1
|
Huang F, Chen L, Zhou Y, Huang J, Wu F, Hu Q, Chang N, Qiu T, Zeng Y, He H, White JC, Yang W, Fang L. Exogenous selenium promotes cadmium reduction and selenium enrichment in rice: Evidence, mechanisms, and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135043. [PMID: 38941835 DOI: 10.1016/j.jhazmat.2024.135043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Cadmium (Cd) accumulation in rice, a global environmental issue, poses a significant threat to human health due to its widespread presence and potential transfer through the food chain. Selenium (Se), an essential micronutrient for humans and plants, can reduce Cd uptake in rice and alleviate Cd-induced toxicity. However, the effects and mechanisms of Se supplementation on rice performance in Cd-contaminated soil remain largely unknown. Here, a global meta-analysis was conducted to evaluate the existing knowledge on the effects and mechanisms by which Se supplementation impacts rice growth and Cd accumulation. The result showed that Se supplementation has a significant positive impact on rice growth in Cd-contaminated soil. Specifically, Se supplementation decreased Cd accumulation in rice roots by 16.3 % (11.8-20.6 %), shoots by 24.6 % (19.9-29.1 %), and grain by 37.3 % (33.4-40.9 %), respectively. The grain Cd reduction was associated with Se dose and soil Cd contamination level but not Se type or application method. Se influences Cd accumulation in rice by regulating the expression of Cd transporter genes (OSLCT1, OSHMA2, and OSHMA3), enhancing Cd sequestration in the cell walls, and reducing Cd bioavailability in the soil. Importantly, Se treatment promoted Se enrichment in rice and alleviated oxidative damage associated with Cd exposure by stimulating photosynthesis and activating antioxidant enzymes. Overall, Se treatment mitigated the health hazard associated with Cd in rice grains, particularly in lightly contaminated soil. These findings reveal that Se supplementation is a promising strategy for simultaneous Cd reduction and Se enrichment in rice.
Collapse
Affiliation(s)
- Fengyu Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| | - Ying Zhou
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Jingqiu Huang
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Fang Wu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Qing Hu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Wenchao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Guo Y, Mao K, Cao H, Ali W, Lei D, Teng D, Chang C, Yang X, Yang Q, Niazi NK, Feng X, Zhang H. Exogenous selenium (cadmium) inhibits the absorption and transportation of cadmium (selenium) in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115829. [PMID: 33160738 DOI: 10.1016/j.envpol.2020.115829] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/16/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Antagonism between selenium (Se) and cadmium (Cd) has been demonstrated in plants. However, a mutual suppression threshold for Se and Cd has not been identified in previous studies using Cd or Se individually. To fill this knowledge gap, we determined the levels of Se and Cd in various tissues of rice under concentration gradients of Se and Cd with different Se application times via hydroponic experiments. The results showed that the application of exogenous Se or Cd reduced the uptake and transport of the other. When the molar ratio of Se/Cd (R (Se/Cd)) was higher than 1, the concentration and transfer factor of Cd (TF-Cd) in all parts of rice simultaneously reached the lowest values. The minimum Se absorption in rice was obtained at R (Cd/Se) greater than 20, while no inhibition threshold was found for Se transport. In addition, approximately 1:1 R (Se/Cd) was observed in roots and the addition of exogenous Cd or Se promoted the enrichment of the other element in roots. These data suggested a mutual inhibition of Se and Cd in their absorption, transportation and accumulation in rice, which might be related to the formation of insoluble Cd-Se complexes in roots. This study provided new insights into a plausible explanation of the interactions between Se and Cd and contributed to the remediation and treatment of combined Se and Cd pollution in farmland systems.
