1
|
Yin P, Gao Y, Chen R, Liu W, He C, Hao J, Zhou M, Kan H. Temperature-related death burden of various neurodegenerative diseases under climate warming: a nationwide modelling study. Nat Commun 2023; 14:8236. [PMID: 38086884 PMCID: PMC10716387 DOI: 10.1038/s41467-023-44066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Limited knowledge exists regarding the ramifications of climate warming on death burden from neurodegenerative diseases. Here, we conducted a nationwide, individual-level, case-crossover study between 2013 and 2019 to investigate the effects of non-optimal temperatures on various neurodegenerative diseases and to predict the potential death burden under different climate change scenarios. Our findings reveal that both low and high temperatures are linked to increased risks of neurodegenerative diseases death. We project that heat-related neurodegenerative disease deaths would increase, while cold-related deaths would decrease. This is characterized by a steeper slope in the high-emission scenario, but a less pronounced trend in the scenarios involving mitigation strategies. Furthermore, we predict that the net changes in attributable death would increase after the mid-21st century, especially under the unrestricted-emission scenario. These results highlight the urgent need for effective climate and public health policies to address the growing challenges of neurodegenerative diseases associated with global warming.
Collapse
Affiliation(s)
- Peng Yin
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Wei Liu
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Cheng He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Junwei Hao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
- National Center for Neurological Disorders, Beijing, China.
| | - Maigeng Zhou
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Zeng J, Cai J, Wang D, Liu H, Sun H, Liu J. Heat stress affects dairy cow health status through blood oxygen availability. J Anim Sci Biotechnol 2023; 14:112. [PMID: 37658441 PMCID: PMC10474781 DOI: 10.1186/s40104-023-00915-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/06/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Rises in global warming and extreme weather occurrence make the risk of heat stress (HS) induced by high ambient temperatures more likely in high-yielding dairy cows, resulting in low milk quality and yield. In animals, oxygen is involved in many physiological and metabolic processes, but the effects of HS on oxygen metabolism remain unclear. Thus, the current study aimed to investigate how oxygen metabolism plays a role in health status of dairy cows by measuring the milk yield, milk composition, and blood biochemical variables of cows under different levels of HS: none (No-HS), mild (Mild-HS), and moderate HS (Mod-HS). RESULTS The HS significantly increased rectal temperature (Ptreat < 0.01) and respiration rate (Ptreat < 0.01). Under Mod-HS, greater Na+ (P < 0.05) and lower total CO2, and pH (P < 0.05) were observed relative to those under No-HS and Mild-HS. Oxygen concentrations in both coccygeal artery and mammary vein (Ptreat < 0.01) were lower under Mod-HS than under No-HS. Coccygeal vein concentrations of heat shock protein 90 (HSP90) (P < 0.05) increased during Mod-HS compared with those in cows under No-HS. Malondialdehyde increased during Mod-HS, and glutathione peroxidase (P < 0.01) increased during Mild-HS. Coccygeal vein concentrations of vascular endothelial growth factor (P < 0.01), heme oxygenase-1 (P < 0.01), and hypoxia-inducible factor 1α (P < 0.01) were greater in cows under Mod-HS than those under No-HS. Red blood cell count (P < 0.01) and hemoglobin concentration (P < 0.01) were lower in the coccygeal vein of dairy cows under Mild- and Mod-HS than those of cows under No-HS. CONCLUSIONS Exposure to HS negatively impacts the health status and lactation performance of dairy cows by limiting oxygen metabolism and transportation. However, the specific mechanism by which HS affects mammary function in cows remains unclear and requires further exploration.
Collapse
Affiliation(s)
- Jia Zeng
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Jie Cai
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Diming Wang
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Hongyun Liu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Huizeng Sun
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| | - Jianxin Liu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Monageng E, Offor U, Takalani NB, Mohlala K, Opuwari CS. A Review on the Impact of Oxidative Stress and Medicinal Plants on Leydig Cells. Antioxidants (Basel) 2023; 12:1559. [PMID: 37627554 PMCID: PMC10451682 DOI: 10.3390/antiox12081559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/03/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Leydig cells are essential for steroidogenesis and spermatogenesis. An imbalance in the production of reactive oxygen species (ROS) and the cellular antioxidant level brings about oxidative stress. Oxidative stress (OS) results in the dysfunction of Leydig cells, thereby impairing steroidogenesis, spermatogenesis, and ultimately, male infertility. To prevent Leydig cells from oxidative insults, there needs to be a balance between the ROS production and the cellular protective capacity of antioxidants. Evidence indicates that medicinal plants could improve Leydig cell function at specific concentrations under basal or OS conditions. The increased usage of medicinal plants has been considered a possible alternative treatment for male infertility. This review aims to provide an overview of the impact of oxidative stress on Leydig cells as well as the effects of various medicinal plant extracts on TM3 Leydig cells. The medicinal plants of interest include Aspalathus linearis, Camellia sinensis, Moringa oleifera, Morinda officinale, Taraxacum officinale, Trichilia emetica, Terminalia sambesiaca, Peltophorum africanum, Ximenia caffra, Serenoa repens, Zingiber officinale, Eugenia jambolana, and a combination of dandelion and fermented rooibos (CRS-10). According to the findings obtained from studies conducted on the evaluated medicinal plants, it can, therefore, be concluded that the medicinal plants maintain the antioxidant profile of Leydig cells under basal conditions and have protective or restorative effects following exposure to oxidative stress. The available data suggest that the protective role exhibited by the evaluated plants may be attributed to their antioxidant content. Additionally, the use of the optimal dosage or concentration of the extracts in the management of oxidative stress is of the utmost importance, and the measurement of their oxidation reduction potential is recommended.
