1
|
Li Y, Du Y, Zhou Y, Chen Q, Luo Z, Ren Y, Chen X, Chen G. Iron and copper: critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun Signal 2023; 21:327. [PMID: 37974196 PMCID: PMC10652626 DOI: 10.1186/s12964-023-01267-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 11/19/2023] Open
Abstract
Regulated cell death (RCD) is a regulable cell death that involves well-organized signaling cascades and molecular mechanisms. RCD is implicated in fundamental processes such as organ production and tissue remodeling, removing superfluous structures or cells, and regulating cell numbers. Previous studies have not been able to reveal the complete mechanisms, and novel methods of RCD are constantly being proposed. Two metal ions, iron (Fe) and copper (Cu) are essential factors leading to RCDs that not only induce ferroptosis and cuproptosis, respectively but also lead to cell impairment and eventually diverse cell death. This review summarizes the direct and indirect mechanisms by which Fe and Cu impede cell growth and the various forms of RCD mediated by these two metals. Moreover, we aimed to delineate the interrelationships between these RCDs with the distinct pathways of ferroptosis and cuproptosis, shedding light on the complex and intricate mechanisms that govern cellular survival and death. Finally, the prospects outlined in this review suggest a novel approach for investigating cell death, which may involve integrating current therapeutic strategies and offer a promising solution to overcome drug resistance in certain diseases. Video Abstract.
Collapse
Affiliation(s)
- Yu Li
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, P.R. China
| | - Yuhui Du
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, P.R. China
| | - Yujie Zhou
- Basic Science Institute, Sungkyunkwan University, Suwon, South Korea
| | - Qianhui Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhijie Luo
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yufan Ren
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xudan Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Guoan Chen
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, 518055, P.R. China.
| |
Collapse
|
2
|
Yang L, Yang P, Lip GYH, Ren J. Copper homeostasis and cuproptosis in cardiovascular disease therapeutics. Trends Pharmacol Sci 2023; 44:573-585. [PMID: 37500296 DOI: 10.1016/j.tips.2023.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/08/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
Copper (Cu) homeostasis is gaining increasing attention in human health as both Cu overload and deficiency evokes pathological changes including cardiovascular diseases (CVDs). Cu supplementation, nanocarriers, and chelators have all exhibited therapeutic promise in some human diseases, although how Cu dyshomeostasis and cuproptosis, a novel form of regulated cell death, contribute to CVD pathology remains elusive. Here, we discuss Cu dyshomeostasis and the potential role of cuproptosis in various CVDs. We evaluate underlying cellular mechanisms, aiming to provide some insights regarding the utility of targeting Cu dyshomeostasis and cuproptosis as a novel strategy in the management of CVDs.
Collapse
Affiliation(s)
- Lifang Yang
- Department of Anesthesiology, Xi'an Children Hospital, Xi'an, Shaanxi, China
| | - Pingping Yang
- Department of Anesthesiology, Xi'an Children Hospital, Xi'an, Shaanxi, China
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, UK; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Yang Y, Feng Q, Luan Y, Liu H, Jiao Y, Hao H, Yu B, Luan Y, Ren K. Exploring cuproptosis as a mechanism and potential intervention target in cardiovascular diseases. Front Pharmacol 2023; 14:1229297. [PMID: 37637426 PMCID: PMC10450925 DOI: 10.3389/fphar.2023.1229297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
Copper (Cu) is a vital trace element for maintaining human health. Current evidence suggests that genes responsible for regulating copper influx and detoxification help preserve its homeostasis. Adequate Cu levels sustain normal cardiac and blood vessel activity by maintaining mitochondrial function. Cuproptosis, unlike other forms of cell death, is characterized by alterations in mitochondrial enzymes. Therapeutics targeting cuproptosis in cardiovascular diseases (CVDs) mainly include copper chelators, inhibitors of copper chaperone proteins, and copper ionophores. In this review, we expound on the primary mechanisms, critical proteins, and signaling pathways involved in cuproptosis, along with its impact on CVDs and the role it plays in different types of cells. Additionally, we explored the influence of key regulatory proteins and signaling pathways associated with cuproptosis on CVDs and determined whether intervening in copper metabolism and cuproptosis can enhance the outcomes of CVDs. The insights from this review provide a fresh perspective on the pathogenesis of CVDs and new targets for intervention in these diseases.