Collapse
Affiliation(s)
- Yongkun Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Waqar Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Da Lei
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Dongye Teng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Chuanyu Chang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xuefeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Qi Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, Shanxi Province, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, Shanxi Province, China.
| |
Collapse
|
3
|
Cudowski A, Pietryczuk A. Biochemical response of Rhodotorula mucilaginosa and Cladosporium herbarum isolated from aquatic environment on iron(III) ions. Sci Rep 2019; 9:19492. [PMID: 31862957 PMCID: PMC6925287 DOI: 10.1038/s41598-019-56088-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/02/2019] [Indexed: 11/09/2022] Open
Abstract
The objective of the paper was to determine the influence of iron(III) ions on the growth and metabolism of fungi commonly occurring in waters: the yeast Rhodotorula mucilaginosa and filamentous fungus Cladosporium herbarum. Cells of R. mucilaginosa were shown to absorb the most iron(III) ions at a concentration of 1 mg/L iron(III) ions. Yeast cells showed a considerable increase in the content of proteins and monosaccharides, as well as biomass growth. At higher concentrations of iron(III) ions, the yeast limited the intake of iron(III) ions, and a decrease in the basic metabolites in cells was observed, as well as an increase in the secretion of such metabolites into the medium. Moreover, the activity of antioxidant enzymes increased in the fungal cells, suggesting that iron(III) ions have a toxic effect. Simultaneously, even at high concentrations of iron(III) ions in the medium, no decrease in the yeast biomass was recorded. It seems therefore that the potentially pathogenic R. mucilaginosa will likely be present in waters moderately contaminated with iron(III) ions. It can be useful as a water quality bioindicator. A considerably higher capacity for the biosorption of iron(III) ions was recorded for the filamentous fungus C. herbarum. Defensive mechanisms were observed for C. herbarum, which were manifested in a substantial increase in the content of proteins and monosaccharides, as well as an increase in the activity of antioxidant enzymes, particularly under the influence of high concentrations of iron(III) ions. Moreover, it was evidenced that in the filamentous fungus, iron(III) ions limited the extracellular secretion of metabolites. These results suggest that the fungus can actively accumulate iron(III) ions and therefore eliminate them from the aquatic environment. It can be useful in water treatment processes, which has a significant impact on water ecology.
Collapse
Affiliation(s)
- A Cudowski
- University of Białystok, Faculty of Biology, Department of Water Ecology, 15-245, Białystok, Ciołkowskiego 1J, Poland
| | - A Pietryczuk
- University of Białystok, Faculty of Biology, Department of Water Ecology, 15-245, Białystok, Ciołkowskiego 1J, Poland.
| |
Collapse
|
4
|
Galazzi RM, Arruda MAZ. Evaluation of changes in the macro and micronutrients homeostasis of transgenic and non-transgenic soybean plants after cultivation with silver nanoparticles through ionomic approaches. J Trace Elem Med Biol 2018; 48:181-187. [PMID: 29773178 DOI: 10.1016/j.jtemb.2018.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/19/2018] [Accepted: 04/02/2018] [Indexed: 11/27/2022]
Abstract
An ionomic approach is conducted for evaluating the silver distribution, in different soybean plant compartments, as well as its influence on the homeostasis of some macro (P and S) and micro (Cu, Fe, Mn and Zn) nutrients. Silver is added to transgenic and non-transgenic soybean plants as nanoparticles or silver nitrate for comparative purposes. The transgenic plants translocate a higher amount of silver (100 and 65% for silver nanoparticles and silver nitrate expositions, respectively) than non-transgenic, and considering the treatments, the cultivation with silver nanoparticles results in a higher translocation rate (100 and 21% for transgenic and non-transgenic plants, respectively). In addition, significant differences are found (p < 0.05) considering those macro and micronutrients in all plant compartments, mainly in the roots of those treated plants, indicating not only that both silver forms evaluated interfere in the plant metabolism, but also their toxicities.
