1
|
Ran X, Yan X, Zhuang H, Liang Z, Ma G, Chen X, Huang Y, Liu X, Luo P, Hu T, Zhang J, Shen L. Effects of arsenic exposure on blood trace element levels in rats and sex differences. Biometals 2024; 37:1099-1111. [PMID: 38568319 DOI: 10.1007/s10534-024-00594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/28/2024] [Indexed: 10/15/2024]
Abstract
Arsenic (As) is a widespread environmental metalloid and human carcinogen, and its exposure is associated with a wide range of toxic effects, leading to serious health hazards. As poisoning is a complex systemic multi-organ and multi-system damage disease. In this study, a rat model of As poisoning was established to investigate the levels of trace elements in the blood of rats and sex differences in the effect of As on every trace elements in rat blood. Twenty 6-week-old SD (Sprague Dawley) rats were randomly divided into the control group and the As-exposed group. After 3 months, the contents of 19 elements including As in the blood were detected in these two groups by inductively coupled plasma mass spectrometry (ICP-MS). As levels in the blood of As-exposed rats were significantly higher than those in the control group, with increased levels of Rb, Sr, Cs and Ce, and decreased levels of Pd. As showed a significant positive correlation with Rb. There were significant sex differences in blood Se, Pd, Eu, Dy, Ho, and Au levels in the As-exposed group. The results showed that As exposure can lead to an increase of As content in blood and an imbalance of some elements. There were sex differences in the concentration and the correlation between elements of some elements. Elemental imbalances may affect the toxic effects of As and play a synergistic or antagonistic role in As toxicity.
Collapse
Affiliation(s)
- Xiaoqian Ran
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Xi Yan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Zhiyuan Liang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Guanwei Ma
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Xiaolu Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Yuhan Huang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Peng Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Ting Hu
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
2
|
Caraba IV, Caraba MN, Hutanu D, Sinitean A, Dumitrescu G, Popescu R. Trace Metal Accumulation in Rats Exposed to Mine Waters: A Case Study, Bor Area (Serbia). TOXICS 2023; 11:960. [PMID: 38133361 PMCID: PMC10748338 DOI: 10.3390/toxics11120960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), cadmium (Cd), and lead (Pb) levels were measured in the Bor City water supply system (control) and two watercourses exposed to mining wastewaters, i.e., the Lutarica River (one site) and the Kriveljska River (two sites). The same parameters were determined in the brain, heart, lungs, stomach, liver, spleen, kidneys, and testes of male Wistar rats given water from these sources for 2 months. Water Cu, Fe, Cd, and Pb were outside the safe range, excepting the reference site. Significant impacts on intra-organ metal homeostasis were detected, especially in the brain, stomach, kidneys, and testes. The dynamics and magnitude of these changes (versus controls) depended on the target organ, analyzed metal, and water origin. The greatest number of significant intra-organ associations between essential and non-essential metals were found for Cd-Zn, Cd-Cu, and Cd-Mn. A regression analysis suggested the kidneys as the most relevant organ for monitoring water manganese, and the stomach and brain for lead. These results highlight the environmental risks associated with mining wastewaters from the Bor area and could help scientists in mapping the spatial distribution and severity of trace metal contamination in water sources.
Collapse
Affiliation(s)
- Ion Valeriu Caraba
- Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului, 119, 300645 Timisoara, Romania; (I.V.C.); (G.D.)
| | - Marioara Nicoleta Caraba
- Department Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Pestalozzi 16, 300315 Timisoara, Romania; (D.H.); (A.S.)
| | - Delia Hutanu
- Department Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Pestalozzi 16, 300315 Timisoara, Romania; (D.H.); (A.S.)
| | - Adrian Sinitean
- Department Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University of Timisoara, Pestalozzi 16, 300315 Timisoara, Romania; (D.H.); (A.S.)
| | - Gabi Dumitrescu
- Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului, 119, 300645 Timisoara, Romania; (I.V.C.); (G.D.)
| | - Roxana Popescu
- ANAPATMOL Research Center, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| |
Collapse
|
3
|
Yu W, Chang X, Liao J, Quan J, Liu S, He T, Zhong G, Huang J, Liu Z, Tang Z. Long-term oral tribasic copper chloride exposure impedes cognitive function and disrupts mitochondrial metabolism by inhibiting mitophagy in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122474. [PMID: 37652230 DOI: 10.1016/j.envpol.2023.122474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Copper (Cu) is an essential micronutrient element that commonly acted as a feed additive and antimicrobial in agricultural production. Tribasic copper chloride (TBCC) is a relatively new dietary Cu source, and its exposure directly or indirectly affects the safety of animals and ecological environment, thus posing a potential risk to human health. Cu overexposure would produce toxic reactive oxygen species (ROS) that may have toxic effects on the host, but the mechanism of neurotoxicity remains unclear. Herein, to explore the effects of long-term TBCC-induced neurotoxicity, 150 male Sprague-Dawley rats were randomly allocated and treated with different doses of TBCC, and the cortical and hippocampus tissues were harvested at 0, 6, and 12 weeks after treatment. Morris Water Maze (MWM) test showed that excessive intake of TBCC could induce cognitive dysfunction in rats. Moreover, after treatment with 160 mg/kg Cu (276 mg/kg TBCC) for 12 weeks, pathological changes were observed in the cortex and hippocampus, and the number of Nissl bodies decreased significantly in the hippocampus. Additionally, mitochondrial structure was significantly altered and neuronal mitochondrial fusion/fission equilibrium was disrupted in 80 mg/kg and 160 mg/kg Cu groups at 12 weeks. With an increase in TBCC dose and treatment time, the number of mitophagosomes and the expression of mitophagy-related genes were significantly decreased after initially increasing. Furthermore, metformin (Met) and 3-methyladenine (3-MA) were used to regulate the level of mitophagy to further explore the mechanism of Cu-induced nerve cell injury in vitro., and it found that mitophagy activator (Met) would increase mitochondrial fission, while mitophagy inhibitors (3-MA) would aggravate mitochondrial metabolic disorders by promoting mitochondrial fusion and inhibiting mitochondrial division. These results indicate that long-term oral TBCC could impede cognitive function and disrupts mitochondrial metabolism by inhibiting mitophagy, providing an insightful perspective on the neurotoxicity of dietary TBCC.
