1
|
Li Y, Ma T, Lv X, Qiu Z, Li S, Qi J, Wei C. Fluoride stimulates the MAPK pathway to regulate endoplasmic reticulum stress and heat shock proteins to induce duodenal toxicity in chickens. Poult Sci 2024; 103:104408. [PMID: 39490130 PMCID: PMC11550079 DOI: 10.1016/j.psj.2024.104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024] Open
Abstract
Fluoride is one of the essential trace elements for body. However, excessive fluoride poses a major threat to human and animal health. Fluorosis may cause pathological damage of the duodenum, but the underlying mechanism needs to be further studied. This study was to investigate the effects of long-term exposure to sodium fluoride (0, 500, 1,000, 2,000 mg/kg) on the duodenum of chickens. The results showed that after NaF exposure, intestinal epithelial cells were disarranged, necrotic or even exfoliated, goblet cells and mucus secretion were increased, and inflammatory response was induced in duodenal tissue. Oxidative stress, endoplasmic reticulum stress (ERs), and heat shock proteins (HSPs) are an adaptive response, however long-term, excessive changes are detrimental. Fluorosis activates ERs through IRE1, PERK and ATF6 pathways, increases the expression of HSP60, HSP70 and HSP90, and causes apoptosis and oxidative damage in duodenal tissue. In addition, fluorosis can activate the MAPK signaling pathway. This article can provide a reference for exploring the potential duodenal toxicity of sodium fluoride.
Collapse
Affiliation(s)
- Yanan Li
- Heilongjiang Key Laboratory of Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tianwen Ma
- Heilongjiang Key Laboratory of Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoping Lv
- Heilongjiang Key Laboratory of Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zongsheng Qiu
- Heilongjiang Key Laboratory of Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shuxin Li
- Heilongjiang Key Laboratory of Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jingjing Qi
- Heilongjiang Key Laboratory of Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chengwei Wei
- Heilongjiang Key Laboratory of Animal Disease Pathogenesis and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China; Animal Clinical Teaching Hospital, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
2
|
Lu B, Wei L, Shi G, Du J. Nanotherapeutics for Alleviating Anesthesia-Associated Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308241. [PMID: 38342603 PMCID: PMC11022745 DOI: 10.1002/advs.202308241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/22/2023] [Indexed: 02/13/2024]
Abstract
Current management of anesthesia-associated complications falls short in terms of both efficacy and safety. Nanomaterials with versatile properties and unique nano-bio interactions hold substantial promise as therapeutics for addressing these complications. This review conducts a thorough examination of the existing nanotherapeutics and highlights the strategies for developing prospective nanomedicines to mitigate anesthetics-related toxicity. Initially, general, regional, and local anesthesia along with the commonly used anesthetics and related prevalent side effects are introduced. Furthermore, employing nanotechnology to prevent and alleviate the complications of anesthetics is systematically demonstrated from three aspects, that is, developing 1) safe nano-formulization for anesthetics; 2) nano-antidotes to sequester overdosed anesthetics and alter their pharmacokinetics; 3) nanomedicines with pharmacodynamic activities to treat anesthetics toxicity. Finally, the prospects and challenges facing the clinical translation of nanotherapeutics for anesthesia-related complications are discussed. This work provides a comprehensive roadmap for developing effective nanotherapeutics to prevent and mitigate anesthesia-associated toxicity, which can potentially revolutionize the management of anesthesia complications.
