1
|
Zahirović A, Fetahović S, Feizi-Dehnayebi M, Višnjevac A, Bešta-Gajević R, Kozarić A, Martić L, Topčagić A, Roca S. Dual Antimicrobial-Anticancer Potential, Hydrolysis, and DNA/BSA Binding Affinity of a Novel Water-Soluble Ruthenium-Arene Ethylenediamine Schiff base (RAES) Organometallic. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124528. [PMID: 38801789 DOI: 10.1016/j.saa.2024.124528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The need for a systematic approach in developing new metal-based drugs with dual anticancer-antimicrobial properties is emphasized by the vulnerability of cancer patients to bacterial infections. In this context, a novel organometallic assembly was designed, featuring ruthenium(II) coordination with p-cymene, one chlorido ligand, and a bidentate neutral Schiff base derived from 4-methoxybenzaldehyde and N,N-dimethylethylenediamine. The compound was extensively characterized in both solid-state and solution, employing single crystal X-ray diffraction, nuclear magnetic resonance, infrared, ultraviolet-visible spectroscopy, and density functional theory, alongside Hirshfeld surface analysis. The hydrolysis kinetic was thoroughly investigated, revealing the important role of the chloro-aqua equilibrium in the dynamics of binding with deoxyribonucleic acid and bovine serum albumin. Notably, the aqua species exhibited a pronounced affinity for deoxyribonucleic acid, engaging through electrostatic and hydrogen bonding interactions, while the chloro species demonstrated groove-binding properties. Interaction with albumin revealed distinct binding mechanisms. The aqua species displayed covalent binding, contrasting with the ligand-like van der Waals interactions and hydrogen bonding observed with the chloro specie. Molecular docking studies highlighted site-specific interactions with biomolecular targets. Remarkably, the compound exhibited wide spectrum moderate antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, coupled with low micromolar cytotoxic activity against human colorectal adenocarcinoma cells and significant activity against human leukemic monocyte lymphoma cells. The presented findings encourage further development of this compound, promising avenues for its evolution into a versatile therapeutic agent targeting both infectious diseases and cancer.
Collapse
Affiliation(s)
- Adnan Zahirović
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Selma Fetahović
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Aleksandar Višnjevac
- Laboratory for Chemical and Biological Crystallography, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Renata Bešta-Gajević
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Amina Kozarić
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Lora Martić
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | - Anela Topčagić
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Sunčica Roca
- NMR Centre, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
2
|
Zahirović A, Fočak M, Fetahović S, Tüzün B, Višnjevac A, Muzika V, Brulić MM, Žero S, Čustović S, Crans DC, Roca S. Hydrazone-flavonol based oxidovanadium(V) complexes: Synthesis, characterization and antihyperglycemic activity of chloro derivative in vivo. J Inorg Biochem 2024; 258:112637. [PMID: 38876026 DOI: 10.1016/j.jinorgbio.2024.112637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Wet synthesis approach afforded four new heteroleptic mononuclear neutral diamagnetic oxidovanadium(V) complexes, comprising salicylaldehyde-based 2-furoic acid hydrazones and a flavonol coligand of the general composition [VO(fla)(L-ONO)]. The complexes were comprehensively characterized, including chemical analysis, conductometry, infrared, electronic, and mass spectroscopy, as well as 1D 1H and proton-decoupled 13C(1H) NMR spectroscopy, alongside extensive 2D 1H1H COSY, 1H13C HMQC, and 1H13C HMBC NMR analyses. Additionally, the quantum chemical properties of the complexes were studied using Gaussian at the B3LYP, HF, and M062X levels on the 6-31++g(d,p) basis sets. The interaction of these hydrolytically inert vanadium complexes and the BSA was investigated through spectrofluorimetric titration, synchronous fluorimetry, and FRET analysis in a temperature-dependent manner, providing valuable thermodynamic insights into van der Waals interactions and hydrogen bonding. Molecular docking was conducted to gain further understanding of the specific binding sites of the complexes to BSA. Complex 2, featuring a 5-chloro-substituted salicylaldehyde component of the hydrazone, was extensively examined for its biological activity in vivo. The effects of complex administration on biochemical and hematological parameters were evaluated in both healthy and diabetic Wistar rats, revealing antihyperglycemic activity at millimolar concentration. Furthermore, histopathological analysis and bioaccumulation studies of the complex in the brain, kidneys, and livers of healthy and diabetic rats revealed the potential for further development of vanadium(V) hydrazone complexes as antidiabetic and insulin-mimetic agents.