Collapse
Affiliation(s)
- Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Laboratory Animal Center, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| | - Xiaoyue Chang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jinwen Quan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Siying Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Ting He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jilei Huang
- Instrumental Analysis & Research Center, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Zhonghua Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Laboratory Animal Center, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| |
Collapse
|
4
|
Karami E, Goodarzi Z, Shahtaheri SJ, Kiani M, Faridan M, Ghazi-Khansari M. The aqueous extract of Artemisia Absinthium L. stimulates HO-1/MT-1/Cyp450 signaling pathway via oxidative stress regulation induced by aluminium oxide nanoparticles (α and γ) animal model. BMC Complement Med Ther 2023; 23:310. [PMID: 37670294 PMCID: PMC10478434 DOI: 10.1186/s12906-023-04121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND This research aimed to evaluate the protective effects of Artemisia Absinthium L. (Abs) against liver damage induced by aluminium oxide nanoparticles (Al2O3 NPs) in rats, including both structural and functional changes associated with hepatotoxicity. METHODS Thirty-six rats were randomly divided into six groups (n = 6). The first group received no treatment. The second group was orally administered Abs at a dose of 200 mg/kg/b.w. The third and fifth groups were injected intraperitoneally with γ-Al2O3 NPs and α-Al2O3 NPs, respectively, at a dose of 30 mg/kg/b.w. The fourth and sixth groups were pre-treated with oral Abs at a dose of 200 mg/kg/b.w. along with intraperitoneal injection of γ-Al2O3 NPs and α-Al2O3 NPs, respectively, at a dose of 30 mg/kg/b.w. RESULTS Treatment with γ-Al2O3 NPs resulted in a significant decrease (P < 0.05) in total body weight gain, relative liver weight to body weight, and liver weight in rats. However, co-administration of γ-Al2O3 NPs with Abs significantly increased body weight gain (P < 0.05). Rats treated with Al2O3 NPs (γ and α) exhibited elevated levels of malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), alanine transaminase (ALT), and aspartate aminotransferase (AST). Conversely, treatment significantly reduced glutathione peroxidase (GPx), catalase (CAT), total superoxide dismutase (T-SOD), and total antioxidant capacity (TAC) levels compared to the control group. Furthermore, the expression of heme oxygenase-1 (HO-1) and metallothionein-1 (MT-1) mRNAs, cytochrome P450 (CYP P450) protein, and histopathological changes were significantly up-regulated in rats injected with Al2O3 NPs. Pre-treatment with Abs significantly reduced MDA, AST, HO-1, and CYP P450 levels in the liver, while increasing GPx and T-SOD levels compared to rats treated with Al2O3 NPs. CONCLUSION The results indicate that Abs has potential protective effects against oxidative stress, up-regulation of oxidative-related genes and proteins, and histopathological alterations induced by Al2O3 NPs. Notably, γ-Al2O3 NPs exhibited greater hepatotoxicity than α-Al2O3 NPs.
Collapse
Affiliation(s)
- Esmaeil Karami
- Department of Occupational Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Goodarzi
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Jamaleddin Shahtaheri
- Department of Occupational Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehrafarin Kiani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Faridan
- Department of Occupational Health and Safety at Work Engineering, Environmental Health Research CenterLorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Gao F, Zhang T, Zhang H, Dai Z, Gu Y, Lu M, Zhang Z, Zeng Q, Shang B, Gao S, Wang N, Xu B, Lei H. Explore bioactive ingredients and potential mechanism of Houpo Mahuang decoction for chronic bronchitis based on UHPLC-Q exactive orbitrap HRMS, network pharmacology, and experiment verification. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115924. [PMID: 36414217 DOI: 10.1016/j.jep.2022.115924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic bronchitis (CB) affects a growing number of people and may be linked to lung function impairment. The traditional Chinese medicine formula Houpo Mahuang Decoction (HPMHD) has been used for clinical treatment of respiratory diseases for thousands of years. Until now, its bioactive ingredients, potential targets and molecular mechanism remain unclear. AIM OF THE STUDY To investigate the effect of HPMHD on the treatment of CB and explore the bioactive ingredients and possible mechanisms of HPMHD against CB. MATERIALS AND METHODS UHPLC-Q Exactive Orbitrap HRMS was performed to analyze the chemical components of HPMHD. The mechanism of multiple components, targets and pathways of HPMHD in the treatment of chronic bronchitis were explored by network pharmacology. Additionally, CB mice model induced by lipopolysaccharide (LPS) and smoking was used to evaluate the anti-chronic bronchitis activity of HPMHD in vivo. Pulmonary pathology was determined by hematoxylin and eosin (H&E) measurement. The levels of TNF-α and IL-6 in lung were measured by ELISA. The immunofluorescence experiments were carried out for the expression of IL-1β, TNF-α, IL-6 and NF-κB p-P65/P65 in lung. Western blot assays were performed to quantify and visualize the protein expression of NF-κB p-P65/P65 in mice lung. RESULTS Data showed that 79 compounds were identified in HPMHD. The network pharmacology results showed 53 compounds were hinted their effectivity for the treatment of chronic bronchitis with HPMHD, such as ephedrine, schisantherin A, and honokiol. The main targets were predicted as 37 genes, including TNF, TP53, IL6 and so on. HPMHD ameliorated lung damages in mice and inhibited the NF-κB signaling pathway, one of the pathways plotted by KEGG pathway enrichment analysis, by reducing IL-1β, TNF-α and IL-6 expression and significantly downregulating the NF-κB p-P65/P65. CONCLUSION In summary, the complex chemical components of HPHMD was successfully elucidate by UHPLC-Q Exactive Orbitrap HRMS. The study based on network pharmacology and experiment verification indicated that HPMHD can decreased inflammatory response in lung to treat CB. The underlying mechanism may be related to the reduction of inflammation by down-regulated the NF-κB pathways.