Collapse
Affiliation(s)
- Elizabeth Monageng
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| | - Ugochukwu Offor
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Ndivhuho Beauty Takalani
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| | - Kutullo Mohlala
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| | - Chinyerum Sylvia Opuwari
- Department of Medical Biosciences, Faculty of Natural Science, University of Western Cape, Cape Town 7535, South Africa
| |
Collapse
|
4
|
Mechanistic Approaches to the Application of Nano-Zinc in the Poultry and Biomedical Industries: A Comprehensive Review of Future Perspectives and Challenges. Molecules 2023; 28:molecules28031064. [PMID: 36770731 PMCID: PMC9921179 DOI: 10.3390/molecules28031064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Bio-fortification is a new, viable, cost-effective, and long-term method of administering crucial minerals to a populace with limited exposure to diversified foods and other nutritional regimens. Nanotechnology entities aid in the improvement of traditional nutraceutical absorption, digestibility, and bio-availability. Nano-applications are employed in poultry systems utilizing readily accessible instruments and processes that have no negative impact on animal health and welfare. Nanotechnology is a sophisticated innovation in the realm of biomedical engineering that is used to diagnose and cure various poultry ailments. In the 21st century, zinc nanoparticles had received a lot of considerable interest due to their unusual features. ZnO NPs exhibit antibacterial properties; however, the qualities of nanoparticles (NPs) vary with their size and structure, rendering them adaptable to diverse uses. ZnO NPs have shown remarkable promise in bio-imaging and drug delivery due to their high bio-compatibility. The green synthesized nanoparticles have robust biological activities and are used in a variety of biological applications across industries. The current review also discusses the formulation and recent advancements of zinc oxide nanoparticles from plant sources (such as leaves, stems, bark, roots, rhizomes, fruits, flowers, and seeds) and their anti-cancerous activities, activities in wound healing, and drug delivery, followed by a detailed discussion of their mechanisms of action.
Collapse
|
5
|
Deng C, Zheng J, Zhou H, You J, Li G. Dietary glycine supplementation prevents heat stress-induced impairment of antioxidant status and intestinal barrier function in broilers. Poult Sci 2022; 102:102408. [PMID: 36584416 PMCID: PMC9827071 DOI: 10.1016/j.psj.2022.102408] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
This study tested the hypothesis that glycine improves intestinal barrier function through regulating oxidative stress in broilers exposed to heat stress. A total of 300 twenty-one-day-old female Arbor Acres broilers (600 ± 2.5g) was randomly allocated to 5 treatments (6 replicate of 10 birds each). The 5 treatments were as follows: the control group (CON) was kept under thermoneutral condition (24 ± 1°C) and was fed a basal diet. Broilers fed a basal diet and reared under high ambient temperature (HT) were considered as the HT group (34 ± 1°C for 8 h/d). Broilers fed a basal diet supplemented with 0.5%, 1.0%, and 2.0% glycine and exposed to HT were regarded as the HT + glycine treatments. The results exhibited that heat stress reduced growth performance, serum total antioxidant capacity (T-AOC), and glutathione (GSH) concentration (P < 0.05); increased activity of serum catalase (CAT) and the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) (P < 0.05). HT exposure led to downregulating the mRNA expression of NAD(P)H quinone dehydrogenase 1 (NQO1), Occludin, and zonula occludens-1 (ZO-1) (P < 0.05); enhanced the mRNA levels of Kelch-like ECH-associated protein 1 (Keap1), CAT, glutathione synthetase (GSS), and glutamate-cysteine ligase modifier subunit (GCLM) (P < 0.05); impaired the intestinal morphology (P < 0.05); and altered the diversity and community of gut microbiota (P < 0.05). The final body weight (FBW), ADFI, ADG, and gain-to-feed ratio (G: F) increased linearly or quadratically, and the antioxidant capacity was improved (P < 0.05) with glycine supplementation. Glycine treatment increased the villus height (VH), and villus height to crypt depth ratio (V/C) of the duodenum linearly or quadratically, and linearly increased the VH of jejunum and ileum. The mRNA expression of Occludin, and ZO-1 were increased linearly in the ileum mucosa of broilers subjected to HT. Collectively, these results demonstrated that glycine supplementation alleviates heat stress-induced dysfunction of antioxidant status and intestinal barrier in broilers.
