1
|
Hansel MC, Murphy HR, Brunner J, Wang C, Miller RK, O'Connor TG, Barrett ES, Rivera-Núñez Z. Associations between neighborhood stress and maternal sex steroid hormones in pregnancy. BMC Pregnancy Childbirth 2023; 23:730. [PMID: 37845614 PMCID: PMC10577914 DOI: 10.1186/s12884-023-06043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Neighborhood stressors (e.g., crime and deprivation) have been associated with adverse pregnancy outcomes including preterm birth and low birth weight. A potential mechanism is disruption of maternal endocrine pathways. While stress hormones (e.g., cortisol) have received much attention, other relevant hormones, including sex steroids, have been overlooked. METHODS Pregnant women in the Understanding Pregnancy Signals and Infant Development (UPSIDE) study contributed biospecimens, questionnaires, and medical record data (n = 262). In each trimester, maternal serum total testosterone [TT], estrone, estradiol, and estriol were measured using LC/MS-MS and serum free testosterone was measured by equilibrium dialysis. In the third trimester, participants reported on neighborhood stress over the last year through the validated City Stress Inventory. We examined two subscales: 11-item neighborhood disorder (e.g., vacant buildings, crime) and 7-item exposure to violence (personal experiences of violence). Composite scores were calculated and examined categorically (quartile (Q) for neighborhood disorder and any/none for exposure to violence). We fitted linear mixed models examining associations between neighborhood stressors and sex steroid hormones across pregnancy as well as trimester-specific linear regression models, all adjusting for confounders. Secondarily, we stratified by fetal sex. Results are presented as percentage change (∆%) and 95% confidence interval (CI) in hormones. RESULTS Most participants (73%) reported one or more exposures to neighborhood disorder; 22% reported any exposure to violence. In adjusted models, neighborhood disorder was associated with higher TT across pregnancy (Q2: %∆= 37.3, 95%CI: 13.2, 66.5; Q3: %∆= 22.2, 95%CI: 1.2, 47.5; and Q4: %∆= 25.7, 95%CI: 1.6, 55.3), with the strongest associations observed in the third trimester (Q2: %∆= 38.0, 95%CI: 10.6, 72.1; Q3: %∆= 29.2, 95%CI: 4.4, 59.9; and Q4: %∆=33.4, 95%CI: 4.9, 69.6). In stratified models, neighborhood disorder was associated with higher TT among women carrying male fetuses (%∆ range: 48.2-84.8). Exposure to violence was not associated with any hormones. CONCLUSION Neighborhood disorder is associated with higher maternal testosterone levels, which may have implications for maternal and child health. Additional research is needed to understand the mechanisms by which neighborhood stress impacts endocrine physiology.
Collapse
Affiliation(s)
- Megan C Hansel
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Hannah R Murphy
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Christina Wang
- Clinical and Translational Science Institute, The Lundquist Institute at Harbor -UCLA Medical Center, Torrance, CA, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Thomas G O'Connor
- Departments of Psychiatry, Psychology, Neuroscience, University of Rochester, Rochester, NY, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.
| |
Collapse
|
2
|
Eck SR, Bangasser DA. The effects of early life stress on motivated behaviors: A role for gonadal hormones. Neurosci Biobehav Rev 2020; 119:86-100. [PMID: 33022296 PMCID: PMC7744121 DOI: 10.1016/j.neubiorev.2020.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/22/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Motivated behaviors are controlled by the mesocorticolimbic dopamine (DA) system, consisting of projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) and prefrontal cortex (PFC), with input from structures including the medial preoptic area (mPOA). Sex differences are present in this circuit, and gonadal hormones (e.g., estradiol and testosterone) are important for regulating DA transmission. Early life stress (ELS) also regulates the mesocorticolimbic DA system. ELS modifies motivated behaviors and the underlying DA circuitry, increasing risk for disorders such as substance use disorder, major depression, and schizophrenia. ELS has been shown to change gonadal hormone signaling in both sexes. Thus, one way that ELS could impact mesocorticolimbic DA is by altering the efficacy of gonadal hormones. This review provides evidence for this idea by integrating the gonadal hormone, motivation, and ELS literature to argue that ELS alters gonadal hormone signaling to impact motivated behavior. We also discuss the importance of these effects in the context of understanding risk and treatments for psychiatric disorders in men and women.