Collapse
Affiliation(s)
- Bin Lu
- Department of AnesthesiologyThird Hospital of Shanxi Medical UniversityShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalTaiyuan030032China
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanShanxi Province030001China
| | - Ling Wei
- Shanxi Bethune Hospital Center Surgery DepartmentShanxi Academy of Medical SciencesTongji Shanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuan030032China
| | - Gaoxiang Shi
- Department of AnesthesiologyThird Hospital of Shanxi Medical UniversityShanxi Bethune HospitalShanxi Academy of Medical SciencesTongji Shanxi HospitalTaiyuan030032China
| | - Jiangfeng Du
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of EducationTaiyuanShanxi Province030001China
- Department of Medical ImagingShanxi Key Laboratory of Intelligent Imaging and NanomedicineFirst Hospital of Shanxi Medical UniversityTaiyuanShanxi Province030001China
| |
Collapse
|
3
|
Ottappilakkil H, Babu S, Balasubramanian S, Manoharan S, Perumal E. Fluoride Induced Neurobehavioral Impairments in Experimental Animals: a Brief Review. Biol Trace Elem Res 2023; 201:1214-1236. [PMID: 35488996 DOI: 10.1007/s12011-022-03242-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/09/2022] [Indexed: 02/07/2023]
Abstract
Fluoride is one of the major toxicants in the environment and is often found in drinking water at higher concentrations. Living organisms including humans exposed to high fluoride levels are found to develop mild-to-severe detrimental pathological conditions called fluorosis. Fluoride can cross the hematoencephalic barrier and settle in various brain regions. This accumulation affects the structure and function of both the central and peripheral nervous systems. The neural ultrastructure damages are reflected in metabolic and cognitive activities. Hindrances in synaptic plasticity and signal transmission, early neuronal apoptosis, functional alterations of the intercellular signaling pathway components, improper protein synthesis, dyshomeostasis of the transcriptional and neurotrophic factors, oxidative stress, and inflammatory responses are accounted for the fluoride neurotoxicity. Fluoride causes a decline in brain functions that directly influence the overall quality of life in both humans and animals. Animal studies are widely used to explore the etiology of fluoride-induced neurotoxicity. A good number of these studies support a positive correlation between fluoride intake and toxicity phenotypes closely associated with neurotoxicity. However, the experimental dosages highly surpass the normal environmental concentrations and are difficult to compare with human exposures. The treatment procedures are highly dependent on the dosage, duration of exposure, sex, and age of specimens among other factors which make it difficult to arrive at general conclusions. Our review aims to explore fluoride-induced neuronal damage along with associated histopathological, behavioral, and cognitive effects in experimental models. Furthermore, the correlation of various molecular mechanisms upon fluoride intoxication and associated neurobehavioral deficits has been discussed. Since there is no well-established mechanism to prevent fluorosis, phytochemical-based alleviation of its characteristic indications has been proposed as a possible remedial measure.
Collapse
Affiliation(s)
| | - Srija Babu
- Bharathiar University, Coimbatore, Tamilnadu, India
| | | | | | | |
Collapse
|
4
|
Ju H, Chen S, Xue Y, Zhang X, Wang Y. The role of Nrf2 pathway in alleviating fluorine-induced apoptosis by different selenium sources in the chicken duodenum and jejunum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112708. [PMID: 34461318 DOI: 10.1016/j.ecoenv.2021.112708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
In order to evaluate the alleviative effects and molecular mechanisms of sodium selenite (SS) and selenomethionine (SM) on excessive apoptosis induced by high fluorine (HF) in the duodenum and jejunum of broilers, 720 1 day old Lingnan Yellow broilers were randomly divided into 4 groups (each group assigned 180 chickens with 6 replicates) and offered either a control diet or test diets (800 mg/kg F, HF group; 800 mg/kg F + 0.15 mg selenium (Se)/kg as SS (SS group) or SM (SM group)) for 50 days. High F intake significantly increased (P < 0.05) apoptosis rates of duodenum and jejunum by inducing oxidative stress and leading to mitochondrial damage. Selenomethionine supplementation effectively alleviated mitochondrial damage and severe apoptosis of duodenum and jejunum caused by HF through decreasing oxidative stress parameters. Selenomethionine added group significantly increased (P < 0.05) nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and nuclear Nrf2 protein levels as well as Nrf2 downstream antioxidant enzymes expressions in the duodenum and jejunum when compared with the HF group. Selenomethionine was superior to SS in activating the Nrf2 pathway and reducing the apoptosis rate of duodenum. It was concluded that dietary SM supplementation could ameliorate F-induced excessive apoptosis by inducing the Nrf2 pathway. Our findings will bring a promising tactics for the utilization of SM as an efficient antioxidant additive for reducing the intestinal damage caused by fluorosis in poultry.