Collapse
Affiliation(s)
- Chenxi Deng
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Jun Zheng
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Hua Zhou
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China,Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Nanchang 330045, China
| | - Guanhong Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Province Key Innovation Center of Integration in Production and Education for High-Quality and Safe Livestock and Poultry, Nanchang 330045, China.
| |
Collapse
|
6
|
Mishra SK, Dhadve AC, Mal A, Reddy BPK, Hole A, Chilakapati MK, Ray P, Srivastava R, De A. Photothermal therapy (PTT) is an effective treatment measure against solid tumors which fails to respond conventional chemo/radiation therapies in clinic. BIOMATERIALS ADVANCES 2022; 143:213153. [PMID: 36343390 DOI: 10.1016/j.bioadv.2022.213153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Photothermal therapy (PTT) has emerged as a fast, precisive, and cost-effective anticancer therapy protocol. Here we applied our previously designed nanomaterial (Tocophotoxil) for prospective PTT application to manage radiation- and chemo-resistant cancers in a preclinical model. A PTT dose vs. efficacy relationship was established for radioresistant breast (ZR-75-1 50Gy, 4T1 20Gy) and chemo-resistant ovarian (A2780LR) cancer cells and tumors in mice models. Compared to the sensitive cases, resistant cells treated with PTT for a shorter duration show higher endurance. However, preclinical tumor xenografts treated with optimal PTT dose show 2-3 fold higher longevity (P ≤ 0.05) of treated mice monitored by non-invasive imaging methods. Elevated ERK and AKT activation in radioresistant or only AKT activation in chemo-resistant cells were contributory to higher cell survival in sub-optimal PTT dose. A comprehensive single-cell Raman map of PTT treated ZR-75-1 cell reveals broad-spectrum macromolecular deformities, including protein damage features. Marked induction of pJNK, unfolded protein response (UPR) pathway, increased reactive oxygen species (ROS), and lipid peroxidation in PTT-treated cells disrupted the intracellular homeostasis. Analyzing cellular ultrastructure, the coexistence of swollen endoplasmic reticulum, and autophagic bodies after PTT indicate possible coordination between UPR and autophagy pathways. Therefore, this comprehensive study provides new evidence on the potential impact of PTT as a standalone therapy for ablation of failed conventional therapy-resistant cancers in vivo, the success of which is intricately linked to the PTT dose optimization. The study, for the first time, also illustrates that under PTT treatment, concerted action of novel molecular switches such as JNK activation and UPR activation plays a vital role in triggering autophagy and cancer cell death.
Collapse
Affiliation(s)
- Sumit K Mishra
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India
| | - Ajit C Dhadve
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India
| | - Arijit Mal
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India
| | - B Pradeep K Reddy
- NanoBios Lab, Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Arti Hole
- Chilakapati Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
| | - Murali Krishna Chilakapati
- Chilakapati Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India.
| | - Pritha Ray
- Imaging Cell Signaling and Therapeutics Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India.
| | - Rohit Srivastava
- NanoBios Lab, Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India; Department of Life Sciences, Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
7
|
Natur S, Damri O, Agam G. The Effect of Global Warming on Complex Disorders (Mental Disorders, Primary Hypertension, and Type 2 Diabetes). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159398. [PMID: 35954764 PMCID: PMC9368177 DOI: 10.3390/ijerph19159398] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 01/09/2023]
Abstract
Multiple studies imply a strong relationship between global warming (GW) and complex disorders. This review summarizes such reports concentrating on three disorders-mental disorders (MD), primary hypertension, and type 2 diabetes (T2D). We also attempt to point at potential mechanisms mediating the effect of GW on these disorders. Concerning mental disorders, immediate candidates are brain levels of heat-shock proteins (HSPs). In addition, given that heat stress increases reactive oxygen species (ROS) levels which may lead to blood-brain barrier (BBB) breakdown and, hence, enhanced protein extravasation in the brain, this might finally cause, or exacerbate mental health. As for hypertension, since its causes are incompletely understood, the mechanism(s) by which heat exposure affects blood pressure (BP) is an open question. Since the kidneys participate in regulating blood volume and BP they are considered as a site of heat-associated disease, hence, we discuss hyperosmolarity as a potential mediator. In addition, we relate to autoimmunity, inflammation, sodium excretion, and HSP70 as risk factors that might play a role in the effect of heat on hypertension. In the case of T2D, we raise two potential mediators of the effect of exposure to ambient hot environment on the disease's incidence-brown adipose tissue metabolism and HSPs.
Collapse
|
8
|
Wu Q, Wei M, Yao L, Cheng X, Lu W, Xie X, Li X. Hyperthermia synergistically enhances antitumor efficacy of PARP inhibitor through impacting homologous recombination repair and oxidative stress in vitro. Biochem Biophys Res Commun 2022; 619:49-55. [PMID: 35738064 DOI: 10.1016/j.bbrc.2022.06.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Tumors with homologous recombination (HR) deficiency are particularly responsive to PARP inhibitors, however strategies to improve the sensitivity of epithelial ovarian carcinoma (EOC) with sufficient HR abilities still need to be deeply explored. In the present study, we firstly validated that hyperthermia (HT) changed diverse genes and signal pathways related to HR and oxidative stress in HR proficient EOC cells. HT impaired HR efficiency through inhibiting Olaparib (Olap) induced RAD51 foci formation in EOC cells, which was independent of the expression level of RAD51. Combination therapy of HT and Olap synergistically induced oxidative stress and oxidative DNA damage of EOC cells. Furthermore, we revealed that HT and Olap synergistically aggravated double-strand breaks of DNA in EOC cells. Conclusively, our findings confirmed that HT could synergistically enhance HR proficient EOC cells' sensitivity to PARP inhibitor through impairing HR efficiency and increasing oxidative stress.