Collapse
Affiliation(s)
- Adnan Zahirović
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Selma Fetahović
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Aleksandar Višnjevac
- Laboratory for Chemical and Biological Crystallography, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Višnja Muzika
- Department of Histology and Embryology, Faculty of Medicine, University of Sarajevo, Bosnia and Herzegovina
| | - Maja Mitrašinović Brulić
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Sabina Žero
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Samra Čustović
- Department of Histology and Embryology, Faculty of Medicine, University of Sarajevo, Bosnia and Herzegovina
| | - Debbie C Crans
- Cell & Molecular Biology Program, Colorado State University, Fort Collins, USA
| | - Sunčica Roca
- NMR Centre, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
3
|
Pandya C, Sivaramakrishna A. Exploring the binding properties of DNA/BSA and cytotoxicity studies with new terpyridine-ester-based metal complexes (M = Fe(III), Ni(II), Cu(II) and Ru(III)) - A comparative analysis. Int J Biol Macromol 2024; 274:132792. [PMID: 38834110 DOI: 10.1016/j.ijbiomac.2024.132792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/12/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Many terpyridines and their metal complexes are known to exhibit remarkable potential for the interaction of biological targets. Notably, a subtle change in the structure of the ligand can influence these interactions significantly. In this regard, it would be very interesting to assess the binding affinity of functionalized molecules with DNA/BSA. In this work, a novel ester-based terpyridine (L) and the corresponding four metal complexes with Ni(II) (MC1), Cu(II) (MC2), Fe(III) (MC3) and Ru(III) (MC4) were prepared and structurally characterized using various spectroscopic and analytical techniques including the validation of molecular structures of ligand (L) and Ni(II)-Tpy complex (MC1). The EPR data demonstrate that MC1 is diamagnetic and other complexes (MC2-MC4) exhibit paramagnetic behavior. Additionally, the structures of ligands and metal complexes were determined using DFT studies and the same were utilized for the docking studies. Interestingly, MC3 and MC4 exhibit a predominant lowest binding energy of -9.62 Kcal/mol (with DNA) and -10.05 Kcal/mol (with BSA) respectively. The binding affinity of the ligand and its complexes with protein and DNA was evaluated by spectroscopic techniques. Notably, the cytotoxicity studies of L and MC1-MC4 were performed against the MCF-7 (human breast cancer) cell lines. The complex MC4 displayed great activity with an IC50 of 3.5 ± 1.75 μM among all synthesized compounds and comparable with cisplatin.
Collapse
Affiliation(s)
- Chayan Pandya
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Zahirović A, Hadžalić S, Višnjevac A, Fočak M, Tüzün B, Žilić D, Roca S, Jurec J, Topčagić A, Osmanković I. Vanadium(IV) complexes of salicylaldehyde-based furoic acid hydrazones: Synthesis, BSA binding and in vivo antidiabetic potential. J Inorg Biochem 2023; 244:112232. [PMID: 37084582 DOI: 10.1016/j.jinorgbio.2023.112232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Solution synthesis afforded five novel neutral heteroleptic octahedral paramagnetic mononuclear oxidovanadium(IV) complexes of general composition [VO(bpy)L], where L is a dianionic tridentate ONO-donor hydrazone ligand derived from 2-furoic acid hydrazide and salicylaldehyde and its 5-substituted derivatives. Characterization was carried out by elemental analysis, mass spectrometry, infrared, electron, NMR, and EPR spectroscopy, cyclic voltammetry and conductometry. The molecular and crystal structure of the complex with 5-chloro-salicylaldehyde 2-furoic acid hydrazone (2) was determined. The quantum chemical properties of the vanadium complexes were studied at B3LYP and M062X levels with the lanl2dz basis set using Gaussian. Additionally, Swiss-ADME analysis was performed and complex (4), featuring a 5-nitro substituent on the hydrazone ligand, was selected for further investigation. The effects of the in vivo application of the complex on selected biochemical parameters in healthy and diabetic Wistar rats were investigated. Strong antidiabetic effect associated with moderate hypoalbuminemia was observed. Furthermore, the interaction of complexes with BSA was studied by spectrofluorimetry. A significant conformational change of BSA in the presence of vanadium complexes was found. Synchronous fluorescence spectra revealed significant changes in the tyrosine microenvironment of BSA. The FRET analysis was also used and the non-radiative process of energy transfer is elucidated. Thermodynamic data suggest van der Waals forces and hydrogen bonding as predominant binding modes of complexes to BSA.
