1
|
Wang C, Zhao Y, Liang W. Biomarkers to predict the benefits of immune‑checkpoint blockade‑based therapy in patients with malignant peritoneal mesothelioma (Review). Oncol Lett 2024; 28:600. [PMID: 39483967 PMCID: PMC11525615 DOI: 10.3892/ol.2024.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/26/2024] [Indexed: 11/03/2024] Open
Abstract
Malignant peritoneal mesothelioma (MPeM) is a type of rare and highly lethal tumor. Immune checkpoint blockade (ICB)-based therapy has shown encouraging clinical activity for MPeM. However, no definitive biomarkers have been identified for predicting which patients with MPeM will benefit from ICB-based therapy. At present, there are several novel potential biomarkers proposed for predicting the response to ICB-based therapy, and biomarkers available in MPeM cells and in the tumor microenvironment have been identified with the potential to predict the efficacy of ICB-based therapy in MPeM. According to the molecular characteristics of MPeM itself, the feasibility of biomarkers in practice, and the body of available evidence, we hypothesize that the following five types of biomarkers can be used to predict the response of ICB-based therapy in patients with MPeM: Tertiary lymphoid structures, immune checkpoints and their ligands, fusion gene neoantigen burden, BRCA1-associated protein-1 haploinsufficiency and transcriptome-based biomarkers. The present review discusses the value and limitations of each type of biomarker, and potential solutions to address the limitations are proposed. The aim of the present review is to provide a background for future studies on ICB-based therapy for MPeM.
Collapse
Affiliation(s)
- Chunhong Wang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yan Zhao
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Wanru Liang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
2
|
Zafar A, Rashid AA, Moeed A, Tahir MJ, Khan AJ, Shrateh ON, Ahmed A. Safety and efficacy of PD-1/PD-L1 immune checkpoint inhibitors in patients with pre-treated advanced stage malignant mesothelioma: a systematic review and meta-analysis. BMC Cancer 2024; 24:1353. [PMID: 39501196 PMCID: PMC11536716 DOI: 10.1186/s12885-024-13127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 10/29/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Malignant mesothelioma is an aggressive cancer with poor prognosis. Programmed cell death protein-1 (PD-1) and its ligand 1 (PD-L1) immune checkpoint inhibitors (ICIs) have recently presented as a viable option in some first line but primarily as a second-line treatment of advanced-stage malignant mesothelioma (asMM). Therefore, this systematic review and meta-analysis aims to assess the safety and efficacy of PD-1/L-1 ICIs in advanced-stage malignant mesothelioma. METHODS PubMed, Scopus, and Cochrane databases were searched for all studies assessing the safety and efficacy of anti PD-1/PD-L1 agents. Primary outcomes were objective response rate (ORR) and disease control rate (DCR). Secondary outcomes were median progression free (mPFS) and overall survival (mOS). Safety outcomes were treatment- (TRAEs) and immune-related adverse events (IRAEs). A random-effects meta-analysis was performed to pool medians and to derive event rates. RESULTS A total of 15 studies were included with total of 1064 asMM patients. ORR and DCR were 16% and 57%, respectively. A pooled mPFS was 4.53 (CI: 3.40-5.65) and mOS was 10.51 (CI: 9.03-12.00). Overall TRAEs had an event rate of 0.69 (0.50-0.83) whereas IRAEs had an event rate of 0.28 (0.15-0.46). There were no significant differences between pembrolizumab, nivolumab primarily, and avelumab subgroups for all the outcomes. Additionally, meta-regression found no covariate to be a significant factor in ORR and DCR. CONCLUSION In this meta-analysis we found that anti-PD1/PD-L1 treatment could be useful in pretreated asMM as they had at least comparable or greater mPFS, mOS, ORR, and DCR than other second-line agents currently being used. REGISTRATION NUMBER This systematic review was registered at PROSPERO prior to the literature search, CRD42023442350.
