1
|
Lorek M, Kamiński P, Baszyński J, Tadrowski T, Gorzelańczyk EJ, Feit J, Kurhaluk N, Woźniak A, Tkaczenko H. Molecular and Environmental Determinants of Addictive Substances. Biomolecules 2024; 14:1406. [PMID: 39595582 PMCID: PMC11592269 DOI: 10.3390/biom14111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Knowledge about determinants of addiction in people taking addictive substances is poor and needs to be supplemented. The novelty of this paper consists in the analysis of innovative aspects of current research about relationships between determinants of addiction in Polish patients taking addictive substances and rare available data regarding the relationships between these factors from studies from recent years from other environments, mainly in Europe, and on the development of genetic determinants of physiological responses. We try to explain the role of the microelements Mn, Fe, Cu, Co, Zn, Cr, Ni, Tl, Se, Al, B, Mo, V, Sn, Sb, Ag, Sr, and Ba, the toxic metals Cd, Hg, As, and Pb, and the rare earth elements Sc, La, Ce, Pr, Eu, Gd, and Nd as factors that may shape the development of addiction to addictive substances or drugs. The interactions between factors (gene polymorphism, especially ANKK1 (TaqI A), ANKK1 (Taq1 A-CT), DRD2 (TaqI B, DRD2 Taq1 B-GA, DRD2 Taq1 B-AA, DRD2-141C Ins/Del), and OPRM1 (A118G)) in patients addicted to addictive substances and consumption of vegetables, consumption of dairy products, exposure to harmful factors, and their relationships with physiological responses, which confirm the importance of internal factors as determinants of addiction, are analyzed, taking into account gender and region. The innovation of this review is to show that the homozygous TT mutant of the ANKK1 TaqI A polymorphism rs 1800497 may be a factor in increased risk of opioid dependence. We identify a variation in the functioning of the immune system in addicted patients from different environments as a result of the interaction of polymorphisms.
Collapse
Affiliation(s)
- Małgorzata Lorek
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (M.L.); (J.B.)
| | - Piotr Kamiński
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (M.L.); (J.B.)
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland
| | - Jędrzej Baszyński
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (M.L.); (J.B.)
| | - Tadeusz Tadrowski
- Department of Dermatology and Venereology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland;
| | - Edward Jacek Gorzelańczyk
- Institute of Philosophy, Kazimierz Wielki University in Bydgoszcz, M.K. Ogiński St. 16, PL 85-092 Bydgoszcz, Poland;
- Faculty of Mathematics and Computer Science, Adam Mickiewicz University in Poznań, Uniwersytet Poznański St., 4, PL 61-614 Poznań, Poland
- Primate Cardinal Stefan Wyszyński Provincial Hospital in Sieradz, Psychiatric Centre in Warta, Sieradzka St. 3, PL 98-290 Warta, Poland
- Department of Theoretical Foundations of Biomedical Sciences and Medical Computer Science, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jagiellońska St. 15, PL 85-067 Bydgoszcz, Poland
| | - Julia Feit
- Pallmed sp. z o.o., W. Roentgen St. 3, PL 85-796 Bydgoszcz, Poland;
| | - Natalia Kurhaluk
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (N.K.); (H.T.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Karłowicz St. 24, PL 85-092 Bydgoszcz, Poland;
| | - Halina Tkaczenko
- Department of Animal Physiology, Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (N.K.); (H.T.)
| |
Collapse
|
2
|
Bhattacharya T, Gupta A, Gupta S, Saha S, Ghosh S, Shireen Z, Dey S, Sinha S. Benzofuran Iboga-Analogs Modulate Nociception and Inflammation in an Acute Mouse Pain Model. Chembiochem 2024; 25:e202400162. [PMID: 38874536 DOI: 10.1002/cbic.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
Pain management following acute injury or post-operative procedures is highly necessary for proper recovery and quality of life. Opioids and non-steroidal anti-inflammatory drugs (NSAIDS) have been used for this purpose, but opioids cause addiction and withdrawal symptoms whereas NSAIDS have several systemic toxicities. Derivatives of the naturally occurring iboga alkaloids have previously shown promising behavior in anti-addiction of morphine by virtue of their interaction with opioid receptors. On this frontier, four benzofuran analogs of the iboga family have been synthesized and their analgesic effects have been studied in formalin induced acute pain model in male Swiss albino mice at 30 mg/kg of body weight dose administered intraperitoneally. The antioxidant, anti-inflammatory and neuro-modulatory effects of the analogs were analyzed. Reversal of tail flick latency, restricted locomotion and anxiogenic behavior were observed in iboga alcohol, primary amide and secondary amide. Local neuroinflammatory mediators' substance P, calcitonin gene related peptide, cyclooxygenase-2 and p65 were significantly decreased whereas the depletion of brain derived neurotrophic factor and glia derived neurotrophic factor was overturned on iboga analog treatment. Behavioral patterns after oral administration of the best analog were also analyzed. Taken together, these results show that the iboga family of alkaloid has huge potential in pain management.
