1
|
Liu H, Zhang W, Wang S, Zhou Q, Xu N, Zhang W, Ren H, Yang M, Lu H, Zheng X, Tian J. Selenocysteine-Activatable Near-Infrared Fluorescent Probe for Screening of Anti-inflammatory Components in Herbs. Anal Chem 2025; 97:75-85. [PMID: 39754546 DOI: 10.1021/acs.analchem.4c02157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Inflammation, a central process in numerous diseases, plays a crucial role in hepatic disorders, arthritis, cardiac conditions, and neurodegenerative ailments. Given the lack of effective anti-inflammatory drugs, it is imperative to assess inflammation severity and explore novel therapeutics. Selenocysteine (Sec), a key mediator of selenium's biological function, is closely involved in anti-inflammatory responses. We have synthesized a novel near-infrared fluorescent probe, Sec-BDP, which can image Sec dynamics in vivo with high selectivity and sensitivity. Sec-BDP detects Sec at concentrations as low as 0.085 μM. Utilizing this probe, we visualized Sec levels in cell, zebrafish, and mouse inflammation models, enabling a clear assessment of inflammation severity. To screen for drug candidates, Sec-BDP was integrated with ultrahigh performance liquid chromatography quadrupole time-of-flight mass spectrometry to identify potent anti-inflammatory compounds in Astragalus membranaceus, such as 5-O-methylvisammioside. Imaging of Sec with Sec-BDP provides insights into Sec-related diseases and aids in discovering new treatments. This probe advances selenium biology and promises more targeted therapeutic strategies.
Collapse
Affiliation(s)
- Hao Liu
- Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wangning Zhang
- Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Sisi Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Qilin Zhou
- Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Na Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenze Zhang
- Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Haojiang Ren
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Min Yang
- School of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Xianchuang Zheng
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Jiangwei Tian
- Pukou Hospital of Chinese Medicine Affiliated to China Pharmaceutical University, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
2
|
Wahl L, Samson Chillon T, Seemann P, Ohrndorf S, Ochwadt R, Becker W, Schomburg L, Hoff P. Serum selenium, selenoprotein P and glutathione peroxidase 3 in rheumatoid, psoriatic, juvenile idiopathic arthritis, and osteoarthritis. J Nutr Biochem 2025; 135:109776. [PMID: 39389271 DOI: 10.1016/j.jnutbio.2024.109776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024]
Abstract
Selenoprotein P (SELENOP) controls selenium (Se) transport, and glutathione peroxidase 3 (GPx3) elicits antioxidant activity in blood. Inflammation associates with Se deficiency, but knowledge concerning selenoproteins in inflammatory rheumatic musculoskeletal diseases (iRMD) is limited. We compared three Se biomarkers in patients with rheumatoid (RA), psoriatic (PsA), and juvenile idiopathic arthritis (JIA) in comparison to osteoarthritis (OA) and healthy subjects, to improve the data base on selenoprotein expression in iRMD. The cross-sectional study enrolled n=272 patients with RA (n=131), PsA (n=67), JIA (n=22) and OA (n=52). Serum Se was quantified by total reflection X-ray fluorescence, SELENOP by ELISA and GPx3 by an enzymatic test. Data from the EPIC trial served as reference. Impairment of daily life was assessed by the Functional Ability Questionnaire (FfbH). Serum SELENOP and Se concentrations correlated linearly in all groups and were below the average measured in EPIC. Se concentration was not different between the patient groups. Compared to controls, SELENOP levels were low in iRMD patients. GPx3 activity was particularly low in JIA and PsA. Seropositive but not seronegative RA patients displayed a disrupted interaction between GPx3 and Se or SELENOP. SELENOP associated with the functional status measured by the FfbH, most pronounced in OA (R=0.76, P < .01). The data indicate selenoprotein deficiency in the majority of patients with iRMD, and a positive relation of SELENOP with functional status in OA. Since increased Se supply improves selenoprotein biosynthesis, a personalized correction of diagnosed deficiency merits consideration to improve Se transport and ameliorate disease burden.