Collapse
Affiliation(s)
- Qianqian Wu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Mingjing Wei
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
| | - Lifang Yao
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Department of Obstetrics and Gynecology, Shaoxing Maternal and Child Health Hospital, Shaoxing, Zhejiang, 312000, China
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Hangzhou, 310006, China
| | - Xing Xie
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiao Li
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
9
|
Aghazadeh A, Feizi MAH, Fanid LM, Ghanbari M, Roshangar L. Effects of Hyperthermia on TRPV1 and TRPV4 Channels Expression and Oxidative Markers in Mouse Brain. Cell Mol Neurobiol 2021; 41:1453-1465. [PMID: 32661579 DOI: 10.1007/s10571-020-00909-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/20/2020] [Indexed: 10/25/2022]
Abstract
Heat stress increases the core body temperature through the pathogenic process. The pathogenic process leads to the release of free radicals, such as superoxide production. Heat stress in the central nervous system (CNS) can cause neuronal damage and symptoms such as delirium, coma, and convulsion. TRPV1 (Transient Receptor Potential Vanilloid1) and TRPV4 genes are members of the TRPV family, including integral membrane proteins that act as calcium-permeable channels. These channels act as thermosensors and have essential roles in the cellular regulation of heat responses. The objective of this study is to examine the effect of general heat stress on the expression of TRPV1 and TRPV4 channels. Furthermore, oxidative markers were measured in the brain of the same heat-stressed mice. Our results show that heat stress leads to a significant upregulation of TRPV1 expression within 21-42 days, while TRPV4 expression decreased significantly in a time-dependent manner. Alterations in the oxidative markers were also observed in the heat-stressed mice.
Collapse
Affiliation(s)
- Aida Aghazadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, 29 Bahman Bolvard, Tabriz, 51555, Iran
| | | | - Leila Mehdizadeh Fanid
- Division of Cognitive Neuroscience, Department of Psychology, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran.
| | - Mohammad Ghanbari
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, 29 Bahman Bolvard, Tabriz, 51555, Iran
| | - Leila Roshangar
- Department of Anatomical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Bongioanni P, Del Carratore R, Corbianco S, Diana A, Cavallini G, Masciandaro SM, Dini M, Buizza R. Climate change and neurodegenerative diseases. ENVIRONMENTAL RESEARCH 2021; 201:111511. [PMID: 34126048 DOI: 10.1016/j.envres.2021.111511] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
The climate change induced global warming, and in particular the increased frequency and intensity of heat waves, have been linked to health problems. Among them, scientific works have been reporting an increased incidence of neurological diseases, encompassing also neurodegenerative ones, such as Dementia of Alzheimer's type, Parkinson's Disease, and Motor Neuron Diseases. Although the increase in prevalence of neurodegenerative diseases is well documented by literature reports, the link between global warming and the enhanced prevalence of such diseases remains elusive. This is the main theme of our work, which aims to examine the connection between high temperature exposure and neurodegenerative diseases. Firstly, we evaluate the influence of high temperatures exposure on the pathophysiology of these disorders. Secondly, we discuss its effects on the thermoregulation, already compromised in affected patients, and its interference with processes of excitotoxicity, oxidative stress and neuroinflammation, all of them related with neurodegeneration. Finally, we investigate chronic versus acute stressors on body warming, and put forward a possible interpretation of the beneficial or detrimental effects on the brain, which is responsible for the incidence or progression of neurological disorders.
Collapse
Affiliation(s)
- Paolo Bongioanni
- Severe Acquired Brain Injuries Dpt Section, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; NeuroCare Onlus, Pisa, Italy
| | | | - Silvia Corbianco
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Italy; Human Movement and Rehabilitation Research Laboratory, Pisa, Italy
| | - Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Gabriella Cavallini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Italy
| | - Silvia M Masciandaro
- NeuroCare Onlus, Pisa, Italy; Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Marco Dini
- Interdepartmental Research Centre on Biology and Pathology of Aging, University of Pisa, Italy; Human Movement and Rehabilitation Research Laboratory, Pisa, Italy
| | - Roberto Buizza
- Scuola Superiore Sant'Anna and Centre for Climate Change Studies and Sustainable Actions (3CSA), Pisa, Italy
| |
Collapse
|
11
|
Abstract
Climate change is one of the biggest challenges humanity is facing in the 21st century. Two recognized sequelae of climate change are global warming and air pollution. The gradual increase in ambient temperature, coupled with elevated pollution levels have a devastating effect on our health, potentially contributing to the increased rate and severity of numerous neurological disorders. The main aim of this review paper is to shed some light on the association between the phenomena of global warming and air pollution, and two of the most common and debilitating neurological conditions: stroke and neurodegenerative disorders. Extreme ambient temperatures induce neurological impairment and increase stroke incidence and mortality. Global warming does not participate in the etiology of neurodegenerative disorders, but it exacerbates symptoms of dementia, Alzheimer's disease (AD) and Parkinson's Disease (PD). A very close link exists between accumulated levels of air pollutants (principally particulate matter), and the incidence of ischemic rather than hemorrhagic strokes. People exposed to air pollutants have a higher risk of developing dementia and AD, but not PD. Oxidative stress, changes in cardiovascular and cerebrovascular haemodynamics, excitotoxicity, microglial activation, and cellular apoptosis, all play a central role in the overlap of the effect of climate change on neurological disorders. The complex interactions between global warming and air pollution, and their intricate effect on the nervous system, imply that future policies aimed to mitigate climate change must address these two challenges in unison.