Collapse
Affiliation(s)
- Rodrigo Moretto Galazzi
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil
| | - Marco Aurélio Zezzi Arruda
- Spectrometry, Sample Preparation and Mechanization Group, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - Unicamp, P.O. Box 6154, Campinas, SP 13083-970, Brazil.
| |
Collapse
|
5
|
Carneiro JMT, Chacón-Madrid K, Galazzi RM, Campos BK, Arruda SCC, Azevedo RA, Arruda MAZ. Evaluation of silicon influence on the mitigation of cadmium-stress in the development of Arabidopsis thaliana through total metal content, proteomic and enzymatic approaches. J Trace Elem Med Biol 2017; 44:50-58. [PMID: 28965600 DOI: 10.1016/j.jtemb.2017.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/18/2017] [Accepted: 05/30/2017] [Indexed: 12/20/2022]
Abstract
The mitigation of Cd-stress through Si addition to Arabidopsis thaliana cultivation is evaluated in terms of total metal content, proteomic and enzymatic approaches. Four different treatment are evaluated: TC (control, without Si or Cd addition), T1 (with Si addition), T2 (with Cd addition), and T3 (with Si and Cd addition). Through the total determination of Cd and Si in Arabidopsis leaves, the Cd concentration decreased by half when T2 is compared with T3 treatment. In terms of proteomic approach, some differential protein species are achieved by comparative proteomics through 2-D DIGE of all treatments evaluated. Fifty six differential abundant proteins spots (abundance factor ≥1.5) are detected, and 32 of them accurately characterized and identified through nESI-LC-MS/MS. These proteins are differentially produced due to Cd and/or Si treatments, which mainly include proteins associated with disease/defense, energy and metabolism. The most difference in the abundance of proteins is found due to the presence or absence of Si in plants treated with Cd. Regarding the enzymatic approaches, a major increase is found on APX, CAT and GR activities (5.0, 3.5, and 1.5-fold, respectively). The same is observed for the MDA concentration because an increase of 3-fold is found when TC are compared to those treated with T2. However, when T3 plants are evaluated, the enzymes activities are similar to TC plants. Differences ranging from 6.5 to 21% are detected considering the activity of SOD in the treatments (T1-T3 x TC). The decreased activities of CAT, APX and GR and lower MDA concentration indicate a lower reactive oxygen species production in plants treated with Cd and Si. Based on a proteomics point of view it is possible to conclude that Si-Cd interactions occur at protein level and allow plants to respond effectively to the Cd toxicity, revealing the active involvement of Si on mechanisms involved in Si-induced Cd tolerance in Arabidopsis plants. Additionally, from an enzymatic point of view, it is possible to conclude that Si positively interferes diminishing the negative effects of Cd in Arabidopsis by decreasing the reactive oxygen species generation and increasing the antioxidative enzyme activity.
Collapse
Affiliation(s)
- Josiane M T Carneiro
- Spectrometry, Sample Preparation and Mechanization Group-GEPAM, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Katherine Chacón-Madrid
- Spectrometry, Sample Preparation and Mechanization Group-GEPAM, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Rodrigo M Galazzi
- Spectrometry, Sample Preparation and Mechanization Group-GEPAM, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Bruna K Campos
- Spectrometry, Sample Preparation and Mechanization Group-GEPAM, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil
| | - Sandra C C Arruda
- Department of Genetics, Laboratory of Biochemistry and Genetics of Plants, Escola Superior de Agricultura Luiz de Queiroz, ESALQ-University of São Paulo, 13400-970, Piracicaba, SP, Brazil
| | - Ricardo A Azevedo
- Department of Genetics, Laboratory of Biochemistry and Genetics of Plants, Escola Superior de Agricultura Luiz de Queiroz, ESALQ-University of São Paulo, 13400-970, Piracicaba, SP, Brazil
| | - Marco A Z Arruda
- Spectrometry, Sample Preparation and Mechanization Group-GEPAM, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil; National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas-Unicamp, P.O. Box 6154, 13083-970, Campinas, SP, Brazil.
| |
Collapse
|