Collapse
Affiliation(s)
- Hao Ju
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A & F University, Linan 311300, China
| | - Siyuan Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A & F University, Linan 311300, China
| | - Yajie Xue
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A & F University, Linan 311300, China
| | - Xiaodong Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A & F University, Linan 311300, China
| | - Yongxia Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology • College of Veterinary Medicine, Zhejiang A & F University, Linan 311300, China.
| |
Collapse
|
5
|
Yaneva Z, Ivanova D. Catechins within the Biopolymer Matrix-Design Concepts and Bioactivity Prospects. Antioxidants (Basel) 2020; 9:E1180. [PMID: 33256098 PMCID: PMC7761086 DOI: 10.3390/antiox9121180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Epidemiological studies and clinical investigations proposed that catechins extracts alone may not provide a sufficient level of bioactivities and promising therapeutic effects to achieve health benefits due to a number of constraints related to poor oral absorption, limited bioavailability, sensitivity to oxidation, etc. Modern scientific studies have reported numerous techniques for the design of micro- and nano-bio-delivery systems as novel and promising strategies to overcome these obstacles and to enhance catechins' therapeutic activity. The objective assessment of their benefits, however, requires a critical comparative estimation of the advantages and disadvantages of the designed catechins-biocarrier systems, their biological activities and safety administration aspects. In this respect, the present review objectively outlines, compares and assesses the recent advances related to newly developed design concepts of catechins' encapsulation into various biopolymer carriers and their release behaviour, with a special emphasis on the specific physiological biofunctionalities of the innovative bioflavonoid/biopolymer delivery systems.
Collapse
Affiliation(s)
- Zvezdelina Yaneva
- Chemistry Unit, Department of Pharmacology, Animal Physiology and Physiological Chemistry, Faculty of Veterinary Medicine, Trakia University, Students Campus, 6000 Stara Zagora, Bulgaria;
| | | |
Collapse
|
6
|
Eleftheriadou D, Kesidou D, Moura F, Felli E, Song W. Redox-Responsive Nanobiomaterials-Based Therapeutics for Neurodegenerative Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907308. [PMID: 32940007 DOI: 10.1002/smll.201907308] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 07/20/2020] [Indexed: 05/24/2023]
Abstract
Redox regulation has recently been proposed as a critical intracellular mechanism affecting cell survival, proliferation, and differentiation. Redox homeostasis has also been implicated in a variety of degenerative neurological disorders such as Parkinson's and Alzheimer's disease. In fact, it is hypothesized that markers of oxidative stress precede pathologic lesions in Alzheimer's disease and other neurodegenerative diseases. Several therapeutic approaches have been suggested so far to improve the endogenous defense against oxidative stress and its harmful effects. Among such approaches, the use of artificial antioxidant systems has gained increased popularity as an effective strategy. Nanoscale drug delivery systems loaded with enzymes, bioinspired catalytic nanoparticles and other nanomaterials have emerged as promising candidates. The development of degradable hydrogels scaffolds with antioxidant effects could also enable scientists to positively influence cell fate. This current review summarizes nanobiomaterial-based approaches for redox regulation and their potential applications as central nervous system neurodegenerative disease treatments.
Collapse
Affiliation(s)
- Despoina Eleftheriadou
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
- Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
- UCL Centre for Nerve Engineering, University College London, London, WC1E 6BT, UK
| | - Despoina Kesidou
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Francisco Moura
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Eric Felli
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, Royal Free Campus, University College London, London, NW3 2PF, UK
| |
Collapse
|
7
|
Gonçalves OH, Moreira TFM, de Oliveira A, Bracht L, Ineu RP, Leimann FV. Antioxidant Activity of Encapsulated Extracts and Bioactives from Natural Sources. Curr Pharm Des 2020; 26:3847-3861. [PMID: 32634076 DOI: 10.2174/1381612826666200707131500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
The low water solubility and low bioavailability of natural bioactive substances such as polyphenols and flavonoids, either in pure form or extracts, are a major concern in the pharmaceutical field and even on the food development sector. Although encapsulation has demonstrated success in addressing these drawbacks, it is important to evaluate the antioxidant activity of the encapsulated compounds. This article reviews the encapsulation of bioactive compounds from natural sources focusing their antioxidant activity after encapsulation. Attention is given to the methods and wall materials used, and the antioxidant activity methodologies (classical in vitro techniques such as DPPH, ORAC, FRAP and others, as well as in vivo/ex vivo tests to evaluate endogenous antioxidant enzymes or oxidative stress) applied to assess the antioxidant capacity are also comprehensively summarized.