Collapse
Affiliation(s)
- Christian Zammit
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
| | - Natalia Torzhenskaya
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
| | | | - Jean Calleja Agius
- Anatomy Department, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
| |
Collapse
|
12
|
Ruszkiewicz JA, Tinkov AA, Skalny AV, Siokas V, Dardiotis E, Tsatsakis A, Bowman AB, da Rocha JBT, Aschner M. Brain diseases in changing climate. ENVIRONMENTAL RESEARCH 2019; 177:108637. [PMID: 31416010 PMCID: PMC6717544 DOI: 10.1016/j.envres.2019.108637] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 05/12/2023]
Abstract
Climate change is one of the biggest and most urgent challenges for the 21st century. Rising average temperatures and ocean levels, altered precipitation patterns and increased occurrence of extreme weather events affect not only the global landscape and ecosystem, but also human health. Multiple environmental factors influence the onset and severity of human diseases and changing climate may have a great impact on these factors. Climate shifts disrupt the quantity and quality of water, increase environmental pollution, change the distribution of pathogens and severely impacts food production - all of which are important regarding public health. This paper focuses on brain health and provides an overview of climate change impacts on risk factors specific to brain diseases and disorders. We also discuss emerging hazards in brain health due to mitigation and adaptation strategies in response to climate changes.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russia
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia; IM Sechenov First Moscow State Medical University, Moscow, Russia; Trace Element Institute for UNESCO, Lyon, France
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, United States
| | - João B T da Rocha
- Department of Biochemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
13
|
Cho HY, Mavi A, Chueng STD, Pongkulapa T, Pasquale N, Rabie H, Han J, Kim JH, Kim TH, Choi JW, Lee KB. Tumor Homing Reactive Oxygen Species Nanoparticle for Enhanced Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23909-23918. [PMID: 31252451 DOI: 10.1021/acsami.9b07483] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multifunctional nanoparticles that carry chemotherapeutic agents can be innovative anticancer therapeutic options owing to their tumor-targeting ability and high drug-loading capacity. However, the nonspecific release of toxic DNA-intercalating anticancer drugs from the nanoparticles has significant side effects on healthy cells surrounding the tumors. Herein, we report a tumor homing reactive oxygen species nanoparticle (THoR-NP) platform that is highly effective and selective for ablating malignant tumors. Sodium nitroprusside (SNP) and diethyldithiocarbamate (DDC) were selected as an exogenous reactive oxygen species (ROS) generator and a superoxide dismutase 1 inhibitor, respectively. DDC-loaded THoR-NP, in combination with SNP treatment, eliminated multiple cancer cell lines effectively by the generation of peroxynitrite in the cells (>95% cell death), as compared to control drug treatments of the same concentration of DDC or SNP alone (0% cell death). Moreover, the magnetic core (ZnFe2O4) of the THoR-NP can specifically ablate tumor cells (breast cancer cells) via magnetic hyperthermia, in conjunction with DDC, even in the absence of any exogenous RS supplements. Finally, by incorporating iRGD peptide moieties in the THoR-NP, integrin-enriched cancer cells (malignant tumors, MDA-MB-231) were effectively and selectively killed, as opposed to nonmetastatic tumors (MCF-7), as confirmed in a mouse xenograft model. Hence, our strategy of using nanoparticles embedded with ROS-scavenger-inhibitor with an exogenous ROS supplement is highly selective and effective cancer therapy.