Collapse
Affiliation(s)
- Lukas Wahl
- MVZ Endokrinologikum Berlin am Gendarmenmarkt, Berlin, Germany; Charité Universitätsmedizin Berlin, Klinik für Rheumatologie und Klinische Immunologie, Berlin, Germany; Charité Universitätsmedizin Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | - Thilo Samson Chillon
- Charité Universitätsmedizin Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany
| | | | - Sarah Ohrndorf
- Charité Universitätsmedizin Berlin, Klinik für Rheumatologie und Klinische Immunologie, Berlin, Germany
| | - Ragna Ochwadt
- MVZ für Laboratoriumsmedizin, Genetik und Mikrobiologie Hamburg GmbH, Hamburg, Germany
| | | | - Lutz Schomburg
- Charité Universitätsmedizin Berlin, Institut für Experimentelle Endokrinologie, Berlin, Germany.
| | - Paula Hoff
- MVZ Endokrinologikum Berlin am Gendarmenmarkt, Berlin, Germany; Charité Universitätsmedizin Berlin, Klinik für Rheumatologie und Klinische Immunologie, Berlin, Germany.
| |
Collapse
|
3
|
Zhang Y, Yu H, Fu J, Zhuo R, Xu J, Liu L, Dai M, Li Z. Oxidative balance score and the potential for suffering rheumatoid arthritis: a cross-sectional study. Front Immunol 2024; 15:1454594. [PMID: 39555070 PMCID: PMC11563821 DOI: 10.3389/fimmu.2024.1454594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/07/2024] [Indexed: 11/19/2024] Open
Abstract
Objective Our study was conducted to explore the link between oxidative balance score (OBS) and rheumatoid arthritis (RA). Methods A total of 21,415 participants were included in our research from five cycles (2011-2012, 2013-2014, 2015-2016, 2017-2018, and 2017-2020) of the National Health and Nutrition Examination Survey (NHANES). Moreover, 20 elements related to diet as well as lifestyle were combined to calculate OBS. The relationship between OBS and RA was assessed by employing multivariable regression analysis, and further exploration was carried out through subgroup analysis, restricted cubic spline analysis, and sensitivity analysis. Multiple covariates were selected to adjust the model for more robust results. Results In our cross-sectional study, a higher OBS has a protective effect on the development of RA (OR = 0.98, 95% CI: 0.97 to 0.99). In contrast to individuals aged ≥60, the result is more prominent in the population aged 20-60 (OR = 0.97, 95% CI: 0.96 to 0.98). Marital status appears to introduce interference in the relationship between OBS and RA, and unmarried individuals exhibited different outcomes (OR = 1.02, 95% CI: 0.99 to 1.04) compared to others. The positive influence of OBS was more evident in patients with chronic kidney disease and cardiovascular disease, while it was stronger in individuals without diabetes and liver disease. Conclusion A higher OBS correlates with a reduced odd of RA. Further studies are needed to shoot more sights on improving dietary habits and lifestyles to gain proper OBS and explore whether OBS can be one of the measurements utilized to measure the risk of RA.
Collapse
Affiliation(s)
- Yimin Zhang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, China
| | - Hao Yu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, The Second Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Jianfei Fu
- Department of Medical Records and Statistics, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Renjie Zhuo
- School of Public Health, Health Science Center, Ningbo University, Ningbo, China
| | - Jin Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, China
| | - Liya Liu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, China
| | - Manyun Dai
- School of Public Health, Health Science Center, Ningbo University, Ningbo, China
| | - Zhen Li
- School of Public Health, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Bakinowska E, Stańska W, Kiełbowski K, Szwedkowicz A, Boboryko D, Pawlik A. Gut Dysbiosis and Dietary Interventions in Rheumatoid Arthritis-A Narrative Review. Nutrients 2024; 16:3215. [PMID: 39339815 PMCID: PMC11435214 DOI: 10.3390/nu16183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic and progressive autoimmune disease. The pathogenesis of RA is complex and involves interactions between articular cells, such as fibroblast-like synoviocytes, and immune cells. These cells secrete pro-inflammatory cytokines, chemokines, metalloproteinases and other molecules that together participate in joint degradation. The current evidence suggests the important immunoregulatory role of the gut microbiome, which can affect susceptibility to diseases and infections. An altered microbiome, a phenomenon known as gut dysbiosis, is associated with the development of inflammatory diseases. Importantly, the profile of the gut microbiome depends on dietary habits. Therefore, dietary elements and interventions can indirectly impact the progression of diseases. This review summarises the evidence on the involvement of gut dysbiosis and diet in the pathogenesis of RA.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Wiktoria Stańska