Collapse
Affiliation(s)
- Odinei H Gonçalves
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| | - Thaysa F M Moreira
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| | - Anielle de Oliveira
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| | - Lívia Bracht
- Departamento de Bioquimica, Universidade Estadual de Maringa, Av. Colombo, 5790, CEP 87020-270, Maringa, Parana, Brazil
| | - Rafael P Ineu
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| | - Fernanda V Leimann
- Post-graduation Program of Food Technology (PPGTA), Federal University of Technology-Paraná, Campus Campo Mourão (UTFPR-CM), via Rosalina Maria Dos Santos, 1233, CEP 87301-899, Campo Mourao, Parana, Brazil
| |
Collapse
|
8
|
Chronic Exposure to Fluoride Affects GSH Level and NOX4 Expression in Rat Model of This Element of Neurotoxicity. Biomolecules 2020; 10:biom10030422. [PMID: 32182821 PMCID: PMC7175316 DOI: 10.3390/biom10030422] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Exposure of neural cells to harmful and toxic factors promotes oxidative stress, resulting in disorders of metabolism, cell differentiation, and maturation. The study examined the brains of rats pre- and postnatally exposed to sodium fluoride (NaF 50 mg/L) and activity of NADPH oxidase 4 (NOX4), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), concentration of glutathione (GSH), and total antioxidant capacity (TAC) in the cerebellum, prefrontal cortex, hippocampus, and striatum were measured. Additionally, NOX4 expression was determined by qRT-PCR. Rats exposed to fluorides (F-) showed an increase in NOX4 activity in the cerebellum and hippocampus, a decrease in its activity in the prefrontal cortex and hippocampus, and upregulation of NOX4 expression in hippocampus and its downregulation in other brain structures. Analysis also showed significant changes in the activity of all antioxidant enzymes and a decrease in TAC in brain structures. NOX4 induction and decreased antioxidant activity in central nervous system (CNS) cells may be central mechanisms of fluoride neurotoxicity. NOX4 contributes to blood-brain barrier damage, microglial activation, and neuronal loss, leading to impairment of brain function. Fluoride-induced oxidative stress involves increased reactive oxygen speciaes (ROS) production, which in turn increases the expression of genes encoding pro-inflammatory cytokines.
Collapse
|
9
|
Segatto ALA, Diesel JF, Loreto ELS, da Rocha JBT. De novo transcriptome assembly of the lobster cockroach Nauphoeta cinerea (Blaberidae). Genet Mol Biol 2018; 41:713-721. [PMID: 30043835 PMCID: PMC6136372 DOI: 10.1590/1678-4685-gmb-2017-0264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022] Open
Abstract
The use of Drosophila as a scientific model is well established, but the use of cockroaches as experimental organisms has been increasing, mainly in toxicology research. Nauphoeta cinerea is one of the species that has been studied, and among its advantages is its easy laboratory maintenance. However, a limited amount of genetic data about N. cinerea is available, impeding gene identification and expression analyses, genetic manipulation, and a deeper understanding of its functional biology. Here we describe the N. cinerea fat body and head transcriptome, in order to provide a database of genetic sequences to better understand the metabolic role of these tissues, and describe detoxification and stress response genes. After removing low-quality sequences, we obtained 62,121 transcripts, of which more than 50% had a length of 604 pb. The assembled sequences were annotated according to their genes ontology (GO). We identified 367 genes related to stress and detoxification; among these, the more frequent were p450 genes. The results presented here are the first large-scale sequencing of N. cinerea and will facilitate the genetic understanding of the species' biochemistry processes in future works.
