1
|
Li Z, Lai J, Wen L, Chen Q, Tan R, Zhong X, Liu Y, Liu Y. Higher Levels of Blood Selenium are Associated with Higher Levels of Serum Lipid Profile in US Adults with CKD: Results from NHANES 2013-2018. Biol Trace Elem Res 2023; 201:5501-5511. [PMID: 36973606 DOI: 10.1007/s12011-023-03608-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/23/2023] [Indexed: 03/29/2023]
Abstract
The association between selenium (Se) and lipid profile has been controversial in different populations, and the aim of the study was to investigate the relationship between Se and lipid profile in patients with chronic kidney disease (CKD). A total of 861 US adult patients with CKD (male: female = 404:457) from the National Health and Nutrition Examination Survey database were enrolled in this cross-sectional study. We used smoothing spline plots and multivariate binary logistic regression analyses to elucidate the relationships between blood Se and lipid profile. Multivariate adjusted smoothing spline plots showed that higher levels of blood Se were associated with higher levels of serum remnant cholesterol (RC), total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) levels. Threshold and saturation effects were also observed between serum RC, TC, TG, LDL-C, and blood Se. In multivariate binary logistic regression analyses, the fully adjusted model showed that as blood Se increases by every 1 µg/L, the OR of high RC, high TG and high LDL-C in patients was 1.012 (95% CI: 1.001, 1.023 P = 0.046), 1.011 (95% CI: 1.001, 1.021 P = 0.043) and 1.009 (95% CI: 1.003, 1.016 P = 0.012), respectively. Furthermore, stratified analyses showed that the associations between blood Se and high RC/high TG were significantly stronger in patients aged < 65 years. Higher levels of blood Se were associated with increased serum lipid profile levels and increased risk of high RC, high TC, high LDL-C, and low HDL-C dyslipidemia in adult patients with CKD in the US. However, the real associations between blood Se and lipid profiles in this population should be verified in future prospective and randomized trials.
Collapse
Affiliation(s)
- Ziyuan Li
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Jiahui Lai
- Department of Nephrology, The Third Affiliated Hospital of Sun Yat-Sen-University, Guangzhou, China
| | - Luona Wen
- Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Qiongmei Chen
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Rongshao Tan
- Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Xiaoshi Zhong
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yun Liu
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
- Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
| | - Yan Liu
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
- Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Selenium, Stroke, and Infection: A Threefold Relationship; Where Do We Stand and Where Do We Go? Nutrients 2023; 15:nu15061405. [PMID: 36986135 PMCID: PMC10054895 DOI: 10.3390/nu15061405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Stroke is currently the second most common cause of death worldwide and a major cause of serious long-term morbidity. Selenium is a trace element with pleotropic effects on human health. Selenium deficiency has been associated with a prothrombotic state and poor immune response, particularly during infection. Our aim was to synthesize current evidence on the tripartite interrelationship between selenium levels, stroke, and infection. Although evidence is contradictory, most studies support the association between lower serum selenium levels and stroke risk and outcomes. Conversely, limited evidence on the role of selenium supplementation in stroke indicates a potentially beneficial effect of selenium. Notably, the relationship between stroke risk and selenium levels is bimodal rather than linear, with higher levels of serum selenium linked to disturbances of glucose metabolism and high blood pressure, morbidities which are, in turn, substrates for stroke. Another such substrate is an infection, albeit forming a bidirectional relationship with both stroke and the consequences of impaired selenium metabolism. Perturbed selenium homeostasis leads to impaired immune fitness and antioxidant capacity, which both favor infection and inflammation; specific pathogens may also contend with the host for transcriptional control of the selenoproteome, adding a feed-forward loop to this described process. Broader consequences of infection such as endothelial dysfunction, hypercoagulation, and emergent cardiac dysfunction both provide stroke substrates and further feed-forward feedback to the consequences of deficient selenium metabolism. In this review, we provide a synthesis and interpretation of these outlined complex interrelationships that link selenium, stroke, and infection and attempt to decipher their potential impact on human health and disease. Selenium and the unique properties of its proteome could provide both biomarkers and treatment options in patients with stroke, infection, or both.
