1
|
Banerjee D, Sabe SA, Sodha NR, Ehsan A, Cioffi WG, Miner TJ, Li J, Abid MR, Feng J, Sellke FW. Female patients exhibit altered vasopressin-induced coronary microvascular contractile response and molecular signaling following cardiac surgery. Am J Surg 2025; 239:116052. [PMID: 39509937 DOI: 10.1016/j.amjsurg.2024.116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/06/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Emerging data suggest women have worse outcomes than men following cardioplegia and cardiopulmonary bypass (CP/CPB). Altered coronary microvascular function affecting myocardial perfusion may contribute, but human translational studies are lacking. METHODS Viable coronary microvessels (<200 μ m) were dissected from human atrial samples collected before and after CP/CPB from a subset of 108 patients enrolled. Ex vivo contractile responses to vasopressin were assessed using video microscopy. RNA deep-sequencing and immunoblotting were used to quantify gene and protein expression, respectively. RESULTS Coronary microvessels exhibited increased vasopressin-induced contractile responses post-CP/CPB in males and females (p < 0.0001). Females exhibited a decrease in microvascular contractile response versus males pre- (p = 0.1) and post-CP/CPB (p = 0.09) which approached significance. Myocardial vasopressin 1a receptor levels were increased in females versus males (p = 0.001). Vasopressin-induced vasoconstriction predicted postoperative cardiac index. CONCLUSIONS Impaired coronary microvascular contractile responses in females jeopardizing myocardial perfusion may underlie worse outcomes following cardiac surgery.
Collapse
Affiliation(s)
- Debolina Banerjee
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Brown University/Rhode Island Hospital, USA
| | - Sharif A Sabe
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Brown University/Rhode Island Hospital, USA
| | - Neel R Sodha
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Brown University/Rhode Island Hospital, USA
| | - Afshin Ehsan
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Brown University/Rhode Island Hospital, USA
| | - William G Cioffi
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Brown University/Rhode Island Hospital, USA
| | - Thomas J Miner
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Brown University/Rhode Island Hospital, USA
| | - Janelle Li
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Brown University/Rhode Island Hospital, USA
| | - M Ruhul Abid
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Brown University/Rhode Island Hospital, USA
| | - Jun Feng
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Brown University/Rhode Island Hospital, USA
| | - Frank W Sellke
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Brown University/Rhode Island Hospital, USA.
| |
Collapse
|
2
|
Smati H, Sellke FW, Bourque JM, Qadeer YK, Niccoli G, Montone RA, Krittanawong C. Coronary Microvascular Dysfunction: A Guide for Clinicians. Am J Med 2024; 137:810-817. [PMID: 38723930 DOI: 10.1016/j.amjmed.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 09/01/2024]
Abstract
Dysfunction of the coronary microvasculature has become increasingly recognized as an important mechanism of myocardial ischemia in patients without obstructive coronary artery disease. The causes and management of coronary microvascular dysfunction remain poorly understood and are still largely based on extrapolation of epicardial coronary artery disease data. Quantification of myocardial blood flow and flow reserve have improved diagnosis, though important questions remain. In this review, we explain current understanding of the spectrum of pathophysiology of coronary microvascular dysfunction, summarize current diagnostic techniques to assess for coronary microvascular dysfunction, and appraise the limited data on management options specifically for patients with coronary microvascular dysfunction.
Collapse
Affiliation(s)
- Hannah Smati
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Cardiovascular Research Center, Brown University Warren Alpert School of Medicine, Providence, RI
| | - Jamieson M Bourque
- Division of Cardiovascular Medicine and Radiology, University of Virginia Health System, Charlottesville
| | - Yusuf Kamran Qadeer
- Division of Cardiology, Department of Medicine, Henry Ford Hospital, Detroit, Mich
| | - Giampaolo Niccoli
- Department of Medicine and Surgery, University of Parma, Italy; Division of Cardiology, Parma University Hospital, Italy
| | - Rocco A Montone
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | |
Collapse
|
3
|
Harris DD, Li J, Sabe SA, Banerjee D, Pearson E, Nho JW, Ehsan A, Sodha N, Feng J, Sellke FW. Patients with uncontrolled hypertension subjected to cardiopulmonary bypass have altered coronary vasomotor responses to serotonin. Surgery 2024; 176:274-281. [PMID: 38755032 PMCID: PMC11246798 DOI: 10.1016/j.surg.2024.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND We previously found that cardioplegic arrest and cardiopulmonary bypass are associated with altered coronary arteriolar response to serotonin in patients undergoing cardiac surgery. In this study, we investigated the effects of hypertension on coronary microvascular vasomotor tone in response to serotonin and alterations in serotonin receptor protein expression in the setting of cardioplegic arrest and cardiopulmonary bypass. METHODS Coronary arterioles were dissected from harvested pre- and post-cardioplegic arrest and cardiopulmonary bypass right atrial tissue samples of patients undergoing cardiac surgery with normotension, well-controlled hypertension, and uncontrolled hypertension. Vasomotor tone was assessed by video-myography, and protein expression was measured with immunoblotting. RESULTS Pre-cardioplegic arrest and cardiopulmonary bypass, serotonin induced moderate relaxation responses of coronary arterioles in normotension and well-controlled hypertension patients, whereas serotonin caused moderate contractile responses in uncontrolled hypertension patients. Post-cardioplegic arrest and cardiopulmonary bypass, serotonin caused contractile responses of coronary arterioles in all 3 groups. The post-cardioplegic arrest and cardiopulmonary bypass contractile response to serotonin was significantly higher in the uncontrolled hypertension group compared with the normotension or well-controlled hypertension groups (P < .05). Pre-cardioplegic arrest and cardiopulmonary bypass, expression of the serotonin 1A receptor was significantly lower in the uncontrolled hypertension group compared with the well-controlled hypertension and normotension groups (P = .01 and P < .001). Serotonin 1B receptor expression was higher in the uncontrolled hypertension group compared with the normotension or well-controlled hypertension groups post-cardioplegic arrest and cardiopulmonary bypass (P = .03 and P = .046). CONCLUSION Uncontrolled hypertension is associated with an increased coronary contractile response of coronary microvessels to serotonin and altered serotonin receptor protein expression after cardioplegic arrest and cardiopulmonary bypass. These findings may contribute to a worse postoperative coronary spasm and worsened recovery of coronary perfusion in patients with uncontrolled hypertension after cardioplegic arrest and cardiopulmonary bypass and cardiac surgery.
