1
|
Jiménez T, Peña-Villalobos I, Arcila J, Del Basto F, Palma V, Sabat P. The effects of urban thermal heterogeneity and feather coloration on oxidative stress and metabolism of pigeons (Columba livia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169564. [PMID: 38142996 DOI: 10.1016/j.scitotenv.2023.169564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Urbanization stands out as a significant anthropogenic factor, exerting selective pressures on ecosystems and biotic components. A notable outcome of urbanization is thermal heterogeneity where the emergence of Urban Heat Islands is characterized by elevated air and surface temperatures compared to adjacent rural areas. Investigating the influence of thermal heterogeneity on urban animals could offer insights into how temperature variations can lead to phenotypic shifts. Urban pigeons (Columba livia) serve as an excellent model for studying urban thermal effects, given the melanism variations, which are associated with the pleiotropy of the melanocortin system. To examine the development of physiological plasticity in response to urban thermal variations, we conducted a study on pigeons in Santiago, Chile, during the rainy season. We assessed the influence of habitat on physiological traits related to metabolism and antioxidant capacities, which are theoretically affected by feather coloration. Our findings reveal that variations in melanism significantly impact pigeon physiology, affecting both antioxidant capacities and the mitochondrial activity of red blood cells. It was found that higher urban temperatures, from both the current sampling month and the prior sampling month (from CRU TS dataset), were negatively and strongly associated with lower antioxidant and metabolic activities. This suggests that elevated urban temperatures likely benefit the energetic budgets of pigeon populations and mitigate the negative effects of oxidative metabolism, with differential effects depending on feather colorations.
Collapse
Affiliation(s)
- Tomás Jiménez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Isaac Peña-Villalobos
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Laboratorio de Células troncales y Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Javiera Arcila
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco Del Basto
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Verónica Palma
- Laboratorio de Células troncales y Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile; Millennium Nucleus of Patagonian Limit of Life (LiLi)
| |
Collapse
|
2
|
Lesku JA, Barker RG, Elmes H, Robert KA, Tworkowski L, Dutka TL. Wild white-capped noddies keep a cool head in a heated situation. J Therm Biol 2023; 118:103754. [PMID: 38000146 DOI: 10.1016/j.jtherbio.2023.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023]
Abstract
Sunning, or sunbathing, is a behavior observed in diverse birds from at least 50 taxonomic families. While sunning, birds exhibit signs of heat stress, notably panting, indicating a risk of overheating. Given that even modest increases in brain temperature can impair brain function, sunning birds may have mechanisms that selectively cool the brain. Sunning birds could cool the brain using active physiological mechanisms (e.g., an ophthalmic rete or sleeping) or passive adaptations, such as light-colored plumage over the cranium. White-capped noddies are tropical seabirds that sunbathe in direct sunlight on cloudless days. Using infrared thermography on wild birds, we found that the white cap is 20 °C cooler than that of the black back while sunning. A deceased bird showed the same thermal profile, indicating that this difference arises from dichromatic coloration and not underlying physiology. Thus, the white cap may extend the duration of time noddies can sunbathe and keep the brain cool, near core body temperature, while allowing the rest of the body to heat up, perhaps to displace or kill parasites.
Collapse
Affiliation(s)
- John A Lesku
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia; Research Centre for Future Landscapes, La Trobe University, Melbourne, Australia
| | - Robert G Barker
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Hannah Elmes
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Kylie A Robert
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia; Research Centre for Future Landscapes, La Trobe University, Melbourne, Australia
| | - Lauren Tworkowski
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Travis L Dutka
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia; Research Centre for Future Landscapes, La Trobe University, Melbourne, Australia.
| |
Collapse
|
3
|
Jiang XX, Adeola AC, Sola-Ojo FE, Abubakar IA, Fatima IH, Olaoluwa OJ, Abodurin AB, Olasunkanmi OA, Abisola OH, Uthman O, Kehinde AE, Hamidat H, Nishola TE, Bello SF, Peng MS, Zhang YP. Association of MC1R variation and plumage color diversity of Nigerian domestic pigeon ( Columba livia domestica). J Adv Vet Anim Res 2022; 9:369-373. [PMID: 36382035 PMCID: PMC9597907 DOI: 10.5455/javar.2022.i604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 06/16/2023] Open
Abstract
OBJECTIVES Domestic pigeons (Columba livia domestica) have diverse plumage pigmentations. Melanocortin 1 receptor (MC1R) gene variation has been correlated with color traits. The association between MC1R and plumage coloration in African domestic pigeons is yet to be investigated. MATERIALS AND METHODS Herein, we report the relationships between single nucleotide polymorphisms (SNPs) in MC1R and plumage of 35 domestic pigeons from Nigeria with 4 different plumage phenotypes plus 37 published MC1R sequences from France (n = 14) and Russia (n = 11). RESULTS We obtained 14 SNP sites among 72 individuals. Missense mutations C206T (Ser69Leu) and G253A (Val85Met) were observed in 16 and 8 Nigerian pigeons, respectively. The chi-squared test (p < 0.05) for C206T, G253A, and A520G has the advantage of homozygous genotypes CC, GG, and AA, respectively. The association of C206T loci showed the advantage of CC genotype in ash-red, spread, and white pigeons, and TT in blue-bar, spread, and white feather pigeons. For G253A and A520G loci, GG and AA were dominant in all plumages except for genotype AA in G253A, which was prominent in ash-red, spread, and white plumages. The three SNPs were assigned to seven haplotypes. The median-joining network revealed 20 haplotypes, including 5 in Nigeria and 2 shared. CONCLUSION This study provides an insight into the association of MC1R variation and plumage diversity in Nigerian domestic pigeons. However, due to the limitation of the current data, we could not make further conclusions; this necessitates the need for more genomics studies on Nigerian pigeons.