Collapse
Affiliation(s)
- Hyeon-Yeol Cho
- Department of Chemistry and Chemical Biology , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
- Department of Chemical & Biomolecular Engineering , Sogang University , Seoul 04107 , Republic of Korea
| | - Ahmet Mavi
- Department of Nanobiotechnology , Atatürk University , Erzurum 25030 , Turkey
| | - Sy-Tsong Dean Chueng
- Department of Chemistry and Chemical Biology , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Nicholas Pasquale
- Department of Chemistry and Chemical Biology , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Hudifah Rabie
- Department of Chemistry and Chemical Biology , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Jiyou Han
- Department of Biological Sciences, Laboratory of Stem Cell Research and Biotechnology , Hyupsung University , Hwasung-si 18330 , Republic of Korea
| | - Jong Hoon Kim
- Department of Biotechnology, Laboratory of Stem Cells and Tissue Regeneration, College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering , Chung-Ang University , Seoul 06974 , Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering , Sogang University , Seoul 04107 , Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
- Department of Life and Nanopharmaceutical Science, College of Pharmacy , Kyung Hee University , Seoul 02447 , Republic of Korea
| |
Collapse
|
14
|
Bandeira Corrêa J, Pezzini Moreira B, Lohmanm L, Machado Sulzbacher L, Bender Dos Santos A, Ruiz A, Stela Ludwig M, Hirsch GE, Santos C, Seibel Gehrke IT, Gomes Heck T. Characterization of Schinus lentiscifolius Marchand (Anacardiaceae) Bark Extract and Its Effects on Lymphocyte Oxidative Stress and Heat Shock Response. Chem Biodivers 2018; 16:e1800303. [PMID: 30351529 DOI: 10.1002/cbdv.201800303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/23/2018] [Indexed: 11/10/2022]
Abstract
Schinus lentiscifolius Marchand has been used in folk medicine to treat immunoinflammatory related diseases, which are marked by OS and altered HSR. Our study aimed to evaluate OS and HSR in lymphocytes treated with S. lentiscifolius bark extracts. S. lentiscifolius barks were partitioned with solvents to obtain hexane (SL-HEX), ethyl acetate (SL-ACOET) and methanol (SL-MEOH) extracts, and the presence of bioactive compounds was evaluated by thin layer chromatography. Total phenols were measured by the Folin-Ciocalteu method and flavonoids were identified by HPLC-DAD-ESI-MS/MS. Antioxidant capacity was verified by DPPH method, cell viability by Trypan Blue method, lipid peroxidation by TBARS and HSP70 by immunoblotting. The SL-ACOET extract presented higher content of phenolic compounds and antioxidant activity in vitro. It was able to reduce lipid peroxidation levels in lymphocytes induced by H2 O2 and improved cell viability. The SL-ACOET extract inhibited HSR by a decrease in both intracellular content and release of 70 kDa heat shock proteins (HSP70) and also by decrease extra-to-intracellular HSP70 ratio in lymphocytes submitted to heat shock (2 h, 41 °C). S. lentiscifolius bark extract has antioxidant activity and inhibitory effect on HSR probably due to the presence of polyphenols as the flavonoids quercetin and kaempferol.
Collapse
Affiliation(s)
- Jéssyca Bandeira Corrêa
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil.,Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Ijuí RS, 98700-000, Brazil
| | - Bárbara Pezzini Moreira
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil
| | - Larissa Lohmanm
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil
| | - Lucas Machado Sulzbacher
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil
| | - Analú Bender Dos Santos
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil.,Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Ijuí RS, 98700-000, Brazil
| | - Antonieta Ruiz
- Department of Chemical Sciences and Natural Resources, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, 4811-230, Chile
| | - Mirna Stela Ludwig
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil.,Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Ijuí RS, 98700-000, Brazil
| | - Gabriela Elisa Hirsch
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil.,Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Ijuí RS, 98700-000, Brazil
| | - Cledir Santos
- Department of Chemical Sciences and Natural Resources, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, 4811-230, Chile
| | - Ilaine Teresinha Seibel Gehrke
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Department of Life Sciences, Regional, University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000, Bairro Universitário, Ijuí RS, 98700-000, Brazil.,Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Regional University of Northwestern region of the state of Rio Grande do Sul (UNIJUÍ), Ijuí RS, 98700-000, Brazil
| |
Collapse
|
15
|
Zamora-Sillero J, Ramos P, Monserrat JM, Prentice C. Evaluation of the Antioxidant Activity In Vitro and in Hippocampal HT-22 Cells System of Protein Hydrolysates of Common Carp (Cyprinus carpio) By-Product. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2017. [DOI: 10.1080/10498850.2017.1390027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Juan Zamora-Sillero
- Laboratório de Tecnologia de Alimentos, Escola de Química de Alimentos (EQA), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil
- Programa de Pós-Graduação em Aquicultura, FURG, Rio Grande, RS, Brasil
| | - Patrícia Ramos
- Instituto de Ciências Biológicas (ICB), FURG, Rio Grande, RS, Brasil
| | - José María Monserrat
- Instituto de Ciências Biológicas (ICB), FURG, Rio Grande, RS, Brasil
- Programa de Pós-Graduação em Aquicultura, FURG, Rio Grande, RS, Brasil
| | - Carlos Prentice
- Laboratório de Tecnologia de Alimentos, Escola de Química de Alimentos (EQA), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil
- Programa de Pós-Graduação em Aquicultura, FURG, Rio Grande, RS, Brasil
| |
Collapse
|
16
|
Hou Y, Wang X, Ping J, Lei Z, Gao Y, Ma Z, Jia C, Zhang Z, Li X, Jin M, Li X, Suo C, Zhang Y, Su J. Metabonomics Approach to Assessing the Modulatory Effects of Kisspeptin-10 on Liver Injury Induced by Heat Stress in Rats. Sci Rep 2017; 7:7020. [PMID: 28765538 PMCID: PMC5539146 DOI: 10.1038/s41598-017-06017-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 06/07/2017] [Indexed: 01/19/2023] Open
Abstract
The protective effects of Kisspeptin on heat-induced oxidative stress in rats were investigated by using a combination of biochemical parameters and metabonomics. Metabonomic analyses were performed using gas chromatography/mass spectrometry in conjunction with multivariate and univariate statistical analyses. At the end point of the heat stress experiment, histological observation, ultrastructural analysis and biochemical parameters were measured. Metabonomic analysis of liver tissue revealed that Kisspeptin mainly attenuated the alteration of purine metabolism and fatty acid metabolism pathways. Futhermore, Kisspeptin also increased the levels of GSH, T-AOC as well as SOD activities, and upregulated MDA levels. These results provide important mechanistic insights into the protective effects of Kisspeptin against heat-induced oxidative stress.
