noncoding variants, multigenic contribution and small structural chromosomal anomalies. SUMMARY Standard assessment of patients with CHD, including adult survivors, is indicated. The best first-line genetic assessment for most patients with CHD is a chromosomal microarray, and this will soon evolve to be genomic sequencing with copy number variant analysis. Due to lack of medical geneticists, creative solutions to maximize the number of patients with CHD who undergo assessment with standard protocols and plans for support with result interpretation need to be explored.
Collapse
|
14
|
Bush A, Hogg C. The answer is cilia, whatever the question may be! ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:S32. [PMID: 30613607 DOI: 10.21037/atm.2018.09.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Andrew Bush
- Head of Section (Paediatrics), Imperial College, London, UK.,National Heart and Lung Institute, London, UK.,Departments of Paediatrics and Paediatric Respiratory Medicine, NHLI at Imperial College, London, UK
| | - Claire Hogg
- Departments of Paediatrics and Paediatric Respiratory Medicine, NHLI at Imperial College, London, UK.,National PCD Diagnostic Service, Royal Brompton Hospital, London, UK
| |
Collapse
|
15
|
Zahid M, Bais A, Tian X, Devine W, Lee DM, Yau C, Sonnenberg D, Beerman L, Khalifa O, Lo CW. Airway ciliary dysfunction and respiratory symptoms in patients with transposition of the great arteries. PLoS One 2018; 13:e0191605. [PMID: 29444099 PMCID: PMC5812576 DOI: 10.1371/journal.pone.0191605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/08/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Our prior work on congenital heart disease (CHD) with heterotaxy, a birth defect involving randomized left-right patterning, has shown an association of a high prevalence of airway ciliary dysfunction (CD; 18/43 or 42%) with increased respiratory symptoms. Furthermore, heterotaxy patients with ciliary dysfunction were shown to have more postsurgical pulmonary morbidities. These findings are likely a reflection of the common role of motile cilia in both airway clearance and left-right patterning. As CHD comprising transposition of the great arteries (TGA) is commonly thought to involve disturbance of left-right patterning, especially L-TGA with left-right ventricular inversion, we hypothesize CHD patients with transposition of great arteries (TGA) may have high prevalence of airway CD with increased respiratory symptoms. METHODS AND RESULTS We recruited 75 CHD patients with isolated TGA, 28% L and 72% D-TGA. Patients were assessed using two tests typically used for evaluating airway ciliary dysfunction in patients with primary ciliary dyskinesia (PCD), a recessive sinopulmonary disease caused by respiratory ciliary dysfunction. This entailed the measurement of nasal nitric oxide (nNO), which is typically low with PCD. We also obtained nasal scrapes and conducted videomicroscopy to assess respiratory ciliary motion (CM). We observed low nNO in 29% of the patients, and abnormal CM in 57%, with 22% showing both low nNO and abnormal CM. No difference was observed for the prevalence of either low nNO or abnormal ciliary motion between patients with D vs. L-TGA. Respiratory symptoms were increased with abnormal CM, but not low nNO. Sequencing analysis showed no compound heterozygous or homozygous mutations in 39 genes known to cause PCD, nor in CFTR, gene causing cystic fibrosis. As both are recessive disorders, these results indicate TGA patients with ciliary dysfunction do not have PCD or cystic fibrosis (which can cause low nNO or abnormal ciliary motion). CONCLUSIONS TGA patients have high prevalence of abnormal CM and low nNO, but ciliary dysfunction was not correlated with TGA type. Differing from PCD, respiratory symptoms were increased with abnormal CM, but not low nNO. Together with the negative findings from exome sequencing analysis, this would suggest TGA patients with ciliary dysfunction do not have PCD but nevertheless may suffer from milder airway clearance deficiency. Further studies are needed to investigate whether such ciliary dysfunction is associated with increased postsurgical complications as previously observed in CHD patients with heterotaxy.
Collapse
Affiliation(s)
- Maliha Zahid
- Dept. of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Abha Bais
- Dept. of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Xin Tian
- Office of Biostatistics Research, National Heart Lung Blood Institute, Bethesda, Maryland, United States of America
| | - William Devine
- Dept. of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Dong Ming Lee
- Dept. of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Cyrus Yau
- Division of Pediatric Cardiology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Daniel Sonnenberg
- Dept. of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Lee Beerman
- Division of Pediatric Cardiology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Omar Khalifa
- Dept. of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Cecilia W. Lo
- Dept. of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
16
|
Riggs KW, Morales DLS. Predicting postoperative pulmonary complications: The answer may be right in front of our noses! J Thorac Cardiovasc Surg 2017; 155:764. [PMID: 29233597 DOI: 10.1016/j.jtcvs.2017.10.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 10/27/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Kyle W Riggs
- Department of Cardiothoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| | - David L S Morales
- Department of Cardiothoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|