Collapse
Affiliation(s)
- Feng Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Tong Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Hao Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Ziqi Dai
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Yuhao Gu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Mingjun Lu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Zijie Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Qi Zeng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Bingxian Shang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Shan Gao
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Nan Wang
- Aimin Pharmaceutical Group, Henan, 463500, China
| | - Bing Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 102400, China.
| |
Collapse
|
6
|
Dai C, Li M, Liu Y, Tran DH, Jiang H, Tang S, Shen J. Involvement of the inhibition of mitochondrial apoptotic, p53, NF-κB pathways and the activation of Nrf2/HO-1 pathway in the protective effects of curcumin against copper sulfate-induced nephrotoxicity in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114480. [PMID: 38321692 DOI: 10.1016/j.ecoenv.2022.114480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/29/2022] [Accepted: 12/23/2022] [Indexed: 02/08/2024]
Abstract
Chronic copper exposure could cause potential nephrotoxicity and effective therapy strategies are limited. This study investigated the protective effects of curcumin on copper sulfate (CuSO4)-induced renal damage in a mouse model and the underlying molecular mechanisms. Mice were administrated orally with CuSO4 (100 mg/kg per day) in combination with or without curcumin (50, 100 or 200 mg/kg per day, orally) for 28 days. Results showed that curcumin supplementation significantly reduce the Cu accumulation in the kidney tissues of mice and improved CuSO4-induced renal dysfunction. Furthermore, curcumin supplantation also significantly ameliorated Cu exposure-induced oxidative stress and tubular necrosis in the kidneys of mice. Moreover, compared to the CuSO4 alone group, curcumin supplementation at 200 mg/kg per day significantly decreased CuSO4-induced the expression of p53, Bax, IL-1β, IL-6, and TNF-α proteins, levels of NF-κB mRNA, levels of caspases-9 and - 3 activities, and cell apoptosis, and significantly increased the levels of Nrf2 and HO-1 mRNAs in the kidney tissues. In conclusion, for the first time, our results reveal that curcumin could trigger the inhibition of oxidative stress, mitochondrial apoptotic, p53, and NF-κB pathways and the activation of Nrf2/HO-1 pathway to ameliorate Cu overload-induced nephrotoxicity in a mouse model. Our study highlights that curcumin supplementation may be a promising treatment strategy for treating copper overload-caused nephrotoxicity.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, PR China.
| | - Meng Li
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Yue Liu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Diem Hong Tran
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Haiyang Jiang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, PR China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, PR China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing 100193, PR China
| |
Collapse
|
7
|
Yao X, Huang S, Li Y, Ge Y, Zhang Z, Ning J, Yang X. Transgenerational effects of zinc, selenium and chromium supplementation on glucose homeostasis in female offspring of gestational diabetes rats. J Nutr Biochem 2022; 110:109131. [PMID: 36028097 DOI: 10.1016/j.jnutbio.2022.109131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023]
Abstract
Clinical studies have demonstrated that maternal gestational diabetes mellitus (GDM) increases the offspring's risk of developing glucose intolerance. Our previous study reported that co-supplementation with zinc, selenium, and chromium improved insulin resistance in diet-induced GDM rats. Here, Transgenerational effects of supplementation with zinc (10 mg/kg.bw), selenium (20 μg/kg.bw), and chromium (20 μg/kg.bw) in F1 female offspring of both zinc, selenium and chromium (ZnSeCr)-treated, and untreated GDM rats daily by gavage from weaning to the postpartum were investigated in the present study. Glucose homeostasis in the F1 female offspring of GDM at different stages were evaluated. Maternal GDM did increase the birth mass of newborn F1 female offspring, as well as the serum glucose and insulin levels. Zinc, selenium and chromium supplementation attenuated the GDM-induced mass gain, increased serum glucose and insulin levels in the female neonates. The high fat and sucrose (HFS) diet-fed GDM-F1 offspring developed GDM, with glucose intolerance, hyperglycemia and insulin resistance during pregnancy. Moreover, endoplasmic reticulum (ER) stress-related protein levels were increased and the activation of insulin signaling pathways were reduced in the liver of HFS-fed GDM-F1 offspring. Whereas glucose homeostasis in parallel with insulin sensitivity was normalized in the female offspring of GDM by supplementation both F0 dams and F1 offspring with zinc, selenium and chromium, not in those either F0 or F1 elements supplemented offspring. Therefore, we speculate that zinc, selenium and chromium supplementation may have a potential beneficial transgenerational effect on the glucose homeostasis in the female offspring of GDM.
Collapse
Affiliation(s)
- Xueqiong Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Ge
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhen Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Ning
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua Central Hospital, Shenzhen, Guangdong, China.
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Ibarrola DA, Arrua W, Gonzalez JE, Soverina Escobar MS, Centurión J, Campuzano Benitez AM, Ovando Soria FM, Rodas González EI, Arrúa KG, Acevedo Barrios MB, Heinichen OY, Montalbetti Y, Campuzano-Bublitz MA, Kennedy ML, Figueredo Thiel SJ, Alvarenga NL, Hellión-Ibarrola MC. The antihypertensive and diuretic effect of crude root extract and saponins from Solanum sisymbriifolium Lam., in L-NAME-induced hypertension in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115605. [PMID: 35973627 DOI: 10.1016/j.jep.2022.115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum sisymbriifolium Lam., is used in Paraguayan folk medicine claiming antihypertensive and diuretic properties. AIM OF THE STUDY This study aimed to determine the influence of chronic oral administration of the crude root extract and saponins obtained from S. sisymbriifolium Lam., on the blood pressure of male and female rats with hypertension induced by L-NAME, and its consequences on diuresis, the body weight, blood glucose, and level of serum parameters of liver and kidney functionality. MATERIALS AND METHODS Wistar rats were randomly divided into seven male, and seven female groups (8 animals each), which received as 6-week pretreatment, 0.9% saline solution (two groups; 0.1mL/10 g of b.w.), L-arginine (100.0 mg/kg/day), enalapril (15.0 mg/kg/day), crude extract (CESs 100.0 mg/kg/day), and saponin purified fraction (1.0, and 10.0 mg/kg/day), and treated with L-NAME (20 mg/kg/day/i.p.) twice, 1, and 6 h after pre-treatment. The animals' body weight, glycemia, and blood pressure were recorded weekly, while serum, hepatic, renal, and histological parameters were analyzed at the end of 6-week of treatment. RESULTS A protective effect of CESs (100.0 mg/kg/day), and saponins (1.0, and 10.0 mg/kg/day) against hypertension induced by L-NAME was verified in the systolic, diastolic, and mean blood pressure values, which were significantly lower than the positive L-NAME-hypertensive control group (male and female) at the end of the 6-week treatment. Also, pretreatment with enalapril (15.0 mg/kg/day) induced an efficient protective activity, which validates the method used. Likewise, the volume of urine, creatinine, uric acid, urea, and electrolyte excretion was enhanced at the end of 6-week of treatment in concordance with the reduction in serum level of the same parameters, compatible with the improvement of the diuretic activity. The glycemia, body weight, heart rate, and functional hepato-renal parameters were not modified after a 6-week of treatment, in comparison to the control group, indicating relatively acceptable harmless properties of CESs and saponins. Interestingly, the HDL level in females was increased in contrast to male rats by chronic saponins treatment when compared with the negative control group. CONCLUSIONS It can be concluded that either the increment in blood pressure (systolic, diastolic, and median) or cardiorenal remodeling effects in male and female rats submitted to L-NAME-induced hypertensive condition, were prevented and well-preserved without a significant variation during a period of 6-week of pretreatment with CESs and saponins pretreatments. Likewise, an important diuretic effect was revealed after this period of treatment.