Collapse
Affiliation(s)
- Adnan Zahirović
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Selma Hadžalić
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | | | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | | | | | | | - Anela Topčagić
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Irnesa Osmanković
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
5
|
Reddy DS, Sinha A, Kurjogi MM, Shanavaz H, Kumar A. Design, synthesis, molecular docking, and biological evaluation of coumarin-thymidine analogs as potent anti-TB agents. Arch Pharm (Weinheim) 2023; 356:e2200633. [PMID: 36634969 DOI: 10.1002/ardp.202200633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023]
Abstract
With the intent to discover new antituberculosis (TB) compounds, coumarin-thymidine analogs were synthesized using second-order nucleophilic substitution reactions of bromomethyl coumarin with thymidine. The newly synthesized coumarin-thymidine conjugates (1a-l) were characterized using IR, NMR, GC-MS, and CHN elemental analysis. The novel conjugates were found to exhibit potent anti-TB activity against the Mycobacterium tuberculosis H37 Rv strain, with minimum inhibitory concentrations (MIC) of the active compounds ranging between 0.012 and 0.482 µM. Compound 1k was established as the most active candidate with a MIC of 0.012 µM. The toxicity study on HEK cells confirmed the nontoxic nature of compounds 1e, 1h, 1i, 1j, and 1k. Also, the most active compounds (1k, 1j, and 1e) were stable in the pH range from 2.5 to 10, indicating compatibility with the biophysical environment. Based on the pKa studies, compounds 1k, 1j, and 1e are capable of crossing lipid-membrane barriers and acting on target cells. Molecular docking studies on the M. tuberculosis β-oxidation trifunctional enzyme (PDB ID: 7O4V) were conducted to investigate the mechanisms of anti-TB activity. All compounds showed excellent hydrogen binding interactions and exceptional docking scores against M. tuberculosis, which was in accordance with the results. Compounds 1a-l possessed excellent affinity to proteins, with binding energies ranging from -7.4 to -8.7 kcal/mol.
Collapse
Affiliation(s)
- Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain (Deemed-to-be-University), Bangalore, Karnataka, India
| | - Anamika Sinha
- Centre for Nano and Material Sciences, Jain (Deemed-to-be-University), Bangalore, Karnataka, India
| | - Mahantesh M Kurjogi
- Multi-Disciplinary Research Unit, Karnataka Institute of Medical Sciences, Hubli, Karnataka, India
| | - H Shanavaz
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Bangalore, Karnataka, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain (Deemed-to-be-University), Bangalore, Karnataka, India
| |
Collapse
|
6
|
Kothandan S, Thirumoorthy K, Rodríguez-Diéguez A, Sheela A. Oxoperoxovanadium Complexes of Hetero Ligands: X-Ray Crystal Structure, Density Functional Theory, and Investigations on DNA/BSA Interactions, Cytotoxic, and Molecular Docking Studies. Bioinorg Chem Appl 2022; 2022:8696420. [PMID: 36034769 PMCID: PMC9402336 DOI: 10.1155/2022/8696420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
Oxoperoxovanadium (V) complexes [VO (O)2 (nf) (bp)] (1) and [VO (O)2 (ox) (bp)] (2) based on 5-nitro-2-furoic acid (nf), oxine (ox) and 2, 2' bipyridine (bp) bidentate ligands have been synthesized and characterized by FT-IR, UV-visible, mass, and NMR spectroscopic techniques. The structure of complex 2 shows distorted pentagonal-bipyramidal geometry, as confirmed by a single-crystal XRD diffraction study. The interactions of complexes with bovine serum albumin (BSA) and calf thymus DNA (CT-DNA) are investigated using UV-visible and fluorescence spectroscopic techniques. It has been observed that CT-DNA interacts with complexes through groove binding mode and the binding constants for complexes 1 and 2 are 8.7 × 103 M-1 and 8.6 × 103 M-1, respectively, and BSA quenching constants for complexes 1 and 2 are 0.0628 × 106 M-1 and 0.0163 × 106 M-1, respectively. The ability of complexes to cleave DNA is investigated using the gel electrophoresis method with pBR322 plasmid DNA. Furthermore, the cytotoxic effect of the complexes is evaluated against the HeLa cell line using an MTT assay. The complexes are subjected to density functional theory calculations to gain insight into their molecular geometries and are in accordance with the results of docking studies. Furthermore, based on molecular docking studies, the intermolecular interactions responsible for the stronger binding affinities between metal complexes and DNA are discussed.
