1
|
Chen W, Ye Q, Zhang B, Ma Z, Tu H. Identification of FGG as a Biomarker in Early Gastric Cancer via Tissue Proteomics and Clinical Verification. J Proteome Res 2024; 23:5122-5130. [PMID: 39417528 DOI: 10.1021/acs.jproteome.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Early and accurate diagnosis of gastric cancer (GC) is essential for reducing mortality and improving patient well-being. However, methods for the early diagnosis of GC are still lacking. In this study, by isobaric tagging for relative and absolute quantitation (iTRAQ), we identified 336 proteins that overlapped among the upregulated differentially expressed proteins (DEPs) in early gastric cancer (EGC) versus progressive gastric cancer (PGC), upregulated DEPs in EGC versus nongastric cancer (NGC), and nonsignificant proteins in EGC versus NGC. These DEPs were involved primarily in the neutrophil-related immune response. Network analysis of proteins and pathways revealed that fibrinogen α (FGA), β (FGB), and γ (FGG) are candidates for distinguishing EGC. Furthermore, parallel reaction monitoring (PRM), immunohistochemistry (IHC), and Western blot (WB) assays of clinical samples confirmed that, compared with that in PGC and NGC, only FGG was uniquely and significantly upregulated in the gastric mucosa of EGC. Our results demonstrated that FGG in the gastric mucosa could be a novel biomarker to diagnose EGC patients via endoscopy.
Collapse
Affiliation(s)
- Wujie Chen
- Department of Gastroenterology, Ningbo No. 2 Hospital, No. 41 Northwest Street Haishu District, Ningbo, Zhejiang 315010, China
| | - Qihua Ye
- Department of Gastroenterology, Ningbo No. 2 Hospital, No. 41 Northwest Street Haishu District, Ningbo, Zhejiang 315010, China
| | - Biying Zhang
- Department of Gastroenterology, Ningbo No. 2 Hospital, No. 41 Northwest Street Haishu District, Ningbo, Zhejiang 315010, China
| | - Zhenhua Ma
- Department of Gastroenterology, Ningbo No. 2 Hospital, No. 41 Northwest Street Haishu District, Ningbo, Zhejiang 315010, China
| | - Hanxiao Tu
- Department of Gastroenterology, Ningbo No. 2 Hospital, No. 41 Northwest Street Haishu District, Ningbo, Zhejiang 315010, China
| |
Collapse
|
2
|
Dobson DA, Fish RJ, de Vries PS, Morrison AC, Neerman-Arbez M, Wolberg AS. Regulation of fibrinogen synthesis. Thromb Res 2024; 242:109134. [PMID: 39216273 PMCID: PMC11381137 DOI: 10.1016/j.thromres.2024.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The plasma protein fibrinogen is encoded by 3 structural genes (FGA, FGB, and FGG) that are transcribed to mRNA, spliced, and translated to 3 polypeptide chains (Aα, Bβ, and γ, respectively). These chains are targeted for secretion, decorated with post-translational modifications, and assembled into a hexameric "dimer of trimers" (AαBβγ)2. Fully assembled fibrinogen is secreted into the blood as a 340 kDa glycoprotein. Fibrinogen is one of the most prevalent coagulation proteins in blood, and its expression is induced by inflammatory cytokines, wherein circulating fibrinogen levels may increase up to 3-fold during acute inflammatory events. Abnormal levels of circulating fibrinogen are associated with bleeding and thrombotic disorders, as well as several inflammatory diseases. Notably, therapeutic strategies to modulate fibrinogen levels have shown promise in experimental models of disease. Herein, we review pathways mediating fibrinogen synthesis, from gene expression to secretion. Knowledge of these mechanisms may lead to the identification of biomarkers and new therapeutic targets to modulate fibrinogen in health and disease.