Collapse
Affiliation(s)
- D A Ibarrola
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay.
| | - W Arrua
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - J E Gonzalez
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - M S Soverina Escobar
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - J Centurión
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - A M Campuzano Benitez
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - F M Ovando Soria
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - E I Rodas González
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - K G Arrúa
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - M B Acevedo Barrios
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - O Y Heinichen
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - Y Montalbetti
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - M A Campuzano-Bublitz
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - M L Kennedy
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - S J Figueredo Thiel
- Departamento de Patología, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - N L Alvarenga
- Departamento de Fitoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| | - M C Hellión-Ibarrola
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, Campus UNA, 2169, San Lorenzo, Paraguay
| |
Collapse
|
9
|
Attafi IM, Bakheet SA, Ahmad SF, Belali OM, Alanazi FE, Aljarboa SA, Al-Alallah IA, Korashy HM. Lead Nitrate Induces Inflammation and Apoptosis in Rat Lungs Through the Activation of NF-κB and AhR Signaling Pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64959-64970. [PMID: 35482242 PMCID: PMC9481511 DOI: 10.1007/s11356-022-19980-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/25/2022] [Indexed: 05/28/2023]
Abstract
Lead (Pb) is one of the most frequent hazardous air contaminants, where the lungs are particularly vulnerable to its toxicity. However, the Pb distribution and its impact on lung inflammation/apoptosis and particularly the involvement of nuclear factor kappa B (NF-κB) and aryl hydrocarbon receptor (AhR) signaling pathways in Pb-induced lung toxicity have not yet been fully investigated. Adult male Wistar albino rats were exposed to Pb nitrate 25, 50, and 100 mg/kg b.w. orally for 3 days. The histopathological changes of several rat organs were analyzed using hematoxylin and eosin staining. The concentrations of Pb ion in different organ tissues were quantified using inductive coupled plasma mass spectrometry, while gas chromatography-mass spectrometry was used to identify organic compounds. The changes in the mRNA and protein expression levels of inflammatory and apoptotic genes in response to Pb exposure were quantified by using RT-PCR and Western blot analyses, respectively. Treatment of rats with Pb for three consecutive days significantly increased the accumulation of Pb in lung tissues causing severe interstitial inflammation. Pb treatment also increased the percentage of lung apoptotic cells and modulated apoptotic genes (Bc2, p53, and TGF-α), inflammatory markers (IL-4, IL-10, TNF-α), and oxidative stress biomarkers (iNOS, CYP1A1, EphX) in rat lung tissues. These effects were associated with a significant increase in organic compounds, such as 3-nitrotyrosine and myeloperoxidase, and some inorganic elements, such as selenium. Importantly, the Pb-induced lung inflammation and apoptosis were associated with a proportional increase in the expression of NF-κB and AhR mRNAs and proteins. These findings clearly show that Pb induces severe inflammation and apoptosis in rat lungs and suggest that NF-κB and AhR may play a role in Pb-induced lung toxicity.
Collapse
Affiliation(s)
- Ibraheem M Attafi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Poison Control and Medical Forensic Chemistry Center, Jazan Health Affairs, Jazan, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Osamah M Belali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Aseer Central Hospital, Asser health affairs, Ministry of Health, Abha, Saudi Arabia
| | - Fawaz E Alanazi
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Suliman A Aljarboa
- Central Laboratory, Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ibrahim A Al-Alallah
- Pathology and Clinical Laboratories Medicine, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
10
|
Light and heavy ferritin chain expression in the liver and kidneys of Wistar rats: aging, sex differences, and impact of gonadectomy. Arh Hig Rada Toksikol 2022; 73:48-61. [PMID: 35390238 PMCID: PMC8999590 DOI: 10.2478/aiht-2022-73-3621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
Ferritin is the main intracellular storage of iron. Animal studies show that female liver and kidney express more ferritin and accumulate more iron than male. However, no study so far has investigated sex and age differences in light (FtL) and heavy (FtH) ferritin chain expression. To address this, we relied on specific antibodies and immunochemical methods to analyse the expression of both ferritin chains in the liver and kidney of 3-month and 2-year-old male and female Wistar rats. To see how sex hormones may affect expression we also studied adult animals gonadectomised at the age of 10 weeks. FtL and FtH were more expressed in both organs of female rats, while gonadectomy increased the expression in males and decreased it in females, which suggests that it is stimulated by female and inhibited by male steroid hormones. Normal kidney ferritin distribution and change with aging warrant more attention in studies of (patho) physiological and toxicological processes.