Collapse
Affiliation(s)
- Yuanlong Hou
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Xiaoyan Wang
- Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jihui Ping
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Zhihai Lei
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Yingdong Gao
- Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 320100, China
| | - Zhiyu Ma
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Cuicui Jia
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Zheng Zhang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Xiang Li
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Mengmeng Jin
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Xiaoliang Li
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Chuan Suo
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Ying Zhang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China
| | - Juan Su
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, China.
| |
Collapse
|
17
|
Ramos P, Schmitz M, Filgueira D, Votto AP, Durruthy M, Gelesky M, Ruas C, Yunes J, Tonel M, Fagan S, Monserrat J. Interaction of single-walled carbon nanotubes and saxitoxin: Ab initio simulations and biological responses in hippocampal cell line HT-22. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1728-1737. [PMID: 27371805 DOI: 10.1002/etc.3544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/15/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
Saxitoxins (STXs) are potent neurotoxins that also induce cytotoxicity through the generation of reactive oxygen species. Carbon nanotubes (CNTs) are nanomaterials that can promote a Trojan horse effect, facilitating the entry of toxic molecules to cells when adsorbed to nanomaterials. The interaction of pristine single-walled (SW)CNTs and carboxylated (SWCNT-COOH) nanotubes with STX was evaluated by ab initio simulation and bioassays using the cell line HT-22. Cells (5 × 104 cells/mL) were exposed to SWCNT and SWCNT-COOH (5 μg mL-1 ), STX (200 μg L-1 ), SWCNT+STX, and SWCNT-COOH+STX for 30 min or 24 h. Results of ab initio simulation showed that the interaction between SWCNT and SWCNT-COOH with STX occurs in a physisorption. The interaction of SWCNT+STX induced a decrease in cell viability. Cell proliferation was not affected in any treatment after 30 min or 24 h of exposure (p > 0.05). Treatment with SWCNT-COOH induced high reactive oxygen species levels, an effect attenuated in SWCNT-COOH+STX treatment. In terms of cellular oxygen consumption, both CNTs when coexposed with STX antagonize the toxin effect. Based on these results, it can be concluded that the results obtained in vitro corroborate the semiempirical evidence found using density functional theory ab initio simulation. Environ Toxicol Chem 2017;36:1728-1737. © 2016 SETAC.
Collapse
Affiliation(s)
- Patrícia Ramos
- Institute of Biological Science, Federal University of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
- Postgraduate Program in Physiological Sciences, Comparative Animal Physiology, Federal University of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Marcos Schmitz
- Institute of Biological Science, Federal University of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Daza Filgueira
- Institute of Biological Science, Federal University of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Ana Paula Votto
- Institute of Biological Science, Federal University of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
- Postgraduate Program in Physiological Sciences, Comparative Animal Physiology, Federal University of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Michael Durruthy
- Institute of Biological Science, Federal University of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
- Postgraduate Program in Physiological Sciences, Comparative Animal Physiology, Federal University of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Marcos Gelesky
- Postgraduate Program in , Technological and Environmental Chemistry, Federal University of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Caroline Ruas
- Postgraduate Program in , Technological and Environmental Chemistry, Federal University of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - João Yunes
- Cyanobacteria and Ficotoxin Laboratory, Federal University of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| | - Mariana Tonel
- Franciscan University Center (UNIFRA), Santa Maria, Rio Grande do Sul, Brazil
- Postgraduate Program in Nanoscience, Franciscan University Center (UNIFRA), Santa Maria, Rio Grande do Sul, Brazil
| | - Solange Fagan
- Franciscan University Center (UNIFRA), Santa Maria, Rio Grande do Sul, Brazil
- Postgraduate Program in Nanoscience, Franciscan University Center (UNIFRA), Santa Maria, Rio Grande do Sul, Brazil
| | - José Monserrat
- Institute of Biological Science, Federal University of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
- Postgraduate Program in Physiological Sciences, Comparative Animal Physiology, Federal University of Rio Grande (FURG), Rio Grande, Rio Grande do Sul, Brazil
| |
Collapse
|
18
|
Glory A, Averill-Bates DA. The antioxidant transcription factor Nrf2 contributes to the protective effect of mild thermotolerance (40°C) against heat shock-induced apoptosis. Free Radic Biol Med 2016; 99:485-497. [PMID: 27591796 DOI: 10.1016/j.freeradbiomed.2016.08.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/07/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
Abstract
The exposure of cells to low doses of stress induces adaptive survival responses that protect cells against subsequent exposure to toxic stress. The ability of cells to resist subsequent toxic stress following exposure to low dose heat stress at 40°C is known as mild thermotolerance. Mild thermotolerance involves increased expression of heat shock proteins and antioxidants, but the initiating factors in this response are not understood. This study aims to understand the role of the Nrf2 antioxidant pathway in acquisition of mild thermotolerance at 40°C, and secondly, whether the Nrf2 pathway could be involved in the protective effect of thermotolerance against heat-shock (42°C)-induced apoptosis. During cell preconditioning at 40°C, protein expression of the Nrf2 transcription factor increased after 15-60min. In addition, levels of the Nrf2 targets MnSOD, catalase, heme oxygenase-1, glutamate cysteine ligase and Hsp70 increased at 40°C. Levels of these Nrf2 targets were enhanced by Nrf2 activator oltipraz and decreased by shRNA targeting Nrf2. Levels of pro-oxidants increased after 30-60min at 40°C. Pro-oxidant levels were decreased by oltipraz and increased by knockdown of Nrf2. Increased Nrf2 expression and catalase activity at 40°C were inhibited by the antioxidant PEG-catalase and by p53 inhibitor pifithrin-α. These results suggest that mild thermotolerance (40°C) increases cellular pro-oxidant levels, which in turn activate Nrf2 and its target genes. Moreover, Nrf2 contributes to the protective effect of thermotolerance against heat-shock (42°C)-induced apoptosis, because Nrf2 activation by oltipraz enhanced thermotolerance, whereas Nrf2 knockdown partly reversed thermotolerance. Improved knowledge about the different protective mechanisms that mild thermotolerance can activate is crucial for the potential use of this adaptive survival response to treat stress-related diseases.