Collapse
Affiliation(s)
- Dre'Von A Dobson
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, The University of North Carolina at Chapel Hill, NC, USA
| | - Richard J Fish
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Paul S de Vries
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Alanna C Morrison
- Human Genetics Center, Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, The University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Gao Y, Xu S, Guo G, Li Y, Zhou W, Li H, Yang Z. MoO 3/MIL-125-NH 2 with boosted peroxidase-like activity for electrochemical staphylococcus aureus sensing via specific recognition of bacteriophages. Biosens Bioelectron 2024; 252:116134. [PMID: 38417287 DOI: 10.1016/j.bios.2024.116134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
Herein, novel nanozyme mimics MoO3/MIL-125-NH2 were reported and conjugated with bacteriophages as a new electrochemical probe for high sensitivity and specific electrochemical detection of staphylococcus aureus. The excellent peroxidase-like activity of MoO3/MIL-125-NH2 composites was attributed to the integration of MIL-125-NH2 with MoO3, which can boost the generation of superoxide radicals (O• 2-) and thus promote the oxidation of TMB in the presence of H2O2. In this work, two bacteriophages named SapYZU04 and SapYZU10 were isolated from sewage samples by using staphylococcus aureus YZUsa12 as the host. In comparison, MoO3/MIL-125-NH2@SapYZU04 was selected as a recognition agent. The DPV current declined linearly with staphylococcus aureus YZUsa12 concentration in the range of 101-108 CFU mL-1, with a low detection limit of 16 CFU mL-1 (S/N = 3). 20 strains including 13 host strains and 7 non-host strains were used to evaluate the selectivity of the proposed sensor. Regardless of the differences in the degrees of lytic performance for phage SapYZU04, all selected host strains can be screened with merely the same DPV current. Host spectrum-oriented bacteriophage sensing is of great importance for the practical application of bacteriophage-based biosensors in the future.
Collapse
Affiliation(s)
- Yajun Gao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, PR China
| | - Suhui Xu
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Ge Guo
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Yajie Li
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Wenyuan Zhou
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China; College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China.
| | - Huaxiang Li
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Zhenquan Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China.
| |
Collapse
|
4
|
Liu P, Li XJ, Zhang T, Huang YH. Comparison between XGboost model and logistic regression model for predicting sepsis after extremely severe burns. J Int Med Res 2024; 52:3000605241247696. [PMID: 38698505 PMCID: PMC11067675 DOI: 10.1177/03000605241247696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVE To compare an Extreme Gradient Boosting (XGboost) model with a multivariable logistic regression (LR) model for their ability to predict sepsis after extremely severe burns. METHODS For this observational study, patient demographic and clinical information were collected from medical records. The two models were evaluated using area under curve (AUC) of the receiver operating characteristic (ROC) curve. RESULTS Of the 103 eligible patients with extremely severe burns, 20 (19%) were in the sepsis group, and 83 (81%) in the non-sepsis group. The LR model showed that age, admission time, body index (BI), fibrinogen, and neutrophil to lymphocyte ratio (NLR) were risk factors for sepsis. Comparing AUC of the ROC curves, the XGboost model had a higher predictive performance (0.91) than the LR model (0.88). The SHAP visualization tool indicated fibrinogen, NLR, BI, and age were important features of sepsis in patients with extremely severe burns. CONCLUSIONS The XGboost model was superior to the LR model in predictive efficacy. Results suggest that, fibrinogen, NLR, BI, and age were correlated with sepsis after extremely severe burns.
Collapse
Affiliation(s)
- Peng Liu
- Department of Burn and Plastic, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Xiao-Jian Li
- Department of Burn and Plastic, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Tao Zhang
- Department of Burn and Plastic, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Yi-Hui Huang
- Department of Pediatric Medicine, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Wolberg AS. Fibrinogen and fibrin: synthesis, structure, and function in health and disease. J Thromb Haemost 2023; 21:3005-3015. [PMID: 37625698 PMCID: PMC10592048 DOI: 10.1016/j.jtha.2023.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Fibrinogen is an extraordinary molecule by any estimation. It is large, structurally intricate, and circulates at high concentrations. Its biological end product, insoluble fibrin(ogen) or fibrin, can assume a diverse array of conformations with the ability to interact with numerous plasma proteins and cells and withstand biochemical and biomechanical disruption to facilitate wound healing. Quantitative and qualitative defects in fibrinogen or fibrin are associated with bleeding, thrombosis, inflammation, and diseases affected by these processes. Numerous studies investigating mechanisms by which fibrin(ogen) and fibrin contribute to health and disease have been published. This review for the 20th-anniversary series in the Journal of Thrombosis and Haemostasis summarizes interesting aspects of fibrin(ogen) biology, biochemistry, biophysics, and physiology and highlights exciting findings published in the past 2 decades.