Collapse
Affiliation(s)
- Dwight D Harris
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Janelle Li
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Sharif A Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Debolina Banerjee
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Elena Pearson
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Ju-Woo Nho
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Afshin Ehsan
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Neel Sodha
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Jun Feng
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI.
| |
Collapse
|
4
|
Sabe SA, Zhao A, Kononov MA, Sabra M, Li J, Ehsan A, Feng J, Sellke FW. Increased Coronary Contraction to Thromboxane A2 in Cardiac Surgery Patients With Poorly Controlled Hypertension. J Surg Res 2024; 294:249-256. [PMID: 37925953 PMCID: PMC10842473 DOI: 10.1016/j.jss.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/14/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
INTRODUCTION Cardioplegia and cardiopulmonary bypass (CP/CPB) alters coronary arteriolar response to thromboxane A2 (TXA2) in patients undergoing cardiac surgery. Comorbidities, including hypertension (HTN), can further alter coronary vasomotor tone. This study investigates the effects of HTN on coronary arteriolar response to TXA2 pre and post-CP/CPB and cardiac surgery. MATERIALS AND METHODS Coronary arterioles pre and post-CP/CPB were dissected from atrial tissue samples in patients with no HTN (NH, n = 9), well-controlled HTN (WC, n = 12), or uncontrolled HTN (UC, n = 12). In-vitro coronary microvascular reactivity was examined in the presence of TXA2 analog U46619 (10-9-10-4M). Protein expression of TXA2 receptor in the harvested right atrial tissue samples were measured by immunoblotting. RESULTS TXA2 analog U46619 induced dose-dependent contractile responses of coronary arterioles in all groups. Pre-CPB contractile responses to U46619 were significantly increased in microvessels in the UC group compared to the NH group (P < 0.05). The pre-CP/CPB contractile responses of coronary arterioles were significantly diminished post-CP/CPB among the three groups (P < 0.05), but there remained an increased contractile response in the microvessels of the UC group compared to the WC and NH groups (P < 0.05). There were no significant differences in U46619-induced vasomotor tone between patients in the NH and WC groups (P > 0.05). There were no differences in expression of TXA2R among groups. CONCLUSIONS Poorly controlled HTN is associated with increased contractile response of coronary arterioles to TXA2. This alteration may contribute to worsened recovery of coronary microvascular function in patients with poorly controlled HTN after CP/CPB and cardiac surgery.
Collapse
Affiliation(s)
- Sharif A Sabe
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Amy Zhao
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Martin A Kononov
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Mohamed Sabra
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Janelle Li
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Afshin Ehsan
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Jun Feng
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island.