Collapse
Affiliation(s)
- Saraswathi Kothandan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India
| | - Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av/Severo Ochoa s/n, Granada 18071, Spain
| | - Angappan Sheela
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India
| |
Collapse
|
7
|
Sinha A, Chaudhary R, Reddy DS, Kongot M, Kurjogi MM, Kumar A. ON donor tethered copper (II) and vanadium (V) complexes as efficacious anti-TB and anti-fungal agents with spectroscopic approached HSA interactions. Heliyon 2022; 8:e10125. [PMID: 36033266 PMCID: PMC9403362 DOI: 10.1016/j.heliyon.2022.e10125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial drug resistance poses a significant threat worldwide, hence triggering an urgent situation for developing feasible drugs. 3D-transition metal coordination complexes being multifaceted, offer tremendous potency as drug candidates. However, there are fewer reports on non-toxic and safe transition metal complexes; therefore, we hereby attempted to develop novel copper and vanadium-based therapeutic agents. We have synthesised six metal complexes viz., [VVO2(Quibal-INH)] (1), [CuII(Quibal-INH)2] (2), [VVO(Quibal-INH) (cat)] (3), [CuII(Quibal-INH) (cat)] (4), [VVO(Quibal-INH) (bha)] (5) and [CuII(Quibal-INH) (bha)] (6). Quibal-INH (L) is an ON bidentate donor ligand synthesized from Schiff base reaction between 4-(2-(7-chloroquinolin-3-yl)vinyl)benzaldehyde (Quibal) and Isoniazid (INH). The synthesized compounds were characterized using analytical techniques involving ATR-IR, UV-Vis, EPR, 1H NMR, 13C NMR, and 51V NMR. Ligand (L) and compound 3 exhibited moderate growth inhibitory activity towards Candida albicans and Cryptococcus neoformans fungal species. Compound 6 has been identified as active against the above fungal species with no toxicity and hemolysis activity on the healthy cells. Compound 5 exhibited significant activity against the Mycobacterium tuberculosis H 37 R v strain. Further, compounds 4, 5 and 6 exhibited excellent free radical scavenging activity. All the developed compounds were found to exhibit stability over a wide range of pH conditions. The complexes were additionally studied for their interaction with human serum albumin (HSA) with the UV-vis spectroscopic technique.
Collapse
Affiliation(s)
- Anamika Sinha
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Riya Chaudhary
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Manasa Kongot
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Mahantesh M Kurjogi
- Multi-Disciplinary Research Unit, Karnataka Institute of Medical Sciences, Hubli, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
| |
Collapse
|
8
|
Pessoa JC, Santos MF, Correia I, Sanna D, Sciortino G, Garribba E. Binding of vanadium ions and complexes to proteins and enzymes in aqueous solution. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Sahu G, Banerjee A, Samanta R, Mohanty M, Lima S, Tiekink ERT, Dinda R. Water-Soluble Dioxidovanadium(V) Complexes of Aroylhydrazones: DNA/BSA Interactions, Hydrophobicity, and Cell-Selective Anticancer Potential. Inorg Chem 2021; 60:15291-15309. [PMID: 34597028 DOI: 10.1021/acs.inorgchem.1c01899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Five new anionic aqueous dioxidovanadium(V) complexes, [{VO2L1,2}A(H2O)n]α (1-5), with the aroylhydrazone ligands pyridine-4-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)hydrazide (H2L1) and furan-2-carboxylic acid (3-ethoxy-2-hydroxybenzylidene)hydrazide (H2L2) incorporating different alkali metals (A = Na+, K+, Cs+) as countercation were synthesized and characterized by various physicochemical techniques. The solution-phase stabilities of 1-5 were determined by time-dependent NMR and UV-vis, and also the octanol/water partition coefficients were obtained by spectroscopic techniques. X-ray crystallography of 2-4 confirmed the presence of vanadium(V) centers coordinated by two cis-oxido-O atoms and the O, N, and O atoms of a dianionic tridentate ligand. To evaluate the biological behavior, all complexes were screened for their DNA/protein binding propensity through spectroscopic experiments. Finally, a cytotoxicity study of 1-5 was performed against colon (HT-29), breast (MCF-7), and cervical (HeLa) cancer cell lines and a noncancerous NIH-3T3 cell line. The cytotoxicity was cell-selective, being more active against HT-29 than against other cells. In addition, the role of hydrophobicity in the cytotoxicity was explained in that an optimal hydrophobicity is essential for high cytotoxicity. Moreover, the results of wound-healing assays indicated antimigration in case of HT-29 cells. Remarkably, 1 with an IC50 value of 5.42 ± 0.15 μM showed greater activity in comparison to cisplatin against the HT-29 cell line.