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Agata Szwedkowicz
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
5
|
Bilski R, Kamiński P, Kupczyk D, Jeka S, Baszyński J, Tkaczenko H, Kurhaluk N. Environmental and Genetic Determinants of Ankylosing Spondylitis. Int J Mol Sci 2024; 25:7814. [PMID: 39063056 PMCID: PMC11277374 DOI: 10.3390/ijms25147814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Exposure to heavy metals and lifestyle factors like smoking contribute to the production of free oxygen radicals. This fact, combined with a lowered total antioxidant status, can induce even more damage in the development of ankylosing spondylitis (AS). Despite the fact that some researchers are looking for more genetic factors underlying AS, most studies focus on polymorphisms within the genes encoding the human leukocyte antigen (HLA) system. The biggest challenge is finding the effective treatment of the disease. Genetic factors and the influence of oxidative stress, mineral metabolism disorders, microbiota, and tobacco smoking seem to be of great importance for the development of AS. The data contained in this review constitute valuable information and encourage the initiation and development of research in this area, showing connections between inflammatory disorders leading to the pathogenesis of AS and selected environmental and genetic factors.
Collapse
Affiliation(s)
- Rafał Bilski
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicholaus Copernicus University, M. Karłowicz St. 24, 85-092 Bydgoszcz, Poland
| | - Piotr Kamiński
- Department of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, 85-094 Bydgoszcz, Poland
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, 65-516 Zielona Góra, Poland
| | - Daria Kupczyk
- Department of Medical Biology and Biochemistry, Collegium Medicum in Bydgoszcz, Nicholaus Copernicus University, M. Karłowicz St. 24, 85-092 Bydgoszcz, Poland
| | - Sławomir Jeka
- Department of Rheumatology and Connective Tissue Diseases, Collegium Medicum, Nicolaus Copernicus University, University Hospital No. 2, Ujejski St. 75, 85-168 Bydgoszcz, Poland
| | - Jędrzej Baszyński
- Department of Medical Biology and Biochemistry, Division of Ecology and Environmental Protection, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, 85-094 Bydgoszcz, Poland
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200 Słupsk, Poland
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, 76-200 Słupsk, Poland
| |
Collapse
|
6
|
Sakata S, Kunimatsu R, Tanimoto K. Protective Effect of Ergothioneine against Oxidative Stress-Induced Chondrocyte Death. Antioxidants (Basel) 2024; 13:800. [PMID: 39061869 PMCID: PMC11274255 DOI: 10.3390/antiox13070800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Reactive oxygen species (ROS) induce oxidative stress in cells and are associated with various diseases, including autoimmune diseases. Ergothioneine (EGT) is a natural amino acid derivative derived from the ergot fungus and has been reported to exhibit an effective antioxidant function in many models of oxidative stress-related diseases. Recently, mutations in OCTN1, a membrane transporter of EGT, have been reported to be associated with rheumatoid arthritis. Therefore, we investigated the chondrocyte-protective function of EGT using a model of oxidative stress-induced injury of chondrocytes by hydrogen peroxide (H2O2). Human chondrocytes were subjected to oxidative stress induced by H2O2 treatment, and cell viability, the activity of lactate dehydrogenase (LDH) released into the medium, dead cell ratio, intracellular ROS production, and mitochondrial morphology were assessed. EGT improved chondrocyte viability and LDH activity in the medium and strongly suppressed the dead cell ratio. EGT also exerted protective effects on intracellular ROS production and mitochondrial morphology. These results provide evidence to support the protective effects of EGT on chondrocytes induced by oxidative stress.