Collapse
|
3
|
Park S, Kim SG, Lee S, Kim Y, Cho S, Kim K, Kim YC, Han SS, Lee H, Lee JP, Joo KW, Lim CS, Kim YS, Kim DK. Genetically predicted body selenium concentration and eGFR: A Mendelian randomization study. Kidney Int Rep 2023; 8:851-859. [PMID: 37069993 PMCID: PMC10105058 DOI: 10.1016/j.ekir.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Introduction Selenium is a trace mineral that is commonly included in micronutrient supplements. The effect of selenium on kidney function remains unclear. A genetically predicted micronutrient and its association with estimated glomerular filtration rate (eGFR) can be used to assess the causal estimates by Mendelian randomization (MR). Methods In this MR study, we instrumented 11 genetic variants associated with blood or total selenium levels from a previous genome-wide association study (GWAS). The association between genetically predicted selenium concentration and eGFR was first assessed by summary-level MR in the chronic kidney disease(CKDGen) GWAS meta-analysis summary statistics, including 567,460 European samples. Inverse-variance weighted and pleiotropy-robust MR analyses were performed, in addition to multivariable MR adjusted for the effects of type 2 diabetes mellitus. Replication analysis was performed with individual-level UK Biobank data, including 337,318 White individuals of British ancestry. Results Summary-level MR analysis indicated that a genetically predicted 1 SD increase in selenium concentration was significantly associated with lower eGFR (-1.05 [-1.28, -0.82] %). The results were similarly reproduced by pleiotropy-robust MR analysis, including MR-Egger and weighted-median methods, and consistent even in the multivariable MR adjusted for diabetes. In the UK Biobank data, genetically predicted higher selenium concentration was also significantly associated with lower eGFR (- 0.36 [-0.52, -0.20] %), and the results were similar when body mass index, waist circumference, hypertension, and diabetes mellitus covariates were adjusted (-0.33 [-0.50, -0.17] %). Conclusion This MR study supports the hypothesis that higher genetically predicted body selenium is causally associated with lower eGFR.
Collapse
|
4
|
Wu Q, Li J, Zhu J, Sun X, He D, Li J, Cheng Z, Zhang X, Xu Y, Chen Q, Zhu Y, Lai M. Gamma-glutamyl-leucine levels are causally associated with elevated cardio-metabolic risks. Front Nutr 2022; 9:936220. [PMID: 36505257 PMCID: PMC9729530 DOI: 10.3389/fnut.2022.936220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022] Open
Abstract
Objective Gamma-glutamyl dipeptides are bioactive peptides involved in inflammation, oxidative stress, and glucose regulation. Gamma-glutamyl-leucine (Gamma-Glu-Leu) has been extensively reported to be associated with the risk of cardio-metabolic diseases, such as obesity, metabolic syndrome, and type 2 diabetes. However, the causality remains to be uncovered. The aim of this study was to explore the causal-effect relationships between Gamma-Glu-Leu and metabolic risk. Materials and methods In this study, 1,289 subjects were included from a cross-sectional survey on metabolic syndrome (MetS) in eastern China. Serum Gamma-Glu-Leu levels were measured by untargeted metabolomics. Using linear regressions, a two-stage genome-wide association study (GWAS) for Gamma-Glu-Leu was conducted to seek its instrumental single nucleotide polymorphisms (SNPs). One-sample Mendelian randomization (MR) analyses were performed to evaluate the causality between Gamma-Glu-Leu and the metabolic risk. Results Four SNPs are associated with serum Gamma-Glu-Leu levels, including rs12476238, rs56146133, rs2479714, and rs12229654. Out of them, rs12476238 exhibits the strongest association (Beta = -0.38, S.E. = 0.07 in discovery stage, Beta = -0.29, S.E. = 0.14 in validation stage, combined P-value = 1.04 × 10-8). Each of the four SNPs has a nominal association with at least one metabolic risk factor. Both rs12229654 and rs56146133 are associated with body mass index, waist circumference (WC), the ratio of WC to hip circumference, blood pressure, and triglyceride (5 × 10-5 < P < 0.05). rs56146133 also has nominal associations with fasting insulin, glucose, and insulin resistance index (5 × 10-5 < P < 0.05). Using the four SNPs serving as the instrumental SNPs of Gamma-Glu-Leu, the MR analyses revealed that higher Gamma-Glu-Leu levels are causally associated with elevated risks of multiple cardio-metabolic factors except for high-density lipoprotein cholesterol and low-density lipoprotein cholesterol (P > 0.05). Conclusion Four SNPs (rs12476238, rs56146133, rs2479714, and rs12229654) may regulate the levels of serum Gamma-Glu-Leu. Higher Gamma-Glu-Leu levels are causally linked to cardio-metabolic risks. Future prospective studies on Gamma-Glu-Leu are required to explain its role in metabolic disorders.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Epidemiology and Biostatistics, School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Jiankang Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Jinghan Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaohui Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, China
| | - Di He
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Li
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zongxue Cheng