Collapse
Affiliation(s)
- Ana Lúcia Anversa Segatto
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - José Francisco Diesel
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Elgion Lucio Silva Loreto
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | |
Collapse
|
10
|
Dec K, Łukomska A, Maciejewska D, Jakubczyk K, Baranowska-Bosiacka I, Chlubek D, Wąsik A, Gutowska I. The Influence of Fluorine on the Disturbances of Homeostasis in the Central Nervous System. Biol Trace Elem Res 2017; 177:224-234. [PMID: 27787813 PMCID: PMC5418325 DOI: 10.1007/s12011-016-0871-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/11/2016] [Indexed: 01/21/2023]
Abstract
Fluorides occur naturally in the environment, the daily exposure of human organism to fluorine mainly depends on the intake of this element with drinking water and it is connected with the geographical region. In some countries, we can observe the endemic fluorosis-the damage of hard and soft tissues caused by the excessive intake of fluorine. Recent studies showed that fluorine is toxic to the central nervous system (CNS). There are several known mechanisms which lead to structural brain damage caused by the excessive intake of fluorine. This element is able to cross the blood-brain barrier, and it accumulates in neurons affecting cytological changes, cell activity and ion transport (e.g. chlorine transport). Additionally, fluorine changes the concentration of non-enzymatic advanced glycation end products (AGEs), the metabolism of neurotransmitters (influencing mainly glutamatergic neurotransmission) and the energy metabolism of neurons by the impaired glucose transporter-GLUT1. It can also change activity and lead to dysfunction of important proteins which are part of the respiratory chain. Fluorine also affects oxidative stress, glial activation and inflammation in the CNS which leads to neurodegeneration. All of those changes lead to abnormal cell differentiation and the activation of apoptosis through the changes in the expression of neural cell adhesion molecules (NCAM), glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and MAP kinases. Excessive exposure to this element can cause harmful effects such as permanent damage of all brain structures, impaired learning ability, memory dysfunction and behavioural problems. This paper provides an overview of the fluoride neurotoxicity in juveniles and adults.
Collapse
Affiliation(s)
- K Dec
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - A Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - D Maciejewska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - K Jakubczyk
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland
| | - I Baranowska-Bosiacka
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 av., 71-111, Szczecin, Poland
| | - D Chlubek
- Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 av., 71-111, Szczecin, Poland
| | - A Wąsik
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurochemistry, Smętna street 12, 31-343, Kraków, Poland
| | - I Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, Broniewskiego street 24, 70-406, Szczecin, Poland.
| |
Collapse
|
11
|
Oyagbemi AA, Omobowale TO, Asenuga ER, Adejumobi AO, Ajibade TO, Ige TM, Ogunpolu BS, Adedapo AA, Yakubu MA. Sodium fluoride induces hypertension and cardiac complications through generation of reactive oxygen species and activation of nuclear factor kappa beta. ENVIRONMENTAL TOXICOLOGY 2017; 32:1089-1101. [PMID: 27378751 DOI: 10.1002/tox.22306] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/06/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
Human exposure to sodium fluoride through its daily usage is almost inevitable. Cardiovascular and renal dysfunction has been associated with fluoride toxicity. Therefore, this study investigated the mechanism of action of sodium fluoride (NaF) induced hypertension and cardiovascular complications Forty male albino rats of an average of 10 rats per group were used. Group A received clean tap water. Toxicity was induced in Group B to D by administering graded doses of NaF through drinking water ad libitum for 10 days at 150 ppm, 300 ppm, and 600 ppm concentration respectively. Following administration of NaF, there was significant increase in systolic pressure, diastolic pressure and mean arterial pressure. Markers of oxidative stress; malondialdehyde, hydrogen peroxide, advance oxidation protein products, and protein carbonyl were significantly increased in dose-dependent pattern in the cardiac and renal tissues of rats together with significant decrease in the GST activity in NaF-treated rats compared to the control. Also serum markers of inflammation, cardiac, and renal damage including myeloperoxidase, xanthine oxidase, blood urea nitrogen, creatinine, Lactate dehydrogenase (LDH), and Creatinine kinase myocardial band (CK-MB) significantly increased indicating induction of oxidative stress, renal, and cardiac damage after exposure. Histopathology of the kidney and heart revealed aberrations in the histological architecture in NaF-treated rats. Also, immunohistochemistry showed higher expression of nuclear factor kappa beta (NF-kB) in the cardiac and renal tissues of rats administered NaF. Combining all, these results indicate NaF-induced hypertension through generation of reactive oxygen species and activation of renal and cardiac NF-kB expressions. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1089-1101, 2017.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | | | | | | | - Temitayo Olabisi Ajibade
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Temitope Moses Ige
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Blessing Seun Ogunpolu
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental and Interdisciplinary Sciences, College of Science, Technology and Engineering, Texas Southern University, 3100 Cleburne Avenue, Houston, TX, 77004, USA
| |
Collapse
|