Collapse
Affiliation(s)
- Shuzo Sakata
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| | - Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| |
Collapse
|
7
|
Dwivedi SD, Bhoi A, Pradhan M, Sahu KK, Singh D, Singh MR. Role and uptake of metal-based nanoconstructs as targeted therapeutic carriers for rheumatoid arthritis. 3 Biotech 2024; 14:142. [PMID: 38693915 PMCID: PMC11058151 DOI: 10.1007/s13205-024-03990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune systemic inflammatory disease that affects the joints and other vital organs and diminishes the quality of life. The current developments and innovative treatment options have significantly slowed disease progression and improved their quality of life. Medicaments can be delivered to the inflamed synovium via nanoparticle systems, minimizing systemic and undesirable side effects. Numerous nanoparticles such as polymeric, liposomal, and metallic nanoparticles reported are impending as a good carrier with therapeutic properties. Other issues to be considered along are nontoxicity, nanosize, charge, optical property, and ease of high surface functionalization that make them suitable carriers for drug delivery. Metallic nanoparticles (MNPs) (such as silver, gold, zinc, iron, titanium oxide, and selenium) not only act as good carrier with desired optical property, and high surface modification ability but also have their own therapeutical potential such as anti-oxidant, anti-inflammatory, and anti-arthritic properties, making them one of the most promising options for RA treatment. Regardless, cellular uptake of MNPs is one of the most significant criterions for targeting the medication. This paper discusses the numerous interactions of nanoparticles with cells, as well as cellular uptake of NPs. This review provides the mechanistic overview on MNPs involved in RA therapies and regulation anti-arthritis response such as ability to reduce oxidative stress, suppressing the release of proinflammatory cytokines and expression of LPS induced COX-2, and modulation of MAPK and PI3K pathways in Kuppfer cells and hepatic stellate cells. Despite of that MNPs have also ability to regulates enzymes like glutathione peroxidases (GPxs), thioredoxin reductases (TrxRs) and act as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| | - Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, C.G 492010 India
| | - Madhulika Pradhan
- Gracious College of Pharmacy, Abhanpur Raipur, Chhattisgarh 493661 India
| | - Keshav Kant Sahu
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, C.G 492010 India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| |
Collapse
|
8
|
Arabzadeh E, Shirvani H, Masjedi MR, Ghanei M, Hofmeister M, Rostamkhani F. Treadmill exercise with nanoselenium supplementation affects the expression of Irisin/FNDC5 and semaphorin 3A in rats exposed to cigarette smoke extract. 3 Biotech 2024; 14:4. [PMID: 38058362 PMCID: PMC10695908 DOI: 10.1007/s13205-023-03849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
In the current study, we investigated the impacts of 6 weeks of aerobic interval training (AIT) with selenium nanoparticles (SeNPs) on muscle, serum, and lung irisin (FNDC5) and Sema3A in rats exposed to cigarette smoke extract (CSE). To this end, 49 male Wistar rats (8 weeks old) were divided into seven groups: control, SeNPs (2.5 mg/kg b.w by oral gavage, 3 days/week, 6 weeks), AIT (49 min/day, 5 days/week for 6 weeks, interval), SeNPs + AIT, CSE (150 µL by IP injection, 1 day/week for 6 weeks), CSE + AIT, and CSE + SeNPs + AIT. The CSE group showed a significant reduction in irisin and Sema3A serum levels, as well as a decrease in FNDC5 and Sema3A gene expression in lung tissue (p < 0.05). A combined treatment (AIT with SeNPs) significantly increased the serum level and the expression of muscle and lung irisin (FNDC5) and Sema3A in CSE received groups (p < 0.05). There was a positive and significant correlation between muscle FNDC5 and lung FNDC5 in the CSE + SeNPs + AIT group (r = 0.92, p = 0.025). In addition, there was a positive and significant correlation between serum Sema3A and lung Sema3A of CSE + SeNPs + AIT group (r = 0.97, p = 0.004). Seemingly, performing aerobic exercises with the antioxidant and anti-inflammatory supplement nano-selenium in the model of lung damage (similar to COPD) can boost myokine irisin and Sema3A, especially in serum and lung tissue. These results displayed the paracrine/endocrine regulatory function of these myokines on other tissues. In other words, these interventions emphasized the creation of crosstalk between skeletal muscles and damaged lung, focusing on its recovery; however, further research is needed.