Collapse
Affiliation(s)
- Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Rajib Samanta
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| | - Edward R T Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, 5 Jalan Universiti, Sunway University, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008 Odisha, India
| |
Collapse
|
10
|
Perontsis S, Chasapis CT, Hatzidimitriou AG, Psomas G. Synthesis, characterization and (in vitro and in silico) biological activity of a series of dioxouranium(VI) complexes with non-steroidal anti-inflammatory drugs. J Inorg Biochem 2021; 223:111534. [PMID: 34273715 DOI: 10.1016/j.jinorgbio.2021.111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
The reaction of the dioxouranium(VI) ion with a series of non-steroidal anti-inflammatory drugs (NSAIDs), namely mefenamic acid, indomethacin, diclofenac, diflunisal and tolfenamic acid, as ligands in the absence or presence of diverse N,N'-donors (1,10-phenanthroline,2,2'-bipyridine or 2,2'-bipyridylamine) as co-ligands led to the formation of ten complexes bearing the formulas [UO2(NSAID-O,O')2(O-donor)2] or [UO2(NSAID-O,O')2(N,N'-donor)], respectively. The complexes were characterized with diverse spectroscopic techniques and the crystal structures of three complexes were determined by single-crystal X-ray crystallography. The biological profile of the resultant complexes was assessed in vitro and in silico. The in vitro studies include their antioxidant properties (ability to scavenge free radicals 1,1-diphenyl-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) and to reduce H2O2), their interaction with DNA (linear calf-thymus DNA or supercoiled circular pBR322 plasmid DNA) and their affinity for serum albumins (bovine and human serum albumin). In silico molecular docking calculations were performed regarding the behavior of the complexes towards DNA and their binding to both albumins.
Collapse
Affiliation(s)
- Spyros Perontsis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Christos T Chasapis
- NMR Facility, Instrumental Analysis Laboratory, School of Natural Sciences, University of Patras, Greece
| | - Antonios G Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
11
|
Kongot M, Chaudhary R, M S P, Reddy D, Singh V, Avecilla F, Singhal NK, Kumar A. Oxidovanadium(IV/V) complexes bound with a ONS donor backbone: The search for therapeutic versatility in one class of compounds. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Manasa Kongot
- Centre for Nano and Material Sciences Jain University, Jain Global Campus Bengaluru India
| | - Riya Chaudhary
- Centre for Nano and Material Sciences Jain University, Jain Global Campus Bengaluru India
| | - Pooja M S
- Centre for Nano and Material Sciences Jain University, Jain Global Campus Bengaluru India
| | - Dinesh Reddy
- Centre for Nano and Material Sciences Jain University, Jain Global Campus Bengaluru India
| | - Vishal Singh
- National Agri‐Food Biotechnology Institute Mohali India
| | - Fernando Avecilla
- Grupo Xenomar, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Química, Facultade de Ciencias Universidade da Coruña, Campus de A Coruña A Coruña Spain
| | | | - Amit Kumar
- Centre for Nano and Material Sciences Jain University, Jain Global Campus Bengaluru India
| |
Collapse
|
12
|
Tyszka-Czochara M, Adach A, Grabowski T, Konieczny P, Pasko P, Ortyl J, Świergosz T, Majka M. Selective Cytotoxicity of Complexes with N,N,N-Donor Dipodal Ligand in Tumor Cells. Int J Mol Sci 2021; 22:ijms22041802. [PMID: 33670389 PMCID: PMC7917659 DOI: 10.3390/ijms22041802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
The present article demonstrates selective cytotoxicity against cancer cells of the complexes [Co(LD)2]I2∙CH3OH (1), [CoLD(NCS)2] (2) and [VOLD(NCS)2]∙C6H5CH3 (3) containing the dipodal tridentate ligand LD = N,N-bis(3,5-dimethylpyrazol-1-ylmethyl)amine), formed in situ. All tested complexes expressed greater anticancer activities and were less toxic towards noncancerous cells than cisplatin. Cobalt complexes (1 and 2) combined high cytotoxicity with selectivity towards cancer cells and caused massive tumour cell death. The vanadium complex (3) induced apoptosis specifically in cancer cells and targeted proteins, controlling their invasive and metastatic properties. The presented experimental data and computational prediction of drug ability of coordination compounds may be helpful for designing novel and less toxic metal-based anticancer species with high specificities towards tumour cells.