Collapse
|
11
|
Over-Dose Lithium Toxicity as an Occlusive-like Syndrome in Rats and Gastric Pentadecapeptide BPC 157. Biomedicines 2021; 9:biomedicines9111506. [PMID: 34829735 PMCID: PMC8615292 DOI: 10.3390/biomedicines9111506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/15/2022] Open
Abstract
Due to endothelial impairment, high-dose lithium may produce an occlusive-like syndrome, comparable to permanent occlusion of major vessel-induced syndromes in rats; intracranial, portal, and caval hypertension, and aortal hypotension; multi-organ dysfunction syndrome; brain, heart, lung, liver, kidney, and gastrointestinal lesions; arterial and venous thrombosis; and tissue oxidative stress. Stable gastric pentadecapeptide BPC 157 may be a means of therapy via activating loops (bypassing vessel occlusion) and counteracting major occlusion syndromes. Recently, BPC 157 counteracted the lithium sulfate regimen in rats (500 mg/kg/day, ip, for 3 days, with assessment at 210 min after each administration of lithium) and its severe syndrome (muscular weakness and prostration, reduced muscle fibers, myocardial infarction, and edema of various brain areas). Subsequently, BPC 157 also counteracted the lithium-induced occlusive-like syndrome; rapidly counteracted brain swelling and intracranial (superior sagittal sinus) hypertension, portal hypertension, and aortal hypotension, which otherwise would persist; counteracted vessel failure; abrogated congestion of the inferior caval and superior mesenteric veins; reversed azygos vein failure; and mitigated thrombosis (superior mesenteric vein and artery), congestion of the stomach, and major hemorrhagic lesions. Both regimens of BPC 157 administration also counteracted the previously described muscular weakness and prostration (as shown in microscopic and ECG recordings), myocardial congestion and infarction, in addition to edema and lesions in various brain areas; marked dilatation and central venous congestion in the liver; large areas of congestion and hemorrhage in the lung; and degeneration of proximal and distal tubules with cytoplasmic vacuolization in the kidney, attenuating oxidative stress. Thus, BPC 157 therapy overwhelmed high-dose lithium intoxication in rats.
Collapse
|
12
|
Yao X, Liu R, Li X, Li Y, Zhang Z, Huang S, Ge Y, Chen X, Yang X. Zinc, selenium and chromium co-supplementation improves insulin resistance by preventing hepatic endoplasmic reticulum stress in diet-induced gestational diabetes rats. J Nutr Biochem 2021; 96:108810. [PMID: 34192590 DOI: 10.1016/j.jnutbio.2021.108810] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/28/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023]
Abstract
Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications and results in adverse outcomes for pregnant women and their offspring. Endoplasmic reticulum (ER) stress is associated with insulin resistance and implicates in the development of GDM. Zinc, selenium and chromium have been shown to maintain glucose homeostasis via multiple mechanisms, but how these trace elements affect the insulin resistance and ER stress in GDM are largely unknown. To address this, a GDM rat model was induced by feeding female Sprague-Dawley rats a high-fat (45%) and sucrose diet, while zinc (10 mg/kg.bw), selenium (20 ug/kg.bw), chromium (20 ug/kg.bw) were daily supplemented alone or in combination from 6 weeks before mating to the end of lactation period. Maternal metabolic parameters, hepatic ER stress and insulin signaling were analyzed. The results showed that zinc, selenium and chromium co-supplementation dramatically alleviated high-fat and sucrose-induced glucose intolerance and oxidative stress during entire experiment period. Hepatic ER stress as well as the unfolded protein response was activated in GDM dams, characterized by the up-regulation of glucose-regulated protein 78, phosphorylated the protein kinase RNA-like endoplasmic reticulum kinase, and the inositol-requiring enzyme 1α. Zinc, selenium and chromium supplementation significantly prevented this activation, by which contributes to the promotion of the phosphorylated protein kinase B related insulin signaling and maintenance of glucose homeostasis. In conclusion, zinc, selenium and chromium supplementation may be a promising way to prevent the development of GDM by alleviating hepatic ER stress.
Collapse
Affiliation(s)
- Xueqiong Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Xiu Li
- Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhen Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shanshan Huang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanyan Ge
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiuzhi Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Wan F, Zhong G, Wu S, Jiang X, Liao J, Zhang X, Zhang H, Mehmood K, Tang Z, Hu L. Arsenic and antimony co-induced nephrotoxicity via autophagy and pyroptosis through ROS-mediated pathway in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112442. [PMID: 34166936 DOI: 10.1016/j.ecoenv.2021.112442] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) and antimony (Sb) are commonly accumulated environmental pollutants that often coexist in nature and cause serious widespread biological toxicity. To investigate the nephrotoxicity induced by As and Sb in detail, we explored the mechanism by which As and Sb cotreatment induced autophagy and pyroptosis in vivo and in vitro. In this study, mice were treated with 4 mg/kg arsenic trioxide (ATO) or/and 15 mg/kg antimony trichloride (SbCl3) by intragastric intubation for 60 days. TCMK-1 cells were treated with ATO (12.5 μM), SbCl3 (25 μM) or a combination of As and Sb for 24 h. The results of the in vivo experiment demonstrated that As or/and Sb exposure could induce histopathological changes in the kidneys, and increase the levels of biochemical indicators of nephrotoxicity. In addition, As and Sb can co-induce oxidative stress, which further activate autophagy and pyroptosis. In an in vitro experiment, As and/or Sb coexposure increased ROS generation and decreased MMP. Moreover, the results of related molecular experiments further confirmed that As and Sb coactivated autophagy and pyroptosis. In conclusion, our results indicated that As and Sb co-exposure could cause autophagy and pyroptosis via the ROS pathway, and these two metals might have a synergistic effect on nephrotoxicity.
Collapse
Affiliation(s)
- Fang Wan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Gaolong Zhong
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Shaofeng Wu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Xuanxuan Jiang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Jianzhao Liao
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyong Zhang
- Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | | | - Zhaoxin Tang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Filimon MN, Dumitrescu G, Caraba IV, Sinitean A, Verdes D, Mituletu M, Cornianu M, Popescu R. Effects of mine waste water on rat: bioaccumulation and histopathological evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20222-20239. [PMID: 33410069 DOI: 10.1007/s11356-020-11844-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The highlighting of the bioaccumulation capacity of metals in the internal organs, the mode of distribution at the level of internal organs, the interactions between them, respectively, and the histological changes occurred at the level of the liver and kidneys are the main aspects addressed in the present study. The experiment was performed on 4 groups of Wistar rats: 3 groups which were administered water from rivers located in the vicinity of the Bor mining operation and 1 control group. The determination of the metal content in the administered water samples and in the internal organs was performed using the flame atomic absorption spectrophotometer. Tissue alterations were assessed by histological technique and hematoxylin-eosin staining. The metal retention capacity in the internal organs differs depending on the metal concentration in the administered water sample but also on the organ in which the determination was made. Also, correlations were established between the concentrations of metals at the level of the organs, showing (a) positive and significant correlations-at the level of the heart between Zn and Cu, Fe, and Mn and at the level of the lungs between Mn and Cd-but the most numerous were reported in the testicle; (b) moderate correlations at liver level between Fe and Zn, at spleen level between Cu and Mn and Cd and at the level of the kidneys between Pb and Zn, Cu, and Fe; (c) negative correlations at renal level between Pb and Mn; and (d) insignificant correlations between Pb and Fe. The histological changes identified at the level of the liver and kidney become more obvious, and their aggravation is registered with the increase of the metal content.