Collapse
Affiliation(s)
- Ehsan Arabzadeh
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Shirvani
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Masjedi
- Tobacco Control Research Center (TCRC), Iranian Anti-Tobacco Association, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Martin Hofmeister
- Department of Food and Nutrition, Consumer Centre of the German Federal State of Bavaria, Munich, Germany
| | - Fatemeh Rostamkhani
- Department of Biology, Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Wang S, Yin J, Liu Y, Jin M, Wang Q, Guo J, Gao Z. An organic state trace element solution for rheumatoid arthritis treatment by modulating macrophage phenotypic from M1 to M2. Biomed Pharmacother 2024; 170:116025. [PMID: 38113625 DOI: 10.1016/j.biopha.2023.116025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Trace elements (TEs) are essential for the treatment of rheumatoid arthritis (RA). This study aimed to prepare a TEs solution enriched with various organic states to evaluate its preventive, therapeutic effects, and mechanism of action in RA and to provide a treatment method for RA treatment. The TEs in natural ore were extracted and added to 0.5% (W/V) L-alanyl-L-glutamine (LG) to obtain a TEs solution (LG-WLYS), which was examined for its concentration and quality. The antioxidant properties and effects of LG-WLYS on cell behavior were evaluated at the cellular level. The preventive and therapeutic effects and mechanism of action of LG-WLYS in rats with RA were explored. The LG-WLYS solution was clear, free from visible foreign matter, and had a pH of 5.33 and an osmolality of 305.67 mOsmol/kg. LG-WLYS inhibited cell migration and angiogenesis. LG-WLYS solution induced macrophages to change from M1-type to M2-type, increased the content of antioxidant enzymes (glutathione, superoxide dismutase, and IL-10), decreased the levels of nitric oxide, malondialdehyde, TNF-α, IL-1β, IL-6, COX-2, and iNOs, scavenging reactive oxygen species from the lesion site, inhibiting the apoptosis of chondrocytes, regulating inflammatory microenvironment, and decreasing inflammation response to exert the therapeutic effect for RA. In conclusion, LG-WLYS has outstanding therapeutic and preventive effects against RA and has enormous potential for further development.
Collapse
Affiliation(s)
- Shuangqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jishan Yin
- Beijing JINSHAN Ecological Power element Manufactu Co., Ltd, Beijing 101300, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jianpeng Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
10
|
Qi Z, Duan A, Ng K. Selenoproteins in Health. Molecules 2023; 29:136. [PMID: 38202719 PMCID: PMC10779588 DOI: 10.3390/molecules29010136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Selenium (Se) is a naturally occurring essential micronutrient that is required for human health. The existing form of Se includes inorganic and organic. In contrast to the inorganic Se, which has low bioavailability and high cytotoxicity, organic Se exhibits higher bioavailability, lower toxicity, and has a more diverse composition and structure. This review presents the nutritional benefits of Se by listing and linking selenoprotein (SeP) functions to evidence of health benefits. The research status of SeP from foods in recent years is introduced systematically, particularly the sources, biochemical transformation and speciation, and the bioactivities. These aspects are elaborated with references for further research and utilization of organic Se compounds in the field of health.
Collapse
Affiliation(s)
- Ziqi Qi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Alex Duan
- Melbourne TrACEES Platform, School of Chemistry, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
11
|
Xie H, Wang N, He H, Yang Z, Wu J, Yang T, Wang Y. The association between selenium and bone health: a meta-analysis. Bone Joint Res 2023; 12:423-432. [PMID: 37407020 DOI: 10.1302/2046-3758.127.bjr-2022-0420.r1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Aims Previous studies have suggested that selenium as a trace element is involved in bone health, but findings related to the specific effect of selenium on bone health remain inconclusive. Thus, we performed a meta-analysis by including all the relevant studies to elucidate the association between selenium status (dietary intake or serum selenium) and bone health indicators (bone mineral density (BMD), osteoporosis (OP), or fracture). Methods PubMed, Embase, and Cochrane Library were systematically searched to retrieve relevant articles published before 15 November 2022. Studies focusing on the correlation between selenium and BMD, OP, or fracture were included. Effect sizes included regression coefficient (β), weighted mean difference (WMD), and odds ratio (OR). According to heterogeneity, the fixed-effect or random-effect model was used to assess the association between selenium and bone health. Results From 748 non-duplicate publications, 19 studies were included. We found a significantly positive association between dietary selenium intake (β = 0.04, 95% confidence interval (CI) 0.00 to 0.07, p = 0.029) as well as serum selenium (β = 0.13, 95% CI 0.00 to 0.26, p = 0.046) and BMD. Consistently, those with higher selenium intake had a lower risk of OP (OR = 0.47, 95% CI 0.31 to 0.72, p = 0.001), and patients with OP had a significantly lower level of serum selenium than healthy controls (WMD = -2.01, 95% CI -3.91 to -0.12, p = 0.037). High dietary selenium intake was associated with a lower risk of hip fracture (OR = 0.44, 95% CI 0.37 to 0.52, p < 0.001). Conclusion Selenium was positively associated with BMD and inversely associated with OP; dietary selenium intake was negatively associated with hip fracture. The causality and therapeutic effect of selenium on OP needs to be investigated in future studies.