Collapse
Affiliation(s)
| | - Anna Adach
- Institute of Chemistry, Jan Kochanowski University, 25-406 Kielce, Poland;
| | | | - Paweł Konieczny
- Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (P.K.); (M.M.)
| | - Paweł Pasko
- Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland;
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland;
- Photo HiTech Ltd., Life Science Park, Bobrzyńskiego 14, 30-348 Cracow, Poland
| | - Tomasz Świergosz
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland;
| | - Marcin Majka
- Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; (P.K.); (M.M.)
| |
Collapse
|
13
|
Parray MUD, AlOmar SY, Alkhuriji A, Wani FA, Parray ZA, Patel R. Refolding of guanidinium hydrochloride denatured bovine serum albumin using pyridinium based ionic liquids as artificial chaperons. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Kumar A, Kurbah SD, Syiemlieh I, Dhanpat SA, Borthakur R, Lal RA. Synthesis, characterization, reactivity, and catalytic studies of heterobimetallic vanadium(V) complexes containing hydrazone ligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Synthesis and Characterization of Serendipitous Dioxovanadates and Their DNA/BSA Interaction Studies and In Vitro Cytotoxic activity. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01815-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Kongot M, Reddy DS, Singh V, Patel R, Singhal NK, Kumar A. Physicochemical, in-vitro therapeutic activity and biomolecular interaction studies of Mn(II), Ni(II) and Cu(II) complexes tethered with O 2N 2 ligand backbone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118613. [PMID: 32610216 DOI: 10.1016/j.saa.2020.118613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Two major health crisis of today's world are antimicrobial drug resistance and type II diabetes. To tackle them, there is an immediate requirement for the development of new and safer drugs and the present work is one such quest for novel and efficient drug candidates. We have developed three trace metal coordination compounds tethered with a reduced salen ligand {H2(hpdbal)2-an} (L), namely, a manganese-salan complex, [MnII(H2O)2{(hpdbal)2-an}] (1), a nickel-salan complex, [NiII{(hpdbal)2-an}] (2) and a copper-salan complex, [CuII{(hpdbal)2-an}] (3). The compounds were characterized by elemental analysis, vibrational spectroscopy, electronic spectroscopy, thermogravimetric analysis, nuclear magnetic resonance and electron-paramagnetic resonance techniques. The compounds were evaluated for antimicrobial activity against seven pathogens (Escherichia coli, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans and Cryptococcus neoformans) and antidiabetic activity by mimicking diabetic environment on the immortal human liver cancer cells, HepG2. Complexes 1 and 2 were additionally tested for their reactivity and stability in biological media mimic conditions. The nickel(II) salan complex (2) exhibited noteworthy antifungal activity against Candida albicans and the manganese(II) salan complex (1) induced increased glucose uptake by the insulin resistant cells. Both compounds were found to be stable when solution pH conditions were varied from 3 to 9. They exhibited strong affinity of binding towards a carrier protein, bovine serum albumin which was evaluated with the aid of multi-spectroscopic techniques.
Collapse
Affiliation(s)
- Manasa Kongot
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Vishal Singh
- National Agri Food Biotechnology Institute, Mohali 140306, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | | | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India.
| |
Collapse
|
17
|
Reddy DS, Kongot M, Singh V, Siddiquee MA, Patel R, Singhal NK, Avecilla F, Kumar A. Biscoumarin-pyrimidine conjugates as potent anticancer agents and binding mechanism of hit candidate with human serum albumin. Arch Pharm (Weinheim) 2020; 354:e2000181. [PMID: 32945576 DOI: 10.1002/ardp.202000181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/03/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022]
Abstract
In our continuing efforts to develop therapeutically active coumarin-based compounds, a series of new C4-C4' biscoumarin-pyrimidine conjugates (1a-l) was synthesized via SN 2 reaction of substituted 4-bromomethyl coumarin with thymine. All compounds were characterized using spectroscopic techniques, that is, attenuated total reflection infrared (ATR-IR), CHN elemental analysis, and 1 H and 13 C NMR (nuclear magnetic resonance). In addition, the structure of compound 1d (1,3-bis[(7-chloro-2-oxo-2H-chromen-4-yl)methyl]-5-methylpyrimidine-2,4(1H,3H)-dione) was established through X-ray crystallography. Compounds 1a-l were screened for in vitro anticancer activity against C6 rat glioma cells. Among the screened compounds, 1,3-bis[(6-chloro-2-oxo-2H-chromen-4-yl)methyl]-5-methylpyrimidine-2,4(1H,3H)-dione (1c) was identified as the best antiproliferative candidate, exhibiting an IC50 value of 4.85 μM. All the compounds (1a-l) were found to be nontoxic toward healthy human embryonic kidney cells (HEK293), indicating their selective nature. In addition, the most active compound (1c) displayed strong binding interactions with the drug carrier protein, human serum albumin, and exhibited good solution stability at biological pH conditions. Fluorescence, UV-visible spectrophotometry and molecular modeling methodologies were employed for studying the interaction mechanism of compound 1c with protein.