Collapse
Affiliation(s)
- Samantha R Eck
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
3
|
Eck SR, Ardekani CS, Salvatore M, Luz S, Kim ED, Rogers CM, Hall A, Lee DE, Famularo ST, Bhatnagar S, Bangasser DA. The effects of early life adversity on growth, maturation, and steroid hormones in male and female rats. Eur J Neurosci 2020; 52:2664-2680. [PMID: 31660665 PMCID: PMC8027906 DOI: 10.1111/ejn.14609] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Early life adversity is a risk factor for psychiatric disorders, yet the mechanisms by which adversity increases this risk are still being delineated. Here, we used a limited bedding and nesting (LBN) manipulation in rats that models a low resource environment to examine effects on growth, developmental milestones, and endocrine endpoints. In LBN, dams and pups, from pups' postnatal days 2-9, are exposed to an environment where dams lack proper materials to build a nest. This manipulation is compared to control housing conditions, where rat dams have access to ample nesting materials and enrichment throughout pups' development. We found that the LBN condition altered maternal care, increasing pup-directed behaviors while reducing self-care. This, perhaps compensatory, increase in nursing and attention to pups did not mitigate against changes in metabolism, as LBN reduced weight gain in both sexes and this effect persisted into adulthood. Although adult stress hormone levels in both sexes and vaginal opening and estrous cycle length in females were not disrupted, there was other evidence of endocrine dysregulation. Compared to controls, LBN rats of both sexes had shortened anogenital distances, indicating reduced androgen exposure. LBN males also had higher plasma estradiol levels in adulthood. This combination of results suggests that LBN causes a demasculinizing effect in males that could contribute to lasting changes in the brain and behavior. Importantly, alterations in metabolic and endocrine systems due to early life adversity could be one mechanism by which stress early in life increases risk for later disease.
Collapse
Affiliation(s)
- Samantha R. Eck
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Cory S. Ardekani
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Madeleine Salvatore
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Sandra Luz
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eric D. Kim
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Charleanne M. Rogers
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Arron Hall
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Demetrius E. Lee
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Sydney T. Famularo
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Debra A. Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
4
|
In utero heat stress alters postnatal phenotypes in swine. Theriogenology 2020; 154:110-119. [PMID: 32540511 DOI: 10.1016/j.theriogenology.2020.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022]
Abstract
The prenatal environment influences offspring health and development, and this is readily apparent when considering the well-described effects of maternal nutrition and stress on the postnatal metabolism, neural function, and stress response of progeny. Moreover, in laboratory species, sheep, and humans, the effects of in utero heat stress on offspring development have been described in detail for >50 years. Despite our extensive knowledge of the postnatal phenotypes elicited by in utero stressors, the carryover effects of in utero heat stress in pigs have only recently begun to be elucidated. The effects of climate change on increasing global temperatures, combined with greater metabolic heat production in modern swine, has increased heat stress susceptibility in pigs. Greater heat stress susceptibility can negatively affect swine welfare and performance and may impact future generations of pigs through in utero heat stress. Pigs exposed to in utero heat stress develop a variety of postnatal phenotypes that prevent profitable production, and compromise health, and welfare in commercial production systems. Specifically, in utero heat stress alters the postnatal stress response, core body temperature, response to an immune challenge, and is teratogenic. In addition, in utero heat stress changes postnatal body composition through reduced lean and increased adipose tissue accretion rates, respectively. Furthermore, in utero heat stress reduces piglet birth weight, body weight gain, and reproductive efficiency. Although the economic impact of in utero heat stress in pigs has yet to be determined, it likely rivals the postnatal consequences of heat stress and is a threat to the global sustainability of swine production.