Collapse
Affiliation(s)
- Tuhin Bhattacharya
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Abhishek Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A Raja S.C. Mullick Road, West Bengal, Kolkata, 700032, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A Raja S.C. Mullick Road, West Bengal, Kolkata, 700032, India
| | - Samrat Saha
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Shatabdi Ghosh
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Zofa Shireen
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Sanjit Dey
- Department of Physiology, University of Calcutta, 92 APC Road, West Bengal, Kolkata, 70009, India
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A Raja S.C. Mullick Road, West Bengal, Kolkata, 700032, India
| |
Collapse
|
3
|
Feng Q, Ren Z, Wei D, Liu C, Wang X, Li X, Tie B, Tang S, Qiu J. Connectome-based predictive modeling of Internet addiction symptomatology. Soc Cogn Affect Neurosci 2024; 19:nsae007. [PMID: 38334691 PMCID: PMC10878364 DOI: 10.1093/scan/nsae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/14/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Internet addiction symptomatology (IAS) is characterized by persistent and involuntary patterns of compulsive Internet use, leading to significant impairments in both physical and mental well-being. Here, a connectome-based predictive modeling approach was applied to decode IAS from whole-brain resting-state functional connectivity in healthy population. The findings showed that IAS could be predicted by the functional connectivity between prefrontal cortex with the cerebellum and limbic lobe and connections of the occipital lobe with the limbic lobe and insula lobe. The identified edges associated with IAS exhibit generalizability in predicting IAS within an independent sample. Furthermore, we found that the unique contributing network, which predicted IAS in contrast to the prediction networks of alcohol use disorder symptomatology (the range of symptoms and behaviors associated with alcohol use disorder), prominently comprised connections involving the occipital lobe and other lobes. The current data-driven approach provides the first evidence of the predictive brain features of IAS based on the organization of intrinsic brain networks, thus advancing our understanding of the neurobiological basis of Internet addiction disorder (IAD) susceptibility, and may have implications for the timely intervention of people potentially at risk of IAD.
Collapse
Affiliation(s)
- Qiuyang Feng
- Center for Studies of Education and Psychology of Ethnic Minorities in Southwest China, Southwest University (SWU), Chongqing 400715, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
| | - Zhiting Ren
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Cheng Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Xueyang Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Xianrui Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Bijie Tie
- Center for Studies of Education and Psychology of Ethnic Minorities in Southwest China, Southwest University (SWU), Chongqing 400715, China
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
| | - Shuang Tang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China
- School of Psychology, Southwest University (SWU), Chongqing 400715, China
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality, Beijing Normal University, Beijing 100000, China
| |
Collapse
|
4
|
Mansouri B, Azadi N, Drebadami AH, Nakhaee S. Trace element levels: How Substance Use Disorder (SUD) contributes to the alteration of urinary essential and toxic element levels. PLoS One 2024; 19:e0294740. [PMID: 38315674 PMCID: PMC10843129 DOI: 10.1371/journal.pone.0294740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/07/2023] [Indexed: 02/07/2024] Open
Abstract
Increasing illicit drug use is one of the main problems in most countries or societies. Monitoring heavy metals and trace elements in this vulnerable group seems to be necessary. Therefore, we assessed the urinary trace element and toxic metals/metalloids concentrations (Zinc (Zn), Iron (Fe), Copper (Cu), Chromium (Cr), Lead (Pb), Cadmium (Cd), Arsenic (As), Nickel (Ni), and Mercury (Hg)) in opium, tramadol, and cannabis users compared to healthy subjects. In this cross-sectional study, patients with substance use disorder (SUD) (n = 74) were divided into four groups: cannabis, tramadol, opium, and mixed (simultaneous use of more than one of the three studied substances), along with a healthy group (n = 60). Urine samples were prepared by dispersive liquid-liquid microextraction method so that heavy metals/metalloids could be measured by ICP-MS. The mean urinary concentration of Cu (48.15 vs. 25.45; 89.2%, p<0.001), Hg (1.3 vs. 0.10; 1200%, p < 0.001), and Zn (301.95 vs. 210; 43.8%, p < 0.001) was markedly lower among patients with SUD. The mean urinary concentration of other elements including As (1.9 vs. 4.1; 115.8%), Cd (0.1 vs. 1.10; 1000%), Cr (6.80 vs. 11.65; 71.3%), Ni (2.95 vs. 4.95; 67.8%), and Pb (1.5 vs. 7.9; 426.6%) were significantly higher among patients with SUD compared to healthy subjects. When sub-groups were compared, no significant differences were observed between their trace element levels (Kruskal-Wallis test, p > 0.05). This can be an indication that regardless of the type of drug, the levels of trace elements are changed with respect to healthy individuals. Our results showed that illicit drug use causes changes in urinary trace element/heavy metal/metalloid levels and highlights the need for monitoring heavy metals and trace elements in individuals with substance use disorder. Assessment of different elements in biological samples of drug dependents may be useful for implementing new prevention and treatment protocols. In case of changes in their levels, complementary recommendations, attention to diet, and periodic assessment of toxic metal levels within treatment programs will be needed.