Collapse
Affiliation(s)
- Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, India
| | - Manasa Kongot
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, India
| | - Vishal Singh
- National Agri Food Biotechnology Institute, Mohali, India
| | - Md Abrar Siddiquee
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | | | - Fernando Avecilla
- Departamento de Química, Facultade de Ciencias, Grupo Xenomar, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, A Coruña, Spain
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, India
| |
Collapse
|
18
|
Thakur S, Gil DM, Frontera A, Chattopadhyay S. Exploration of Br⋯O halogen bonding interactions in dinuclear vanadium(V) complexes with Schiff base ligands. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114676] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Kongot M, Reddy DS, Singh V, Patel R, Singhal NK, Kumar A. A manganese (II) complex tethered with S-benzyldithiocarbazate Schiff base: Synthesis, characterization, in-vitro therapeutic activity and protein interaction studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118123. [PMID: 32058916 DOI: 10.1016/j.saa.2020.118123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
There is an urgent need to eliminate the era of superbugs through design and development of novel and sustainable drugs. Transition metal complexes can be one of the hopes for tackling drug resistant pathogens. In this view, we have developed a manganese complex appended with an ON donor ligand which has shown excellent activity against one of the prominent fungal species. The Mn (II) complex, [MnII(OH2)2(Hhpdbal-sbdt)2] (1) was synthesized using a Schiff base ligand derived from an azo aldehyde and S-benzyldithiocarbazate. The complex was characterized with the help of analytical techniques such as elemental analysis, FT-IR, EDAX, EPR and TGA. The solution behavior in physiological conditions and in biological media was preliminarily evaluated by studying the behavior of complex in varied pH conditions and in the presence of protein, BSA. The effect of the compound on few drug resistant pathogenic species of bacteria and fungi and on the uptake of glucose by insulin resistant cells was evaluated using whole cell inhibition assay and NBDG assay respectively. The study gave a noteworthy result with respect to the manganese compound's biological activity, with an inhibitory activity of 93% towards a fungi species, Cryptococcus neoformans and with a relatively good glucose uptake inducing capacity. The manganese complex, which maintains its stability over a wide range of pH conditions and interacts with serum protein, BSA in a facile manner can be an excellent drug candidate and eventually be added to the library of compounds being screened for in vivo activity studies.
Collapse
Affiliation(s)
- Manasa Kongot
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Dinesh S Reddy
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Vishal Singh
- National Agri Food Biotechnology Institute, Mohali 140306, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | | | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India.
| |
Collapse
|
20
|
Kongot M, Reddy DS, Singh V, Patel R, Singhal NK, Kumar A. Oxidovanadium (IV) and iron (III) complexes with O
2
N
2
donor linkage as plausible antidiabetic candidates: Synthesis, structural characterizations, glucose uptake and model biological media studies. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Manasa Kongot
- Centre for Nano and Material SciencesJain University Jain Global Campus Bengaluru 562112 Karnataka India
| | - Dinesh S. Reddy
- Centre for Nano and Material SciencesJain University Jain Global Campus Bengaluru 562112 Karnataka India
| | - Vishal Singh
- National Agri Food Biotechnology Institute Mohali 140306 India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic SciencesJamia Millia Islamia (A Central University) New Delhi 110025 India
| | | | - Amit Kumar
- Centre for Nano and Material SciencesJain University Jain Global Campus Bengaluru 562112 Karnataka India
| |
Collapse
|
21
|
Coumarin tethered cyclic imides as efficacious glucose uptake agents and investigation of hit candidate to probe its binding mechanism with human serum albumin. Bioorg Chem 2019; 92:103212. [PMID: 31465968 DOI: 10.1016/j.bioorg.2019.103212] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 12/30/2022]
Abstract
A series of novel coumarin-cyclic imide conjugates (1a-1j) were designed and synthesized to evaluate their glucose uptake activity by insulin resistant liver hepatocyte carcinoma (HepG2) cells through 2-NBDG uptake assay. Compounds (1a-1j) were characterised using various analytical methods such as 1H NMR, 13C NMR, IR, GC-MS, elemental and single-crystal X-ray diffraction techniques. Compounds (1a-1j) exhibited 85.21 - 65.80% of glucose uptake and showed low level of cytotoxicity towards human embryonic kidney cells (HEK-293) indicating good selectivity and safety profile. Compound 1f was identified as a hit candidate exhibiting 85.21% of glucose uptake which was comparable with standard antidiabetic drug Metformin (93.25% glucose uptake). Solution stability study under physiological pH conditions ≈ (3.4 - 8.7), indicates that compound 1f is sufficiently stable at varied pH conditions and thereby compatible with bio-physiological environments. Interaction of 1f with human serum albumin (HSA) were also studied which quantifies that compound 1f binds with HSA efficiently through facile binding reaction in solution. Fluorescence, UV-vis spectrophotometry and molecular modeling methodologies were employed for studying the interaction mechanism of compound 1f with protein.