Collapse
Affiliation(s)
- Audrey Glory
- Département des Sciences Biologiques (TOXEN), Université du Québec à Montréal, CP 8888, Succursale Center-Ville Montréal, Montréal, Québec, Canada H3C 3P8
| | - Diana A Averill-Bates
- Département des Sciences Biologiques (TOXEN), Université du Québec à Montréal, CP 8888, Succursale Center-Ville Montréal, Montréal, Québec, Canada H3C 3P8.
| |
Collapse
|
19
|
Ahmed K, Tabuchi Y, Kondo T. Hyperthermia: an effective strategy to induce apoptosis in cancer cells. Apoptosis 2016; 20:1411-9. [PMID: 26354715 DOI: 10.1007/s10495-015-1168-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Heat has been used as a medicinal and healing modality throughout human history. The combination of hyperthermia (HT) with radiation and anticancer agents has been used clinically and has shown positive results to a certain extent. However, the clinical results of HT treatment alone have been only partially satisfactory. Cell death following HT treatment is a function of both temperature and treatment duration. HT induces cancer cell death through apoptosis; the degree of apoptosis and the apoptotic pathway vary in different cancer cell types. HT-induced reactive oxygen species production are responsible for apoptosis in various cell types. However, the underlying mechanism of signal transduction and the genes related to this process still need to be elucidated. In this review, we summarize the molecular mechanism of apoptosis induced by HT, enhancement of heat-induced apoptosis, and the genetic network involved in HT-induced apoptosis.
Collapse
Affiliation(s)
- Kanwal Ahmed
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetic Research, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
20
|
Slimen IB, Najar T, Ghram A, Dabbebi H, Ben Mrad M, Abdrabbah M. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int J Hyperthermia 2015; 30:513-23. [PMID: 25354680 DOI: 10.3109/02656736.2014.971446] [Citation(s) in RCA: 470] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In recent years there has been enormous interest in researching oxidative stress. Reactive oxygen species (ROS) are derived from the metabolism of oxygen as by-products of cell respiration, and are continuously produced in all aerobic organisms. Oxidative stress occurs as a consequence of an imbalance between ROS production and the available antioxidant defence against them. Nowadays, a variety of diseases and degenerative processes such as cancer, Alzheimer's and autoimmune diseases are mediated by oxidative stress. Heat stress was suggested to be an environmental factor responsible for stimulating ROS production because of similarities in responses observed following heat stress compared with that occurring following exposure to oxidative stress. This manuscript describes the main mitochondrial sources of ROS and the antioxidant defences involved to prevent oxidative damage in all the mitochondrial compartments. It also deals with discussions concerning the cytotoxic effect of heat stress, mitochondrial heat-induced alterations, as well as heat shock protein (HSP) expression as a defence mechanism.
Collapse
Affiliation(s)
- Imen Belhadj Slimen
- Laboratory of Materials, Molecules and Application, Preparatory Institute for Scientific and Technical Studies , Tunisia
| | | | | | | | | | | |
Collapse
|
21
|
Smirnova OV, Titova NM, Elmanova NG. The relationship between the pro-oxidant and antioxidant system status of patients with multiple myeloma and the disease stage. Bull Exp Biol Med 2014; 157:375-9. [PMID: 25065318 DOI: 10.1007/s10517-014-2570-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Indexed: 10/25/2022]
Abstract
Disturbances of the erythrocyte antioxidant system presented by LPO intensification were detected in patients with multiple myeloma. Plasma concentrations of MDA in these patients were close to normal due to effective work of the nonenzymatic antioxidant system. Activities of antioxidant enzymes in the plasma were reduced, while catalase activity was high, and ceruloplasmin content did not differ from the control, this indicating suppression of the enzymatic component of the antioxidant system. In erythrocytes, the level of reduced glutathione was low, especially at stage III of the disease. Changes in SOD and catalase activities were similar to those in the plasma, while activities of glutathione-dependent enzymes were comparable to those in normal human erythrocytes.
Collapse
Affiliation(s)
- O V Smirnova
- Research Institute of Medical Problems of the North, Siberian Division of the Russian Academy of Medical Sciences, Krasnoyarsk, Russia,
| | | | | |
Collapse
|