Collapse
Affiliation(s)
- Borhan Mansouri
- Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nammamali Azadi
- Biostatistics Department, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Arezo Hashemi Drebadami
- State Welfare Organization of Kermanshah, Substance Abuse Prevention Research Center, Research Institute for Health, Kermanshah, Iran
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Southern Khorasan, Iran
| |
Collapse
|
5
|
Farnia V, Nakhaee S, Azadi N, Khanegi M, Ahmadi-Jouybari T, Mansouri B. Comparison of urine trace element levels in tramadol addiction alone and its co-abuse with cigarette and opium in Western Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77375-77385. [PMID: 35675014 DOI: 10.1007/s11356-022-21271-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Tramadol is an opioid pain medication used to treat moderate to severe pain. Tramadol consumers tend to co-abuse some other substances such as opium, cigarettes, alcohol, and cannabis and each of these substances may impair trace elements homeostasis in the body. Therefore, this case-control study aimed to compare the urinary concentration of some essential and toxic elements in tramadol addiction alone and its co-abuse with cigarette and opium in Western Iran. For this purpose, urine samples were collected in two groups of tramadol (n = 72) and control subjects (n = 62) from March to November 2020. The case group was divided into three groups: tramadol alone, tramadol + opium, and tramadol + cigarettes. Moreover, ICP-MS (Agilent 7900) was used to measure trace element concentrations in the urine samples. Based on our results, Fe was the only element markedly higher among controls as compared to tramadol users (p < 0.001). Moreover, the concentration levels of As appeared to be the same among both groups, but the levels of other elements including Ca, Cd, Cr, Mn, Cu, Zn, Co, Ni, Se, and Pb were all significantly higher among tramadol users as compared to control group. The rank-based regression analysis illustrated that no contribution of sex and age effect was found by the regression model on the levels of all 12 studied elements. While, smoking was found to affect the levels of Fe (β = 0.163, P = 0.025) and Co (β = 0.411, p < 0.001) so that smoking reduced Fe levels but elevated Co concentration levels. Abuse of tramadol along with cigarettes and opium increased the concentration of some heavy metals in urine samples compared to the control group. However, these results showed no significant effect of age, sex, smoking habit, and amount of tramadol usage on the levels of trace elements.
Collapse
Affiliation(s)
- Vahid Farnia
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Nammamali Azadi
- Biostatistics Department, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Khanegi
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Toraj Ahmadi-Jouybari
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Azadi N, Nakhaee S, Farnia V, Pirsaheb M, Mansouri B, Ahmadi-Jouybari T, Khanegi M. Multivariate statistical evaluation of heavy metals in the urine of opium individuals in comparison with healthy people in Western Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8232-8241. [PMID: 34482458 DOI: 10.1007/s11356-021-16271-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
The current study aimed to evaluate the levels of some toxic and essential elements (Pb, Cd, Cu, Ti, Ni, Cr, Co, Fe, Ca, Hg, Mn, Se, and Zn) in the urine of opium-addicted compared to non-addicted cases. In this study, 126 participants were recruited and their fasting urine samples were collected (63 opium-addicted and 63 non-addicted subjects served as the reference group). ICP-MS was utilized to detect the concentration of trace elements. Results exhibited that the concentration of all elements than Ni, Cu, and Zn was markedly different between the addicted and non-addicted groups. Compared to controls, the Cd, Cr, Co, Hg, Mn, Pb, Se, and Ti levels were higher among opium-addicted cases (p < 0.05) whereas the Fe and Ca concentrations were higher among controls (p < 0.05). Robust regression analysis showed no statistically significant effect of gender on element levels. It revealed that age was associated with the levels of Ni and Cu only and also the route of administration was related to the urinary levels of Co, Cr, Hg, and Mn. In conclusion, results confirmed that it is opium consumption that affects the concentration levels of most elements.