Collapse
Affiliation(s)
- Marioara Nicoleta Filimon
- Department Biology-Chemistry, Faculty Chemistry-Biology-Geography, West University of Timisoara, Pestalozzi 16, RO 300315, Timisoara, Romania
| | - Gabi Dumitrescu
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine "King Mihai I of Romania" from Timisoara, Calea Aradului 119, RO 300645, Timisoara, Romania.
| | - Ion Valeriu Caraba
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine "King Mihai I of Romania" from Timisoara, Calea Aradului 119, RO 300645, Timisoara, Romania
| | - Adrian Sinitean
- Department Biology-Chemistry, Faculty Chemistry-Biology-Geography, West University of Timisoara, Pestalozzi 16, RO 300315, Timisoara, Romania
| | - Doina Verdes
- Department of Morphologic microscopy, University of Medicine and Pharmacy "Victor Babes", E. Murgu 2, RO 300041, Timisoara, Romania
| | - Mihai Mituletu
- Department of Morphologic microscopy, University of Medicine and Pharmacy "Victor Babes", E. Murgu 2, RO 300041, Timisoara, Romania
| | - Marioara Cornianu
- Department of Morphologic microscopy, University of Medicine and Pharmacy "Victor Babes", E. Murgu 2, RO 300041, Timisoara, Romania
| | - Roxana Popescu
- Department of Morphologic microscopy, University of Medicine and Pharmacy "Victor Babes", E. Murgu 2, RO 300041, Timisoara, Romania
| |
Collapse
|
15
|
Yu W, Liao J, Yang F, Zhang H, Chang X, Yang Y, Bilal RM, Wei G, Liang W, Guo J, Tang Z. Chronic tribasic copper chloride exposure induces rat liver damage by disrupting the mitophagy and apoptosis pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111968. [PMID: 33550083 DOI: 10.1016/j.ecoenv.2021.111968] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Despite the fact that copper (Cu) is a vital micronutrient to maintain body function, high doses of Cu through environmental exposure damage various organs, especially the liver, which is the main metabolic organ. To investigate the influence of long-term Cu-induced toxicity on mitophagy and apoptosis in rat liver, 96 seven-month-old male Sprague-Dawley rats were fed TBCC for 24 weeks. The results revealed that exposure to high Cu concentrations could promote oxidative stress liver injury by increasing the hepatic function index (ALT, AST and ALP) and MDA content, while reducing the activity of antioxidant enzymes (T-SOD, GSH-Px and CAT) related to oxidative stress. Consistent with histopathological observations, proper dietary Cu (15-60 mg/kg) could improve antioxidant stress levels and induce a dose-dependent increase in the mRNA expression of mitophagy-related genes, whereas a high Cu concentration (120 mg/kg) could cause severe liver impairment and ultrastructural changes and a reduction in mitophagosomes, accompanied by downregulation of Atg5, Beclin1, Pink1, Parkin, NIX, P62 and LC3B. The expression of apoptosis-related genes (Bax, Bax/Bcl-2, Caspase3, Cytc and p53) and proteins (Caspase3 and p53) was upregulated with the addition of dietary Cu. The results demonstrated that an appropriate dose of TBCC could improve liver function by promoting mitophagy and Cu enzymes that play antioxidative roles, while the accumulation of excess Cu could induce liver lesions by enhancing apoptosis and inhibiting mitophagy pathways.
Collapse
Affiliation(s)
- Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Fan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China; Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Xiaoyue Chang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Yanyang Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Rana Muhammad Bilal
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100 Pakistan
| | - Guimei Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Wenqing Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
16
|
Gao HJ, Sun XD, Luo YP, Pang HS, Ma XM, Zhang T, Jing T, Hu W, Shen YJ, Cao JP. Anti-echinococcal effect of verapamil involving the regulation of the calcium/calmodulin-dependent protein kinase II response in vitro and in a murine infection model. Parasit Vectors 2021; 14:108. [PMID: 33588933 PMCID: PMC7885340 DOI: 10.1186/s13071-021-04618-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/29/2021] [Indexed: 11/15/2022] Open
Abstract
Background Echinococcosis, which is caused by the larvae of cestodes of the genus Echinococcus, is a parasitic zoonosis that poses a serious threat to the health of humans and animals globally. Albendazole is the drug of choice for the treatment of echinococcosis, but it is difficult to meet clinical goals with this chemotherapy due to its low cure rate and associated side effects after its long-term use. Hence, novel anti-parasitic targets and effective treatment alternatives are urgently needed. A previous study showed that verapamil (Vepm) can suppress the growth of Echinococcus granulosus larvae; however, the mechanism of this effect remains unclear. The aim of the present study was to gain insight into the anti-echinococcal effect of Vepm on Echinococcus with a particular focus on the regulatory effect of Vepm on calcium/calmodulin-dependent protein kinase II (Ca2+/CaM-CaMKII) in infected mice. Methods The anti-echinococcal effects of Vepm on Echinococcus granulosus protoscoleces (PSC) in vitro and Echinococcus multilocularis metacestodes in infected mice were assessed. The morphological alterations in Echinococcus spp. induced by Vepm were observed by scanning electron microscopy (SEM), and the changes in calcium content in both the parasite and mouse serum and liver were measured by SEM-energy dispersive spectrometry, inductively coupled plasma mass spectrometry and alizarin red staining. Additionally, the changes in the protein and mRNA levels of CaM and CaMKII in infected mice, and in the mRNA levels of CaMKII in E. granulosus PSC, were evaluated after treatment with Vepm by immunohistochemistry and/or real-time quantitative polymerase chain reaction. Results In vitro, E. granulosus PSC could be killed by Vepm at a concentration of 0.5 μg/ml or higher within 8 days. Under these conditions, the ultrastructure of PSC was damaged, and this damage was accompanied by obvious calcium loss and downregulation of CaMKII mRNA expression. In vivo, the weight and the calcium content of E. multilocularis metacestodes from mice were reduced after treatment with 40 mg/kg Vepm, and an elevation of the calcium content in the sera and livers of infected mice was observed. In addition, downregulation of CaM and CaMKII protein and mRNA expression in the livers of mice infected with E. multilocularis metacestodes was found after treatment with Vepm. Conclusions Vepm exerted a parasiticidal effect against Echinococcus both in vitro and in vivo through downregulating the expression of Ca2+/CaM-CaMKII, which was over-activated by parasitic infection. The results suggest that Ca2+/CaM-CaMKII may be a novel drug target, and that Vepm is a potential anti-echinococcal drug for the future control of echinococcosis.![]()
Collapse
Affiliation(s)
- Hai-Jun Gao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, People's Republic of China.,National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, 200025, People's Republic of China.,Ganzr Tibetan Autonomous Prefecture Center for Disease Control and Prevention, Kangding, 626000, Sichuan Province, People's Republic of China
| | - Xu-Dong Sun
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Yan-Ping Luo
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Hua-Sheng Pang
- National Health Commission Key Laboratory of Echinococcosis Prevention and Control, Tibet Autonomous Region Center for Disease Control and Prevention, Lhasa, 850000, Tibet Autonomous Region, People's Republic of China
| | - Xing-Ming Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, 200025, People's Republic of China. .,National Health Commission Key Laboratory of Echinococcosis Prevention and Control, Tibet Autonomous Region Center for Disease Control and Prevention, Lhasa, 850000, Tibet Autonomous Region, People's Republic of China.