Collapse
Affiliation(s)
| | - Adeniyi Charles Adeola
- State Key Laboratory of Genetic Resources and Evolution Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Foluke Eunice Sola-Ojo
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, Ilorin, Nigeria
| | | | - Isiaka Hannah Fatima
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, Ilorin, Nigeria
| | | | | | | | - Oladejo Hafsat Abisola
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, Ilorin, Nigeria
| | - Oladipo Uthman
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, Ilorin, Nigeria
| | - Adeshina Esther Kehinde
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, Ilorin, Nigeria
| | - Hussein Hamidat
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, Ilorin, Nigeria
| | - Taiwo Eyitayo Nishola
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, Ilorin, Nigeria
| | - Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
4
|
Rogalla S, Patil A, Dhinojwala A, Shawkey MD, D'Alba L. Enhanced photothermal absorption in iridescent feathers. J R Soc Interface 2021; 18:20210252. [PMID: 34343456 PMCID: PMC8331237 DOI: 10.1098/rsif.2021.0252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/13/2021] [Indexed: 01/15/2023] Open
Abstract
The diverse colours of bird feathers are produced by both pigments and nanostructures, and can have substantial thermal consequences. This is because reflectance, transmittance and absorption of differently coloured tissues affect the heat loads acquired from solar radiation. Using reflectance measurements and heating experiments on sunbird museum specimens, we tested the hypothesis that colour and their colour producing mechanisms affect feather surface heating and the heat transferred to skin level. As predicted, we found that surface temperatures were strongly correlated with plumage reflectivity when exposed to a radiative heat source and, likewise, temperatures reached at skin level decreased with increasing reflectivity. Indeed, nanostructured melanin-based iridescent feathers (green, purple, blue) reflected less light and heated more than unstructured melanin-based colours (grey, brown, black), as well as olives, carotenoid-based colours (yellow, orange, red) and non-pigmented whites. We used optical and heat modelling to test if differences in nanostructuring of melanin, or the bulk melanin content itself, better explains the differences between melanin-based feathers. These models showed that the greater melanin content and, to a lesser extent, the shape of the melanosomes explain the greater photothermal absorption in iridescent feathers. Our results suggest that iridescence can increase heat loads, and potentially alter birds' thermal balance.
Collapse
Affiliation(s)
- Svana Rogalla
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Anvay Patil
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Matthew D. Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Liliana D'Alba
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Marcondes RS, Nations JA, Seeholzer GF, Brumfield RT. Rethinking Gloger's Rule: Climate, Light Environments, and Color in a Large Family of Tropical Birds (Furnariidae). Am Nat 2021; 197:592-606. [PMID: 33908827 DOI: 10.1086/713386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractEcogeographic rules provide a framework within which to test evolutionary hypotheses of adaptation. Gloger's rule predicts that endothermic animals should have darker colors in warm/rainy climates. This rule also predicts that animals should be more rufous in warm/dry climates, the so-called complex Gloger's rule. Empirical studies frequently demonstrate that animals are darker in cool/wet climates rather than in warm/wet climates. Furthermore, sensory ecology predicts that, to enhance crypsis, animals should be darker in darker light environments. We aimed to disentangle the effects of climate and light environments on plumage color in the large Neotropical passerine family Furnariidae. We found that birds in cooler and rainier climates had darker plumage even after controlling for habitat type. Birds in darker habitats had darker plumage even after controlling for climate. The effects of temperature and precipitation interact so that the negative effect of precipitation on brightness is strongest in cool temperatures. Finally, birds tended to be more rufous in warm/dry habitats but also, surprisingly, in cool/wet locales. We suggest that Gloger's rule results from complementary selective pressures arising from myriad ecological factors, including crypsis, thermoregulation, parasite deterrence, and resistance to feather abrasion.
Collapse
|
6
|
The metabolic cost of subcutaneous and abdominal rewarming in king penguins after long-term immersion in cold water. J Therm Biol 2020; 91:102638. [PMID: 32716880 DOI: 10.1016/j.jtherbio.2020.102638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 11/20/2022]
Abstract
Marine endotherms in the polar regions face a formidable thermal challenge when swimming in cold water. Hence, they use morphological (fat, blubber) adjustment and peripheral vasoconstriction to reduce demands for heat production in water. The animals then regain normothermia when resting ashore. In the king penguin (Aptenodytes patagonicus) metabolic rate is lower in fed than in fasted individuals during subsequent rewarming on land. This has been suggested to be a consequence of diversion of blood flow to the splanchnic region in fed birds, which reduces peripheral temperatures. However, peripheral temperatures during recovery have never been investigated in birds with different nutritional status. The aim of this study was, therefore, to measure subcutaneous and abdominal temperatures during the rewarming phase on land in fasted and fed king penguins, and investigate to which extent any different rewarming were reflected in recovery metabolic rate (MRR) after long term immersion in cold water. We hypothesized that fed individuals would have a slower increase of subcutaneous temperatures compared to fasted penguins, and a correspondingly lower MRR. Subcutaneous tissues reached normothermia after 24.15 (back) and 21.36 min (flank), which was twice as fast as in the abdomen (46.82 min). However, recovery time was not affected by nutritional condition. MRR during global rewarming (4.56 ± 0.42 W kg-1) was twice as high as resting metabolic rate (RMR; 2.16 ± 0.59 W kg-1). However, MRR was not dependent on feeding status and was significantly elevated above RMR only until subcutaneous temperature had recovered. Contrary to our prediction, fed individuals did not reduce the subcutaneous circulation compared to fasted penguins and did not show any changes in MRR during subsequent recovery. It seems likely that lower metabolic rate in fed king penguins on land reported in other studies might not have been caused primarily by increased circulation to the visceral organs.
Collapse
|