Collapse
Affiliation(s)
- Nammamali Azadi
- Biostatistics Department, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Vahid Farnia
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Meghdad Pirsaheb
- Research Center for Environmental Determinants of Health, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Borhan Mansouri
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Toraj Ahmadi-Jouybari
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Khanegi
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Davis S, Zhu J. Substance abuse and neurotransmission. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:403-441. [PMID: 35341573 PMCID: PMC9759822 DOI: 10.1016/bs.apha.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The number of people who suffer from a substance abuse disorder has continued to rise over the last decade; particularly, the number of drug-related overdose deaths has sharply increased during the COVID-19 pandemic. Converging lines of clinical observations, supported by imaging and neuropsychological performance testing, have demonstrated that substance abuse-induced dysregulation of neurotransmissions in the brain is critical for development and expression of the addictive properties of abused substances. Recent scientific advances have allowed for better understanding of the neurobiological processes that mediates drugs of abuse and addiction. This chapter presents the past classic concepts and the recent advances in our knowledge about how cocaine, amphetamines, opioids, alcohol, and nicotine alter multiple neurotransmitter systems, which contribute to the behaviors associated with each drug. Additionally, we discuss the interactive effects of HIV-1 or COVID-19 and substance abuse on neurotransmission and neurobiological pathways. Finally, we introduce therapeutic strategies for development of pharmacotherapies for substance abuse disorders.
Collapse
Affiliation(s)
- Sarah Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
8
|
Zeng J, Yu S, Cao H, Su Y, Dong Z, Yang X. Neurobiological correlates of cue-reactivity in alcohol-use disorders: A voxel-wise meta-analysis of fMRI studies. Neurosci Biobehav Rev 2021; 128:294-310. [PMID: 34171325 DOI: 10.1016/j.neubiorev.2021.06.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/31/2021] [Accepted: 06/19/2021] [Indexed: 02/08/2023]
Abstract
Altered brain responses to alcohol-associated stimuli are a neural hallmark of alcohol-use disorder (AUD) and a promising target for pharmacotherapy. However, findings in cue-reactivity based functional MRI (fMRI) studies are inconclusive. To investigate the neural substrates of cue-reactivity and their relevance to treatment outcomes, alcohol craving and relapse in AUD patients, we performed five meta-analyses using signed differential mapping software. Our meta-analysis revealed that alcohol cues evoke greater cue-reactivity than neutral cues in the mesocorticolimbic circuit and lower reactivity in the parietal and temporal regions in AUD patients. Compared to controls, AUD individuals displayed hyperactivations in the medial prefrontal cortex and anterior/middle part of the cingulate cortex. After receiving AUD treatment, AUD patients exhibited greater activations in the precentral gyrus but reduced activations in the bilateral caudate nucleus, insula, right DLPFC, and left superior frontal gyrus. No significant results were found in cue-reactivity correlates of alcohol craving and relapse. Our results implicate cue-induced abnormalities in corticostriatal-limbic circuits may underline the pathophysiology of AUD, and have translational value for treatment development.
Collapse
Affiliation(s)
- Jianguang Zeng
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| | - Shuxian Yu
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| | - Hengyi Cao
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Hempstead, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Yueyue Su
- School of Public Policy and Administration, Chongqing University, Chongqing, 400044, China
| | - Zaiquan Dong
- Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xun Yang
- School of Public Policy and Administration, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
9
|
Abstract
The pineal gland is an endocrine gland whose main function is the biosynthesis and secretion of melatonin, a hormone responsible for regulating circadian rhythms, e.g., the sleep/wake cycle. Due to its exceptionally high vascularization and its location outside the blood–brain barrier, the pineal gland may accumulate significant amounts of calcium and fluoride, making it the most fluoride-saturated organ of the human body. Both the calcification and accumulation of fluoride may result in melatonin deficiency.
Collapse
|