Collapse
Affiliation(s)
- Haibin Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hongyi He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zidan Yang
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Wu
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
| | - Tuo Yang
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yilun Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Joint Degeneration and Injury, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Ministry of Education, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Kondo N, Kanai T, Okada M. Rheumatoid Arthritis and Reactive Oxygen Species: A Review. Curr Issues Mol Biol 2023; 45:3000-3015. [PMID: 37185721 PMCID: PMC10137217 DOI: 10.3390/cimb45040197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disease that causes progressive joint damage and can lead to lifelong disability. Numerous studies support the hypothesis that reactive oxygen species (ROS) are associated with RA pathogenesis. Recent advances have clarified the anti-inflammatory effect of antioxidants and their roles in RA alleviation. In addition, several important signaling pathway components, such as nuclear factor kappa B, activator-protein-1, nuclear factor (erythroid-derived 2)-like 2/kelch-like associated protein, signal transducer and activator of transcription 3, and mitogen-activated protein kinases, including c-Jun N-terminal kinase, have been identified to be associated with RA. In this paper, we outline the ROS generation process and relevant oxidative markers, thereby providing evidence of the association between oxidative stress and RA pathogenesis. Furthermore, we describe various therapeutic targets in several prominent signaling pathways for improving RA disease activity and its hyper oxidative state. Finally, we reviewed natural foods, phytochemicals, chemical compounds with antioxidant properties and the association of microbiota with RA pathogenesis.
Collapse
Affiliation(s)
- Naoki Kondo
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Tomotake Kanai
- Division of Orthopedic Surgery, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Masayasu Okada
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
13
|
Grammatikopoulou MG, Gkiouras K, Syrmou V, Vassilakou T, Simopoulou T, Katsiari CG, Goulis DG, Bogdanos DP. Nutritional Aspects of Juvenile Idiopathic Arthritis: An A to Z for Dietitians. CHILDREN (BASEL, SWITZERLAND) 2023; 10:203. [PMID: 36832332 PMCID: PMC9955348 DOI: 10.3390/children10020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
Juvenile idiopathic arthritis (JIA) represents a chronic, autoimmune, rheumatic musculoskeletal disease with a diagnosis before 16 years of age. Chronic arthritis is a common manifestation in all JIA subtypes. The nature of JIA, in combination to its therapy often results in the development of nutrition-, gastrointestinal (GI)- or metabolic-related issues. The most-common therapy-related nutritional issues involve methotrexate (MTX) and glucocorticosteroids (GCC) adverse events. MTX is a folic acid antagonist, thus supplementation with folic acid in required for improving GI side effects and correcting low serum levels. On the other hand, long-term GCC administration is often associated with hyperglycemia, insulin resistance and growth delay. This relationship is further aggravated when more joints are affected and greater doses of GCC are being administered. Apart from stature, body mass index z-scores are also suboptimal in JIA. Other signs of malnutrition include decreased phase angle and muscle mass, especially among patients with polyarthritis JIA. Evidence also points to the existence of an inverse relationship between disease activity and overweight/obesity. Specific dietary patterns, including the anti-inflammatory diet, might confer improvements in selected JIA outcomes, but the level of available research is yet insufficient to draw safe conclusions. The majority of patients exhibit suboptimal vitamin D status; hence, supplementation is recommended. Collectively, the evidence indicates that, due to the age of onset and the complexity of the disease, along with its pharmacotherapy, children with JIA are prone to the development of several nutritional problems, warranting expert monitoring. Vitamin deficiencies, oral and GI-problems limiting dietary intake, faltering growth, overweight and obesity, physical inactivity, or impaired bone health are among the many nutritional issues in JIA requiring dietitian support.