Collapse
|
22
|
Kongot M, Reddy D, Singh V, Patel R, Singhal NK, Kumar A. Potent drug candidature of an ONS donor tethered copper (II) complex: Anticancer activity, cytotoxicity and spectroscopically approached BSA binding studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:330-342. [PMID: 30669096 DOI: 10.1016/j.saa.2019.01.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
In our continued efforts to develop metal based therapeutic agents, we have synthesized a novel copper(II) complex, [{Cu(hpdbal-sbdt)}2] (2) tethered with a biocompatible ONS2- donor backbone [H2hpdbal-sbdt] (1) [H2hpdbal-sbdt is a tridentate ligand derived from S-benzyldithiocarbazate (Hsbdt) and 2-hydroxy-5-(phenyldiazenyl)benzaldehyde (Hhpdbal)]. The metal complex (2) was characterized using attenuated total reflection-infrared (ATR-IR) spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, thermogravimetry and differential scanning calorimetric (TG-DSC) analysis, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS) and elemental (CHNS) analysis. The antineoplastic ability of copper complex was evaluated in vitro against human cervical cancer (HeLa) cells. MTT assay results showed that the copper complex exhibited significant growth inhibition of HeLa cells with an IC50 value of 4.46 μM and this value was compared with reported standards. Cytotoxicity of the copper complex towards human embryonic kidney cells (HEK-293) was also evaluated. The potentially active copper complex was studied for its solution state stability at a pH range of 3-9. Following this, the interactive behaviour of the bioactive copper complex with a drug transporter protein (BSA) was deciphered through multi-spectrosopic investigations like steady-state fluorescence, three-dimensional fluorescence, deconvoluted-IR and UV-Visible techniques.
Collapse
Affiliation(s)
- Manasa Kongot
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Dinesh Reddy
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, 562112, Karnataka, India
| | - Vishal Singh
- National Agri Food Biotechnology Institute, Mohali 140306, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | | | - Amit Kumar
- Centre for Nano and Material Sciences, JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, 562112, Karnataka, India.
| |
Collapse
|
23
|
Kongot M, Reddy DS, Singh V, Patel R, Singhal NK, Kumar A. ONS donor entwined iron(iii) and cobalt(iii) complexes with exemplary safety profile as potent anticancer and glucose uptake agents. NEW J CHEM 2019. [DOI: 10.1039/c9nj00883g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly safe, efficacious iron(iii) and cobalt(iii) complexes are found to be effective in vitro anticancer and antidiabetic agents.
Collapse
Affiliation(s)
- Manasa Kongot
- Centre for Nano and Material Sciences
- JAIN (Deemed-to-be University)
- Jain Global Campus
- Bengaluru
- India
| | - Dinesh S. Reddy
- Centre for Nano and Material Sciences
- JAIN (Deemed-to-be University)
- Jain Global Campus
- Bengaluru
- India
| | - Vishal Singh
- National Agri Food Biotechnology Institute
- Mohali
- India
| | - Rajan Patel
- Biophysical Chemistry Laboratory
- Centre for Interdisciplinary Research in Basic Sciences
- Jamia Millia Islamia (A Central University)
- New Delhi-110025
- India
| | | | - Amit Kumar
- Centre for Nano and Material Sciences
- JAIN (Deemed-to-be University)
- Jain Global Campus
- Bengaluru
- India
| |
Collapse
|