| | - Tao Jing
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu Province, People's Republic of China.
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, 200025, People's Republic of China
| | - Yu-Juan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, 200025, People's Republic of China
| | - Jian-Ping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Shanghai, 200025, People's Republic of China
| |
Collapse
|
17
|
Marinković S, Đukanović Đ, Mandić-Kovačević N, Cvjetković T, Uletilović S, Maksimović Ž. Preparing a rat brain tissue samples for acetylcholinesterase activity measurement: The MM method. SCRIPTA MEDICA 2021. [DOI: 10.5937/scriptamed52-35485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Background/Aim: Organophosphorus compounds (OP) bind to acetylcholinesterase (AChE) causing an irreversible inhibition of the enzyme. When doing in vivo studies of OP intoxication, to precisely measure AChE activity in the brain tissue it is necessary to remove as much blood from the brain as possible. By doing so, interference of the OPs present in the blood is avoided. Usually this demands expensive equipment, therefore, the aim of this study was to find a simple and economical method to eliminate the blood from brain blood vessels. Methods: Wistar albino rats were divided into four groups named Control (C), Control washout (CW), Paraoxon (Pox) and Paraoxon washout (PoxW) group. Rats in Pox and PoxW were treated with 0.25 mg/kg paraoxon subcutaneously (sc), while C and CW received 1 mL/kg sc saline instead. The "Marinković-Maksimović" ("MM") method was performed in rats from PoxW and CW groups. Activity of AChE was measured both in erythrocyte lysate and in brain tissue using spectrophotometry. Results: Macroscopic examination revealed that the elimination of blood was achieved in CW and PoxW groups. Activity of AChE in homogenised brain tissue was expectedly lower in the Pox and PoxW group, when compared to C and CW group, respectively. The CW group had a lower value of AChE activity in the brain tissue compared to C group, while activity of AChE in the PoxW group was statistically higher than in the Pox group (p = 0.044). Conclusion: The MM method provides good elimination of blood from the brain. Together with blood, present confounding factors that interfere with analysis in homogenised brain tissue, were also eliminated.
Collapse
|
18
|
Forgotten partners and function regulators of inducible metallothioneins. Arh Hig Rada Toksikol 2020; 70:256-264. [PMID: 32623859 DOI: 10.2478/aiht-2019-70-3317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/01/2019] [Indexed: 11/21/2022] Open
Abstract
Metallothioneins are peculiar cysteine rich, heat resistant, small cellular plasma proteins expressed through almost all life forms. The currently established biological functions of metallothioneins are the homeostasis of essential metals and protection against toxic transitional metals (TM) alongside defence from oxidative stress by direct scavenging of reactive oxygen and nitrogen species (ROS and RNS). In mammals, among the four main evolutionary conserved forms, only the ubiquitously expressed metallothionein 1 and 2 (here abbreviated as MT) are inducible by TM, oxidative stress, glucocorticoids and starvation among various other stimuli. However, more than sixty years after being discovered, metallothioneins still bear unresolved issues about their possible physiological function and regulation. The biological function of MTs has still not been associated with the in vitro-demonstrated capacity of MT interaction with cellular molecules glutathione (GSH) or adenosine triphosphate (ATP), or with the possibility of direct iron-MT binding in the reducing intracellular environment of some organelles, e.g. lysosomes. Iron as the most abundant cellular TM is also one of the main physiological sources of ROS. Moreover, iron exhibits strain, sex and age differences that reflected ROS generation and MT induction in (patho)physiology and toxicology studies. A recent study showed that iron sex differences follows expression of both ferritin and MT leading to wide implications from essential TM interconnectivity to aging. This review places emphasis on biochemically proven but physiologically ignored interactions of MT with iron to stimulate advanced research for establishing a wide frame of the biological roles of MTs important for health and longevity.
Collapse
|
19
|
Zeng X, Zhang X, Fan B, Li Y, Jia Z, Huang W, Liu J, Liu G. Pharmacokinetics of Sodium Selenite in Rat Plasma and Tissues After Intragastric Administration. Biol Trace Elem Res 2020; 196:494-501. [PMID: 31656014 DOI: 10.1007/s12011-019-01928-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 10/03/2019] [Indexed: 01/16/2023]
Abstract
The purpose of this research is to investigate the absorption, distribution, excretion, and pharmacokinetics of selenite in rats after intragastric administration, and thus illustrate the efficiency of selenium (Se) supplementation. After a single gavage of sodium selenite, a concentration of Se in plasma and tissues was determined by inductively coupled plasma mass spectrometry (ICP-MS) at different time points. Through fitting the data with the metabolic kinetic model, the corresponding kinetic parameters were determined for plasma and tissues, including kidney, liver, heart, muscle, and gonad. While the metabolic kinetics of sodium selenite in plasma, liver, and kidney of rats was well reflected by a two-compartment open model, that in heart and gonad was fitted to a one-compartment open model, and that in muscle was fitted to a one-compartment open model with a lag time. The results indicate that sodium selenite was absorbed by plasma and tissues quickly and was eliminated slowly after intragastric administration. Based on the results, we propose that multi-supplementation of Se with low dosage is superior to single supplementation with high dosage, in terms of avoiding selenosis.