Collapse
Affiliation(s)
- Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Feng
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Luan
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuxue Jiao
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huijie Hao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Bo Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yi Luan
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaidi Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Lim SY, Dayal H, Seah SJ, Tan RPW, Low ZE, Laserna AKC, Tan SH, Chan MY, Li SFY. Plasma metallomics reveals potential biomarkers and insights into the ambivalent associations of elements with acute myocardial infarction. J Trace Elem Med Biol 2023; 77:127148. [PMID: 36905853 DOI: 10.1016/j.jtemb.2023.127148] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Acute myocardial infarction (AMI) is a leading cause of mortality and morbidity worldwide. Using a validated and efficient ICP-MS/MS-based workflow, a total of 30 metallomic features were profiled in a study comprising 101 AMI patients and 66 age-matched healthy controls. The metallomic features include 12 essential elements (Ca, Co, Cu, Fe, K, Mg, Mn, Na, P, S, Se, Zn), 8 non-essential/toxic elements (Al, As, Ba, Cd, Cr, Ni, Rb, Sr, U, V), and 10 clinically relevant element-pair product/ratios (Ca/Mg, Ca×P, Cu/Se, Cu/Zn, Fe/Cu, P/Mg, Na/K, Zn/Se). Preliminary linear regression with feature selection confirmed smoking status as a predominant determinant for the non-essential/toxic elements, and revealed potential routes of action. Univariate assessments with adjustments for covariates revealed insights into the ambivalent relationships of Cu, Fe, and P with AMI, while also confirming cardioprotective associations of Se. Also, beyond their roles as risk factors, Cu and Se may be involved in the response mechanism in AMI onset/intervention, as demonstrated via longitudinal data analysis with 2 additional time-points (1-/6-month follow-up). Finally, based on both univariate tests and multivariate classification modelling, potentially more sensitive markers measured as element-pair ratios were identified (e.g., Cu/Se, Fe/Cu). Overall, metallomics-based biomarkers may have utility for AMI prediction.
Collapse
Affiliation(s)
- Si Ying Lim
- NUS Graduate School's Integrative Sciences & Engineering Programme (ISEP), National University of Singapore, University Hall, Tan Chin Tuan Wing, 119077, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hiranya Dayal
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Song Jie Seah
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Regina Pei Woon Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhi En Low
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Anna Karen Carrasco Laserna
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore; Central Instrument Facility, Office of the Vice Chancellor for Research and Innovation, De La Salle University, 2401 Taft Avenue, Malate, Manila 1004, Philippines
| | - Sock Hwee Tan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Mark Y Chan
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Sam Fong Yau Li
- NUS Graduate School's Integrative Sciences & Engineering Programme (ISEP), National University of Singapore, University Hall, Tan Chin Tuan Wing, 119077, Singapore; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
5
|
Chen X, Cai Q, Liang R, Zhang D, Liu X, Zhang M, Xiong Y, Xu M, Liu Q, Li P, Yu P, Shi A. Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies. Cell Death Dis 2023; 14:105. [PMID: 36774340 PMCID: PMC9922317 DOI: 10.1038/s41419-023-05639-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/13/2023]
Abstract
Copper is a vital mineral, and an optimal amount of copper is required to support normal physiologic processes in various systems, including the cardiovascular system. Over the past few decades, copper-induced cell death, named cuproptosis, has become increasingly recognized as an important process mediating the pathogenesis and progression of cardiovascular disease (CVD), including atherosclerosis, stroke, ischemia-reperfusion injury, and heart failure. Therefore, an in-depth understanding of the regulatory mechanisms of cuproptosis in CVD may be useful for improving CVD management. Here, we review the relationship between copper homeostasis and cuproptosis-related pathways in CVD, as well as therapeutic strategies addressing copper-induced cell death in CVD.