Collapse
Affiliation(s)
- Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
6
|
Morshdy AEMA, Abdallah KME, Abdallah HE, Algahtani FD, Elabbasy MT, Atique S, Ahmad K, Al-Najjar MAA, Abdallah HM, Mahmoud AFA. Potential of Natural Phenolic Compounds as Antimicrobial Agents against Multidrug-Resistant Staphylococcus aureus in Chicken Meat. Molecules 2023; 28:6742. [PMID: 37764518 PMCID: PMC10535414 DOI: 10.3390/molecules28186742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Staphylococcus aureus is one of the most widespread foodborne bacteria that cause high morbidity, mortality, and economic loss, primarily if foodborne diseases are caused by pathogenic and multidrug-resistant (MDR) strains. This study aimed to determine the prevalence of S. aureus in chicken meat in Egyptian markets. Thus, this study might be the first to assess the efficiency of different natural phenolic compounds as novel antibacterial agents against MDR S. aureus pathogens isolated from raw chicken meat in the Egyptian market. The incidence and quantification of pathogenic S. aureus were detected in retail raw chicken meat parts (breast, thigh, fillet, and giblets). In total, 73 out of 80 (91.3%) of the chicken meat parts were contaminated, with S. aureus as the only species isolated. Of the 192 identified S. aureus isolates, 143 were coagulase-positive S. aureus and 117 isolates were MDR (81.8%, 117/143). Twenty-two antibiotic resistance profile patterns were detected. One strain was randomly selected from each pattern to further analyze virulence and resistance genes. Extracted DNA was assessed for the presence of antibiotic-resistance genes, i.e., vancomycin-resistance (vanA), aminoglycosides-resistance (aacA-aphD), apramycin-resistance (apmA), and methicillin-resistance (mecA), penicillin-resistance (blaZ), and virulence genes staphylococcal enterotoxins (sea and seb), Panton-Valentine leucocidin (pvl), clumping factor A (clfA), and toxic shock syndrome toxin (tst). Clustering analyses revealed that six S. aureus strains harbored the most virulence and resistance genes. The activity of hydroquinone was significantly higher than thymol, carvacrol, eugenol, and protocatechuic acid. Therefore, phenolic compounds, particularly hydroquinone, could potentially alternate with conventional antibiotics against the pathogenic MDR S. aureus inhabiting raw chicken meat. Hence, this study indicates that urgent interventions are necessary to improve hygiene for safer meat in Egyptian markets. Moreover, hydroquinone could be a natural phenolic compound for inhibiting foodborne pathogens.
Collapse
Affiliation(s)
- Alaa Eldin M. A. Morshdy
- Food Hygiene, Safety, and Technology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.E.M.A.M.); (H.E.A.)
| | - Karima M. E. Abdallah
- Food Hygiene, Safety, and Technology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.E.M.A.M.); (H.E.A.)
| | - Heba E. Abdallah
- Food Hygiene, Safety, and Technology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.E.M.A.M.); (H.E.A.)
| | - Fahad D. Algahtani
- Department of Public Health, College of Public Health and Health Informatics, University of Hail, Ha’il 81451, Saudi Arabia
| | | | - Suleman Atique
- Department of Public Health Science, Faculty of Landscape and Society, Norwegian University of Life Sciences, 1430 Ås, Norway
| | - Khursheed Ahmad
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Hossam M. Abdallah
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Abdallah Fikry A. Mahmoud
- Food Hygiene, Safety, and Technology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.E.M.A.M.); (H.E.A.)
| |
Collapse
|
7
|
Ariëns RAS, Cassat JE. Surviving a sticky situation: therapeutic administration of fibrinogen variant γ' improves outcomes of Staphylococcus aureus septicemia. J Thromb Haemost 2023; 21:2048-2050. [PMID: 37468174 PMCID: PMC10947783 DOI: 10.1016/j.jtha.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 07/21/2023]
Affiliation(s)
- Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - James E Cassat
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|