Collapse
|
5
|
Arbuckle TE, MacPherson S, Barrett E, Muckle G, Séguin JR, Foster WG, Sathyanarayana S, Dodds L, Fisher M, Agarwal A, Monnier P, Walker M, Fraser WD. Do stressful life events during pregnancy modify associations between phthalates and anogenital distance in newborns? ENVIRONMENTAL RESEARCH 2019; 177:108593. [PMID: 31357157 DOI: 10.1016/j.envres.2019.108593] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/24/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
Anogenital distance (AGD) has been used as a marker of fetal androgen action to identify endocrine disrupting chemicals. A US study (TIDES) has reported that the association between some phthalates and reduced AGD in males was only apparent in sons of mothers reporting no stressful life events (SLEs) during pregnancy. The objective of the current study was to examine the potential modifying effect of SLEs and their subjective impact on associations between prenatal phthalates and AGD. First trimester urines from the MIREC Study were analysed for phthalate metabolites and AGD was measured in neonates. Post-delivery, the women answered questions on SLEs during the pregnancy. Women reporting 1 or more SLEs during pregnancy were considered a "higher stressor" group, whereas women reporting no SLEs or who reported a SLE that was perceived as not at all stressful were considered a "lower stressor" group. Multivariable linear regression models were fit stratified by stressor group. Maternal stressor, AGD and phthalates results were available for 153 females and 147 males. A summary measure of androgen-disrupting phthalates (Σ AD) was associated with significantly longer AGDs in females from the higher stressor group. These effect sizes were increased when the perceived impact was restricted to moderately or very much stressful. In males, all phthalates were associated with longer anopenile distance (APD), regardless of stressor group; however, higher Σ AD was associated with significantly longer APD in the lower stressor group. In contrast to the TIDES study, we did not observe shorter AGDs in male infants prenatally exposed to di-(2-ethylhexyl) phthalates, regardless of maternal stressor level. In conclusion, we were unable to replicate the findings of the TIDES study, but did find some evidence that prenatal SLEs may modify associations between phthalates and female AGD. Further research with other populations and measures of prenatal stress may shed more light on whether prenatal stress is an important effect modifier of associations between phthalates (or other chemicals) and anogenital distance.
Collapse
Affiliation(s)
- Tye E Arbuckle
- Populations Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - Susan MacPherson
- Populations Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Emily Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Gina Muckle
- School of Psychology, Centre de Recherche du CHU de Québec, Laval University, Quebec City, QC, Canada
| | - Jean R Séguin
- Research Axis, Brain and Child Development, CHU Sainte-Justine Research Center, Department of Psychiatry and Addiction, University of Montreal, Montreal, QC, Canada
| | - Warren G Foster
- Department of Obstetrics & Gynaecology and School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | | | - Linda Dodds
- Division of Perinatal Epidemiology Research Unit, Dalhousie University, Halifax, NS, Canada
| | - Mandy Fisher
- Populations Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Amisha Agarwal
- Clinical Research Unit, Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Patricia Monnier
- Department of Obstetrics & Gynecology, McGill University, Montreal, QC, Canada and RI-MUHC, Montreal, QC, Canada
| | - Mark Walker
- Head, Department of Obstetrics, Gynecology and Newborn Care, The Ottawa Hospital, Ottawa, ON, Canada
| | - William D Fraser
- Department of Obstetrics & Gynecology, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
6
|
Wang J, Gao WJ, Deng SL, Liu X, Jia H, Ma WZ. High temperature suppressed SSC self-renewal through S phase cell cycle arrest but not apoptosis. Stem Cell Res Ther 2019; 10:227. [PMID: 31358059 PMCID: PMC6664773 DOI: 10.1186/s13287-019-1335-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/01/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High temperature has a very adverse effect on mammalian spermatogenesis and eventually leads to sub- or infertility through either apoptosis or DNA damage. However, the direct effects of heat stress on the development of spermatogonial stem cells (SSCs) are still unknown because SSCs are rare in the testes. METHODS In the present study, we first used in vitro-cultured SSCs to study the effect of heat shock treatment on SSC development. Then, we used RNA-Seq analysis to identify new genes or signalling pathways implicated in the heat stress response. RESULTS We found that 45 min of 43 °C heat shock treatment significantly inhibited the proliferation of SSCs 2 h after treatment but did not lead to apoptosis. In total, 17,822 genes were identified by RNA-Seq after SSC heat shock treatment. Among these genes, we found that 200 of them had significantly changed expression, with 173 upregulated and 27 downregulated genes. The number of differentially expressed genes in environmental information processing pathways was 37, which was the largest number. We screened the candidate JAK-STAT signalling pathway on the basis of inhibition of cell cycle progression and found that the JAK-STAT pathway was inhibited after heat shock treatment. The flow cytometry results further confirmed that heat stress caused S phase cycle arrest of SSCs. CONCLUSION Our results showed that heat shock treatment at 43 °C for 45 min significantly inhibited SSC self-renewal through S phase cell cycle arrest but not apoptosis.