Collapse
Affiliation(s)
- Xueying Zeng
- School of Materials Science and Engineering, Wuhan Institute of Technology, Guanggu 1st road, Wuhan, 430205, People's Republic of China
| | - Xiaotian Zhang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, #6 Zhuo Daoquan North Road, Wuhan, 430079, People's Republic of China
| | - Bolin Fan
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, #6 Zhuo Daoquan North Road, Wuhan, 430079, People's Republic of China
| | - Yanmei Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, #6 Zhuo Daoquan North Road, Wuhan, 430079, People's Republic of China
| | - Ziming Jia
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, #6 Zhuo Daoquan North Road, Wuhan, 430079, People's Republic of China
| | - Wenyao Huang
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, #6 Zhuo Daoquan North Road, Wuhan, 430079, People's Republic of China
| | - Jiafa Liu
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, #6 Zhuo Daoquan North Road, Wuhan, 430079, People's Republic of China
| | - Gang Liu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Guanggu 1st road, Wuhan, 430205, People's Republic of China.
| |
Collapse
|
20
|
Wan F, Zhong G, Ning Z, Liao J, Yu W, Wang C, Han Q, Li Y, Pan J, Tang Z, Huang R, Hu L. Long-term exposure to copper induces autophagy and apoptosis through oxidative stress in rat kidneys. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110158. [PMID: 31918257 DOI: 10.1016/j.ecoenv.2019.110158] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 05/15/2023]
Abstract
Copper (Cu) is an essential trace element for most organisms. However, excessive Cu can be highly toxic. The purpose of this study was to elucidate the mechanism underlying Cu toxicity in the kidneys of rats after treatment with CuCl2 (15 [control], 30, 60, or 120 mg/kg in the diet) for 180 days. Histological and ultrastructural changes, antioxidant enzyme activity, and the mRNA and protein levels of apoptosis and autophagy-related genes were measured. The results showed that Cu exposure led to significant accumulation of copper in kidneys and disorganized kidney morphology. The activities of total anti-oxidation capacity (T-AOC) and superoxide dismutase (SOD) in the kidneys decreased significantly, while the malondialdehyde (MDA) content increased. Furthermore, excessive Cu markedly upregulated the expression of autophagy and apoptosis-related genes (LC3A, LC3B, ATG-5, Beclin-1, Caspase3, CytC, P53, Bax), but downregulated the expression of P62, mTOR and BCL-2. Moreover, the LC3B/LC3A, ATG-5, Beclin-1, P53, Caspase3 proteins were up-regulated while P62 was down-regulated in the kidney tissues of the treatment groups. Overall, these findings provide strong evidence that excess Cu can trigger autophagy and apoptosis via the mitochondrial pathway by inducing oxidative stress in rat kidneys.
Collapse
Affiliation(s)
- Fang Wan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhijun Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Congcong Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
21
|
Ljubojević M, Orct T, Micek V, Karaica D, Jurasović J, Breljak D, Madunić IV, Rašić D, Jovanović IN, Peraica M, Gerić M, Gajski G, Oguić SK, Rogić D, Nanić L, Rubelj I, Sabolić I. Sex-dependent expression of metallothioneins MT1 and MT2 and concentrations of trace elements in rat liver and kidney tissues: Effect of gonadectomy. J Trace Elem Med Biol 2019; 53:98-108. [PMID: 30910215 DOI: 10.1016/j.jtemb.2019.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 02/02/2023]
Abstract
Metallothioneins (MTs) exhibit binding affinity for several essential and toxic trace elements. Previous studies in rodents indicated sex differences in the hepatic and renal expression of MTs and concentrations of various elements. The mechanism responsible for these differences has not been resolved. Here, in the liver and kidney tissues of sham-operated and gonadectomized male and female rats we determined the expression of MT1 and MT2 (MT1&2) mRNA by RT-PCR, abundance of MT1&2 proteins by Western blotting and immunocytochemistry, concentrations of essential (Fe, Zn, Cu, Co) and toxic (Cd, Hg, Pb) elements by ICP-MS, and oxidative status parameters (SOD, GPx, MDA, GSH) by biochemical methods. In both organs, the expression of MT1&2 mRNA and MT1&2 proteins was female-dominant, upregulated by castration, and downregulated by ovariectomy. Concentrations of Fe in the liver and Co in the kidneys followed the same pattern. Most other elements (Zn, Cu, Cd, Hg) exhibited female- or male-dominant sex differences, affected by gonadectomy in one or both organs. Pb was sex- and gonadectomy-unaffected. GPx and MDA were elevated and associated with the highest concentrations of Fe only in the female liver. We conclude that the sex-dependent expression of MT1&2 mRNA and proteins in the rat liver and kidneys may include different mechanisms. In the liver, the female-dominant tissue concentrations of Fe may generate oxidative stress which is a potent enhancer of MTs production, whereas in kidneys, the female-dominant expression of MTs may be unrelated to Fe-mediated oxidative stress.
Collapse
Affiliation(s)
- Marija Ljubojević
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Tatjana Orct
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Vedran Micek
- Animal Breeding Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Dean Karaica
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Jasna Jurasović
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Davorka Breljak
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ivana Vrhovac Madunić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Dubravka Rašić
- Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Ivana Novak Jovanović
- Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Maja Peraica
- Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Marko Gerić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Saša Kralik Oguić
- Clinical Institute of Laboratory Diagnostics, Clinical Hospital Center, Zagreb, Croatia
| | - Dunja Rogić
- Clinical Institute of Laboratory Diagnostics, Clinical Hospital Center, Zagreb, Croatia
| | - Lucia Nanić
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivica Rubelj
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivan Sabolić
- Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| |
Collapse
|