Collapse
Affiliation(s)
- Maria G. Grammatikopoulou
- Immunonutrition Unit, Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Konstantinos Gkiouras
- Immunonutrition Unit, Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Vasiliki Syrmou
- Immunonutrition Unit, Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Tonia Vassilakou
- Department of Public Health Policy, School of Public Health, University of West Attica, 196 Alexandras Avenue, GR-11521 Athens, Greece
| | - Theodora Simopoulou
- Immunonutrition Unit, Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Chistina G. Katsiari
- Immunonutrition Unit, Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| | - Dimitrios G. Goulis
- Unit of Reproductive Endocrinology, 1st Department of Obstetrics and Gynecology, Medical School, Faculty of Health Sciences, Papageorgiou General Hospital, Aristotle University of Thessaloniki, 76 Agiou Pavlou Str., Pavlos Melas, GR-56429 Thessaloniki, Greece
| | - Dimitrios P. Bogdanos
- Immunonutrition Unit, Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, GR-41110 Larissa, Greece
| |
Collapse
|
14
|
Shao YR, Xu DY, Lin J. Nutrients and rheumatoid arthritis: From the perspective of neutrophils. Front Immunol 2023; 14:1113607. [PMID: 36923418 PMCID: PMC10008948 DOI: 10.3389/fimmu.2023.1113607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
Neutrophils are considered as core immune cells involve in the early stage of rheumatoid arthritis (RA) and participate in the disease progression. The underlining mechanisms include the elevated chemotaxis and infiltration of neutrophils, the increase in the reactive oxygen species and the promotion of neutrophil extracellular traps formation. Accumulating studies demonstrated the important role of nutrients intake played in the initiation and progression of RA. This study summarized the effects of several macronutrients and micronutrients on regulating RA through the modulation of activated neutrophils and appealed for a healthy diet in RA-risk individuals as well as RA patients.
Collapse
Affiliation(s)
- Ya-Ru Shao
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan-Yi Xu
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Lin
- Department of Rheumatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Sun X, Wang Y, Li X, Wang M, Dong J, Tang W, Lei Z, Guo Y, Li M, Li Y. Alterations of gut fungal microbiota in patients with rheumatoid arthritis. PeerJ 2022; 10:e13037. [PMID: 35251791 PMCID: PMC8896017 DOI: 10.7717/peerj.13037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/09/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a systemic autoimmune disease, in addition, gut microbiota plays an important role in the etiology of RA. However, our understanding of alterations to the gut fungal microbiota in Chinese population with RA is still limited. METHODS Serum samples were obtained from 62 patients with RA, and 39 age- and gender-matched healthy controls (HCs). Fecal samples were obtained from 42 RA patients and 39 HCs. Fecal fungal microbiota targeting internal transcribed spacer region 2 (ITS2) rRNA genes was investigated using MiSeq sequencing, as well as their associations with some diagnostic biomarkers for RA. RESULTS Our results showed that the fungal diversity did not alter in RA patients but taxonomic composition of the fecal fungal microbiota did. The gut mycobiota of RA patients was characterized by decreased abundance of Pholiota, Scedosporium, and Trichosporon. The linear discriminant analysis (LDA) effect size analysis (LEfSe) analysis identified several RA-enriched fungal genera, which were positively correlated with most RA biomarkers. Furthermore, since RA is an age- and gende-related disease, we classified RA patients into subgroups with age and gender and analyzed the sequencing results. Our data demonstrated that Wallemia and Irpex were the most discriminatory against RA patients over 60 years old, while Pseudeurotiaceae was the most discriminatory against female RA patients. CONCLUSIONS The case-control study presented here confirmed the alterations of gut fungal microbiota in Chinese patients with RA, and we speculated that the fungal dysbiosis may contribute to RA development.
Collapse
Affiliation(s)
- Xiaoyu Sun
- First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yushuang Wang
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Xinke Li
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Meiling Wang
- Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Jianyi Dong
- Laboratory Animal Center, Dalian Medical University, Dalian, Liaoning, China
| | - Wei Tang
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Zengjie Lei
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Yuling Guo
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Ming Li
- College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Yuyuan Li
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|