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuhui Zhang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China,Affiliated Hangzhou Center of Disease Control and Prevention, School of Public Health, Zhejiang University, Hangzhou, China
| | - Yuying Xu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qing Chen
- Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China,*Correspondence: Qing Chen,
| | - Yimin Zhu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Department of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China,Cancer Center, Zhejiang University, Hangzhou, China,Yimin Zhu,
| | - Maode Lai
- Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China,State Key Laboratory of Natural Medicines, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China,Maode Lai,
| |
Collapse
|
5
|
Luan F, Chen Y, Xu Y, Jiang X, Liu B, Wang Y. Associations between whole blood trace elements concentrations and HbA1c levels in patients with type 2 diabetes. Biometals 2022; 35:1011-1022. [PMID: 35864276 DOI: 10.1007/s10534-022-00419-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Previous researches have been conducted to study the associations of trace elements on Type 2 diabetes (T2D) risk. The present study focuses on the evaluation of potential associations between trace elements and Hemoglobin A1c (HbA1c) in patients with T2D, via the determination of their levels in human whole blood. 100 diabetes without complications, 75 prediabetes and 40 apparently healthy subjects were studied. The levels of eleven trace elements including lithium (Li), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), copper (Cu), zinc (Zn), selenium (Se), strontium (Sr) and molybdenum (Mo) were measured using inductively coupled plasma mass spectrometry (ICP-MS). The levels of fasting glucose, HbA1c, Hemoglobin, lipid, liver function, kidney function, thyroid function and demographic data were obtained from the Laboratory Information System. Nonparametric correlation (Spearman) was used to analyze the relationship between trace elements and HbA1c. The contents of V, Cr, Mn, Fe, Co, Cu, Zn and Mo in diabetes increased comparing with the healthy subject while Li decreased. But the levels of Li, V, Cr, Mn, Co, Se and Mo negatively correlated with HbA1c in the diabetes subjects (r value: - 0.2189, - 0.2421, - 0.3260, - 0.2744, - 0.2812, - 0.2456, - 0.2240; 95% confidence interval - 0.4032 to - 0.0176, - 0.4235 to - 0.0420, - 0.4955 to - 0.1326, - 0.4515 to - 0.0765, - 0.4573 to - 0.0838, - 0.4266 to - 0.0458, - 0.4076 to - 0.0229; p < 0.05, p < 0.05, p < 0.001, p < 0.01, p < 0.01, p < 0.05, p < 0.05). Accordingly, the contents of V, Cr, Mn and Se showed lower in HbA1c ≥ 7.0% group in contrast to HbA1c < 7.0% group. No correlation of HbA1c (or FBG) and trace elements was found in the healthy subjects. Trace element levels and metabolic abnormalities of blood glucose may be mutually affected. The extra supplement of trace elements needs to be cautious.
Collapse
Affiliation(s)
- Fang Luan
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong, People's Republic of China
| | - Yuan Chen
- Department of Pediatry, Shandong Provincial Hospital Afliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yanqiu Xu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong, People's Republic of China
| | - Xuerui Jiang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong, People's Republic of China
| | - Bin Liu
- Department of Biomedical Engineering, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Galvez-Fernandez M, Sanchez-Saez F, Domingo-Relloso A, Rodriguez-Hernandez Z, Tarazona S, Gonzalez-Marrachelli V, Grau-Perez M, Morales-Tatay JM, Amigo N, Garcia-Barrera T, Gomez-Ariza JL, Chaves FJ, Garcia-Garcia AB, Melero R, Tellez-Plaza M, Martin-Escudero JC, Redon J, Monleon D. Gene-environment interaction analysis of redox-related metals and genetic variants with plasma metabolic patterns in a general population from Spain: The Hortega Study. Redox Biol 2022; 52:102314. [PMID: 35460952 PMCID: PMC9048061 DOI: 10.1016/j.redox.2022.102314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/26/2022] Open
Abstract
Background Limited studies have evaluated the joint influence of redox-related metals and genetic variation on metabolic pathways. We analyzed the association of 11 metals with metabolic patterns, and the interacting role of candidate genetic variants, in 1145 participants from the Hortega Study, a population-based sample from Spain. Methods Urine antimony (Sb), arsenic, barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), molybdenum (Mo) and vanadium (V), and plasma copper (Cu), selenium (Se) and zinc (Zn) were measured by ICP-MS and AAS, respectively. We summarized 54 plasma metabolites, measured with targeted NMR, by estimating metabolic principal components (mPC). Redox-related SNPs (N = 291) were measured by oligo-ligation assay. Results In our study, the association with metabolic principal component (mPC) 1 (reflecting non-essential and essential amino acids, including branched chain, and bacterial co-metabolism versus fatty acids and VLDL subclasses) was positive for Se and Zn, but inverse for Cu, arsenobetaine-corrected arsenic (As) and Sb. The association with mPC2 (reflecting essential amino acids, including aromatic, and bacterial co-metabolism) was