Collapse
Affiliation(s)
- Jia Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Wei-Jun Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Shou-Long Deng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Hua Jia
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China. .,Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Wen-Zhi Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, and Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China. .,Center for Reproductive Biology and Health, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
7
|
Johnson JS, Baumgard LH. PHYSIOLOGY SYMPOSIUM: Postnatal consequences of in utero heat stress in pigs. J Anim Sci 2019; 97:962-971. [PMID: 30534960 DOI: 10.1093/jas/sky472] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/06/2018] [Indexed: 12/15/2022] Open
Abstract
Postnatal heat stress negatively impacts pig productivity and well-being as animals attempt to manage the resultant strain response. This is especially true when postnatal heat stress is combined with production stressors (e.g., mixing, weaning, transport, handling, and isolation) that have the potential to increase disease occurrence, morbidity and mortality. While pigs can utilize adaptive physiological mechanisms to compensate, these are often unfavorable to efficient livestock production. Specifically, postnatal heat stress decreases weight gain, reduces growth and production efficiency, alters carcass composition, and increases morbidity and mortality. Consequently, decreased animal performance constrains profitability and affects economic sustainability. In addition to the negative effects of postnatal heat stress, prenatal heat stress has long-term consequences that may compromise future piglet well-being and performance. Pigs gestated under heat stress conditions have an increased postnatal stress response and an increase in maintenance energy requirements. Furthermore, prenatal heat stress decreases swine birth weight, and increases teratogenicity, core body temperature set-point, and alters postnatal body composition (more adipose tissue and less skeletal muscle). Taken together, the effects of heat stress during pre- and postnatal pig development negatively influences productivity and well-being, a scenario that threatens the sustainability of global swine production.
Collapse
Affiliation(s)
- Jay S Johnson
- USDA-ARS Livestock Behavior Research Unit, West Lafayette, IN
| | | |
Collapse
|
8
|
Effects of heat stress on piglet production/performance parameters. Trop Anim Health Prod 2018; 50:1203-1208. [DOI: 10.1007/s11250-018-1633-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 11/26/2022]
|
9
|
Lugar DW, Proctor JA, Safranski TJ, Lucy MC, Stewart KR. In utero heat stress causes reduced testicular area at puberty, reduced total sperm production, and increased sperm abnormalities in boars. Anim Reprod Sci 2018; 192:126-135. [PMID: 29567201 DOI: 10.1016/j.anireprosci.2018.02.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/30/2018] [Accepted: 02/23/2018] [Indexed: 11/26/2022]
Abstract
In utero stress has been shown to negatively affect intact male rats and mice, though very little research has been conducted in boars. The objectives of the present studies were to determine the effects of in utero heat stress (IUHS) on postnatal development and the response to postnatal heat stress of boars. Ten boars were selected at weaning from litters subjected to IUHS or in utero thermoneutral (IUTN) during 30-60 days of gestation. The boars were evaluated for reproductive performance from birth through 57 weeks of age (WOA). Testicular area tended to be smaller for IUHS boars compared to IUTN boars at 24 WOA (P = 0.080). Libido did not differ for IUHS or IUTN (P = 0.818). Total sperm production was reduced in IUHS boars compared to IUTN boars (P ≤ 0.038). Semen volume and semen concentration did not differ (P ≥ 0.469 and P ≥ 0.664, respectively). Total motility and progressive motility did not differ for IUHS and IUTN boars (P ≥ 0.430 and P ≥ 0.652, respectively). In utero heat stressed boars had a greater incidence of sperm with tail abnormalities than IUTN (P ≤ 0.042). In utero heat stressed boars had a lower incidence of sperm with proximal droplets following mild, postnatal heat stress compared with IUTN (P = 0.005). In utero heat stress resulted in significant reductions in sperm production and increased sperm abnormalities in boars. The IUHS boars may be slightly more tolerant to postnatal heat stress, though more research is needed.
Collapse
Affiliation(s)
- Drew W Lugar
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Jarret A Proctor
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Timothy J Safranski
- Division of Animal Sciences, University of Missouri, Columbia, MO 65221, United States
| | - Matthew C Lucy
- Division of Animal Sciences, University of Missouri, Columbia, MO 65221, United States
| | - Kara R Stewart
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
10
|
Akbarinejad V, Gharagozlou F, Vojgani M. Temporal effect of maternal heat stress during gestation on the fertility and anti-Müllerian hormone concentration of offspring in bovine. Theriogenology 2017; 99:69-78. [DOI: 10.1016/j.theriogenology.2017.05.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 01/28/2023]
|