Collapse
Affiliation(s)
- Xinyue Chen
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Cai
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ruikai Liang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Meiying Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yan Xiong
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qi Liu
- Wafic Said Molecular Cardiology Research Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Pengyang Li
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Ao Shi
- Faculty of Medicine, St. George University of London, London, UK.
- University of Nicosia Medical School, University of Nicosia, Nicosia, Cyprus.
| |
Collapse
|
6
|
Elevated hippocampal copper in cases of type 2 diabetes. EBioMedicine 2022; 86:104317. [DOI: 10.1016/j.ebiom.2022.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
|
7
|
Wang T, Xiao Y, Zhang J, Jing F, Zeng G. Dynamic regulation of HIF-1 signaling in the rhesus monkey heart after ischemic injury. BMC Cardiovasc Disord 2022; 22:407. [PMID: 36089604 PMCID: PMC9464399 DOI: 10.1186/s12872-022-02841-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Hypoxia inducible factor-1 (HIF-1) plays a key role in modulating post-infarct healing after myocardial ischemic injury through transcriptional regulation of hundreds of genes involved in diverse cardiac remodeling processes. However, the dynamic changes in HIF-1 target gene expression in the ischemic heart after myocardial infarction (MI) have not been well characterized. Methods We employed a rhesus monkey model of MI induced by left anterior descending artery ligation and examined the expression pattern of HIF-1 target genes in the ischemic heart at 1, 7, and 28 days after injury by bulk RNA-sequencing analysis. Results Myocardial transcriptomic analysis demonstrated a temporal-specific regulation of genes associated with the inflammatory response, cell proliferation, fibrosis and mitochondrial metabolism during the pathological progression of MI. HIF-1 target genes involved in processes related to glycolysis, angiogenesis, and extracellular matrix (ECM) remodeling also exhibited distinct expression patterns during MI progression. Copper concentrations were gradually decreased in the heart after ischemic injury, which was positively correlated with the expression of HIF-1-mediated angiogenic and glycolytic genes but negatively correlated with the expression of HIF-1-mediated ECM remodeling genes. Moreover, genes related to intracellular copper trafficking and storage were suppressed along with the loss of myocardial copper in the ischemic heart. Conclusions This study demonstrated a dynamic, functional-specific regulation of HIF-1 target gene expression during the progression of MI. The fine-tuning of HIF-1 signaling in the ischemic heart may be relate to the alteration in myocardial copper homeostasis. These findings provide transcriptomic insights into the distinct roles of HIF-1 signaling in the heart after ischemic injury, which will help determine the beneficial cutoff point for HIF-1 targeted therapy in ischemic heart diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02841-0.
Collapse
|
8
|
Liu F, Zhang Z, Zhang L, Meng R, Gao J, Jin M, Li M, Wang X. Effect of metal ions on Alzheimer's disease. Brain Behav 2022; 12:e2527. [PMID: 35212185 PMCID: PMC8933773 DOI: 10.1002/brb3.2527] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 01/29/2022] [Indexed: 11/11/2022] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the nervous system. The typical pathological changes of AD are Aβ deposition, neurofibrillary tangles, neuron loss, and chronic inflammation. The balance of metal ions is essential for numerous physiological functions, especially in the central nervous system. More studies showed that metal ions participate in the development of AD. However, the involvement of metal ions in AD is controversial. Thus, we reviewed articles about the relationship between metal ions and AD and discussed some contradictory reports in order to better understand the role of metal ions in AD.
Collapse
Affiliation(s)
- Fan Liu
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Zhuo Zhang
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Lin Zhang
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Ruo‐Ni Meng
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Jia Gao
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Ming Jin
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Ming Li
- Department of Orthopaedic SurgeryThird Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| | - Xiao‐Peng Wang
- Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangHebeiChina
| |
Collapse
|