inverse for Se, Zn and Cd. The association with mPC3 (reflecting LDL subclasses) was positive for Cu, Se and Zn, but inverse for Co. The association for mPC4 (reflecting HDL subclasses) was positive for Sb, but inverse for plasma Zn. These associations were mainly driven by Cu and Sb for mPC1; Se, Zn and Cd for mPC2; Co, Se and Zn for mPC3; and Zn for mPC4. The most SNP-metal interacting genes were NOX1, GSR, GCLC, AGT and REN. Co and Zn showed the highest number of interactions with genetic variants associated to enriched endocrine, cardiovascular and neurological pathways. Conclusions Exposures to Co, Cu, Se, Zn, As, Cd and Sb were associated with several metabolic patterns involved in chronic disease. Carriers of redox-related variants may have differential susceptibility to metabolic alterations associated to excessive exposure to metals. In a population-based sample, cobalt, copper, selenium, zinc, arsenic, cadmium and antimony exposures were related to some metabolic patterns. Carriers of redox-related variants displayed differential susceptibility to metabolic alterations associated to excessive metal exposures. Cobalt and zinc showed a number of statistical interactions with variants from genes sharing biological pathways with a role in chronic diseases. The metabolic impact of metals combined with variation in redox-related genes might be large in the population, given metals widespread exposure.
Collapse
Affiliation(s)
- Marta Galvez-Fernandez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Department of Preventive Medicine, Hospital Universitario Severo Ochoa, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Francisco Sanchez-Saez
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain; Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, USA
| | - Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain
| | - Sonia Tarazona
- Applied Statistics and Operations Research and Quality Politècnica de València, Valencia, Spain
| | - Vannina Gonzalez-Marrachelli
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Physiology, University of Valencia, Valencia, Spain
| | - Maria Grau-Perez
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Jose M Morales-Tatay
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain
| | - Nuria Amigo
- Biosfer Teslab, Reus, Spain; Department of Basic Medical Sciences, University Rovira I Virgili, Reus, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Tamara Garcia-Barrera
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - Jose L Gomez-Ariza
- Research Center for Natural Resources, Health and the Environment (RENSMA), Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Huelva, Spain
| | - F Javier Chaves
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Ana Barbara Garcia-Garcia
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Center for Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Rebeca Melero
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Maria Tellez-Plaza
- Department of Preventive Medicine and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain; Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain; Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain.
| | - Juan C Martin-Escudero
- Department of Internal Medicine, Hospital Universitario Rio Hortega, University of Valladolid, Valladolid, Spain
| | - Josep Redon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain
| | - Daniel Monleon
- Institute for Biomedical Research, Hospital Clinic of Valencia (INCLIVA), Valencia, Spain; Department of Pathology University of Valencia, Valencia, Spain; Center for Biomedical Research Network on Frailty and Health Aging (CIBERFES), Madrid, Spain
| |
Collapse
|
7
|
Fang H, Liu W, Zhang L, Pei L, Gao Y, Zhao L, Zhang R, Yang J, Song B, Xu Y. A Bidirectional Mendelian Randomization Study of Selenium Levels and Ischemic Stroke. Front Genet 2022; 13:782691. [PMID: 35495125 PMCID: PMC9043360 DOI: 10.3389/fgene.2022.782691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Previous observational studies have shown that circulating selenium levels are inversely associated with ischemic stroke (IS). Our aims were to evaluate the causal links between selenium levels and IS, and its subtypes by Mendelian randomization (MR) analysis.Methods: We used the two-sample Mendelian randomization (MR) method to determine whether the circulating selenium levels are causally associated with the risk of stroke. We extracted the genetic variants (SNPs) associated with blood and toenail selenium levels from a large genome-wide association study (GWAS) meta-analysis. Inverse variance-weighted (IVW) method was used as the determinant of the causal effects of exposures on outcomes.Results: A total of 4 SNPs (rs921943, rs6859667, rs6586282, and rs1789953) significantly associated with selenium levels were obtained. The results indicated no causal effects of selenium levels on ischemic stroke by MR analysis (OR = 0.968, 95% CI 0.914–1.026, p = 0.269). Meanwhile, there was no evidence of a causal link between circulating selenium levels and subtypes of IS.Conclusion: The MR study indicated no evidence to support the causal links between genetically predicted selenium levels and IS. Our results also did not support the use of selenium supplementation for IS prevention at the genetic level.
Collapse
|