| |
Collapse
|
5
|
Heusch G, Andreadou I, Bell R, Bertero E, Botker HE, Davidson SM, Downey J, Eaton P, Ferdinandy P, Gersh BJ, Giacca M, Hausenloy DJ, Ibanez B, Krieg T, Maack C, Schulz R, Sellke F, Shah AM, Thiele H, Yellon DM, Di Lisa F. Health position paper and redox perspectives on reactive oxygen species as signals and targets of cardioprotection. Redox Biol 2023; 67:102894. [PMID: 37839355 PMCID: PMC10590874 DOI: 10.1016/j.redox.2023.102894] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
The present review summarizes the beneficial and detrimental roles of reactive oxygen species in myocardial ischemia/reperfusion injury and cardioprotection. In the first part, the continued need for cardioprotection beyond that by rapid reperfusion of acute myocardial infarction is emphasized. Then, pathomechanisms of myocardial ischemia/reperfusion to the myocardium and the coronary circulation and the different modes of cell death in myocardial infarction are characterized. Different mechanical and pharmacological interventions to protect the ischemic/reperfused myocardium in elective percutaneous coronary interventions and coronary artery bypass grafting, in acute myocardial infarction and in cardiotoxicity from cancer therapy are detailed. The second part keeps the focus on ROS providing a comprehensive overview of molecular and cellular mechanisms involved in ischemia/reperfusion injury. Starting from mitochondria as the main sources and targets of ROS in ischemic/reperfused myocardium, a complex network of cellular and extracellular processes is discussed, including relationships with Ca2+ homeostasis, thiol group redox balance, hydrogen sulfide modulation, cross-talk with NAPDH oxidases, exosomes, cytokines and growth factors. While mechanistic insights are needed to improve our current therapeutic approaches, advancements in knowledge of ROS-mediated processes indicate that detrimental facets of oxidative stress are opposed by ROS requirement for physiological and protective reactions. This inevitable contrast is likely to underlie unsuccessful clinical trials and limits the development of novel cardioprotective interventions simply based upon ROS removal.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Robert Bell
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Edoardo Bertero
- Chair of Cardiovascular Disease, Department of Internal Medicine and Specialties, University of Genova, Genova, Italy
| | - Hans-Erik Botker
- Department of Cardiology, Institute for Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - James Downey
- Department of Physiology, University of South Alabama, Mobile, AL, USA
| | - Philip Eaton
- William Harvey Research Institute, Queen Mary University of London, Heart Centre, Charterhouse Square, London, United Kingdom
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Bernard J Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College, London, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, National Heart Research Institute Singapore, National Heart Centre, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, and CIBERCV, Madrid, Spain
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Clinic Würzburg, Würzburg, Germany
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig -Universität, Giessen, Germany
| | - Frank Sellke
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Ajay M Shah
- King's College London British Heart Foundation Centre of Excellence, London, United Kingdom
| | - Holger Thiele
- Heart Center Leipzig at University of Leipzig and Leipzig Heart Science, Leipzig, Germany
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - Fabio Di Lisa
- Dipartimento di Scienze Biomediche, Università degli studi di Padova, Padova, Italy.
| |
Collapse
|
6
|
Kant S, Xing H, Liu Y, Harrington EO, Sellke FW, Feng J. Acute protein kinase C beta inhibition preserves coronary endothelial function after cardioplegic hypoxia/reoxygenation. JTCVS OPEN 2023; 15:242-251. [PMID: 37808045 PMCID: PMC10556935 DOI: 10.1016/j.xjon.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 10/10/2023]
Abstract
Objective Protein kinase C (PKC) influences myocardial contractility and susceptibility to long-term cardiac dysfunction after ischemia-reperfusion injury. In diabetes, PKC inhibition has a protective effect in terms of microvascular dysfunction. SK-channel dysfunction also influences endothelial dysfunction in cardioplegic hypoxia-reoxygenation (CP-H/R). Here, we examine whether acute inhibition of PKC beta protects against CP-H/R-induced coronary endothelial and SK channel dysfunction. Methods Isolated mouse coronary arterioles, half pretreated with selective PKC inhibitor ruboxistaurin (RBX), were subjected to hyperkalemic, cardioplegic hypoxia (1 hour), and reoxygenation (1 hour) with Krebs buffer. Sham control vessels were continuously perfused with oxygenated Krebs buffer without CP-H/R. After 1 hour of reoxygenation, responses to the endothelium-dependent vasodilator adenosine-diphosphate (ADP) and the SK-channel activator NS309 were examined. Endothelial SK-specific potassium currents from mouse heart endothelial cells were examined using whole-cell path clamp configurations in response to NS309 and SK channel blockers apamin and TRAM34. Results CP-H/R significantly decreased coronary relaxation responses to ADP (P = .006) and NS309 (P = .0001) compared with the sham control group. Treatment with selective PKC beta inhibitor RBX significantly increased recovery of coronary relaxation responses to ADP (P = .031) and NS309 (P = .004) after CP-H/R. Treatment with RBX significantly increased NS309-mediated potassium currents following CP-H/R (P = .0415). Apamin and TRAM34 sensitive currents were significantly greater in CP-H/R + RBX versus CP-H/R mouse heart endothelial cells (P = .0027). Conclusions Acute inhibition of PKC beta significantly protected mouse coronary endothelial function after CP-H/R injury. This suggests that acute PKC beta inhibition may be a novel approach for preventing microvascular dysfunction during CP-H/R.
Collapse
Affiliation(s)
- Shawn Kant
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Hang Xing
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Yuhong Liu
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Elizabeth O. Harrington
- Vascular Research Laboratory, Department of Medicine, Providence VA Medical Center, Alpert Medical School of Brown University, Providence, RI
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| | - Jun Feng
- Division of Cardiothoracic Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
7
|
Sotolongo A, Geirsson A. Commentary: Dysregulated Coronary Tone in Uncontrolled Hypertension; Why it Matters for the Cardiac Surgeon. J Thorac Cardiovasc Surg 2022; 165:e268. [PMID: 36038383 DOI: 10.1016/j.jtcvs.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
|