Collapse
Affiliation(s)
| | - Asma Abdul Rashid
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Abdul Moeed
- Dow Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | | | | | - Oadi N Shrateh
- Faculty of Medicine, Al-Quds University, Jerusalem, Palestine.
| | - Ali Ahmed
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, CA, USA
| |
Collapse
|
3
|
Ejaz U, Dou Z, Yao PY, Wang Z, Liu X, Yao X. Chromothripsis: an emerging crossroad from aberrant mitosis to therapeutic opportunities. J Mol Cell Biol 2024; 16:mjae016. [PMID: 38710586 PMCID: PMC11487160 DOI: 10.1093/jmcb/mjae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024] Open
Abstract
Chromothripsis, a type of complex chromosomal rearrangement originally known as chromoanagenesis, has been a subject of extensive investigation due to its potential role in various diseases, particularly cancer. Chromothripsis involves the rapid acquisition of tens to hundreds of structural rearrangements within a short period, leading to complex alterations in one or a few chromosomes. This phenomenon is triggered by chromosome mis-segregation during mitosis. Errors in accurate chromosome segregation lead to formation of aberrant structural entities such as micronuclei or chromatin bridges. The association between chromothripsis and cancer has attracted significant interest, with potential implications for tumorigenesis and disease prognosis. This review aims to explore the intricate mechanisms and consequences of chromothripsis, with a specific focus on its association with mitotic perturbations. Herein, we discuss a comprehensive analysis of crucial molecular entities and pathways, exploring the intricate roles of the CIP2A-TOPBP1 complex, micronuclei formation, chromatin bridge processing, DNA damage repair, and mitotic checkpoints. Moreover, the review will highlight recent advancements in identifying potential therapeutic targets and the underlying molecular mechanisms associated with chromothripsis, paving the way for future therapeutic interventions in various diseases.
Collapse
Affiliation(s)
- Umer Ejaz
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Phil Y Yao
- University of California San Diego School of Medicine, San Diego, CA 92103, USA
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| |
Collapse
|
4
|
Zhang M, Bzura A, Baitei EY, Zhou Z, Spicer JB, Poile C, Rogel J, Branson A, King A, Barber S, Kamata T, Dzialo J, Harber J, Greystoke A, Nusrat N, Faulkner D, Sun Q, Nolan L, Hahne JC, Scotland M, Walter H, Darlison L, Morgan B, Bajaj A, Brookes C, Hollox EJ, Lubawska D, Jama M, Griffiths G, Nakas A, Kutywayo K, Luo JL, Klampatsa A, Cooper A, Halder K, Wells-Jordan P, Zhou H, Dudbridge F, Thomas A, Richards CJ, Pritchard C, Yang H, Barer M, Fennell DA. A gut microbiota rheostat forecasts responsiveness to PD-L1 and VEGF blockade in mesothelioma. Nat Commun 2024; 15:7187. [PMID: 39168966 PMCID: PMC11339264 DOI: 10.1038/s41467-024-49842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/18/2024] [Indexed: 08/23/2024] Open
Abstract
Malignant mesothelioma is a rare tumour caused by asbestos exposure that originates mainly from the pleural lining or the peritoneum. Treatment options are limited, and the prognosis is dismal. Although immune checkpoint blockade (ICB) can improve survival outcomes, the determinants of responsiveness remain elusive. Here, we report the outcomes of a multi-centre phase II clinical trial (MiST4, NCT03654833) evaluating atezolizumab and bevacizumab (AtzBev) in patients with relapsed mesothelioma. We also use tumour tissue and gut microbiome sequencing, as well as tumour spatial immunophenotyping to identify factors associated with treatment response. MIST4 met its primary endpoint with 50% 12-week disease control, and the treatment was tolerable. Aneuploidy, notably uniparental disomy (UPD), homologous recombination deficiency (HRD), epithelial-mesenchymal transition and inflammation with CD68+ monocytes were identified as tumour-intrinsic resistance factors. The log-ratio of gut-resident microbial genera positively correlated with radiological response to AtzBev and CD8+ T cell infiltration, but was inversely correlated with UPD, HRD and tumour infiltration by CD68+ monocytes. In summary, a model is proposed in which both intrinsic and extrinsic determinants in mesothelioma cooperate to modify the tumour microenvironment and confer clinical sensitivity to AtzBev. Gut microbiota represent a potentially modifiable factor with potential to improve immunotherapy outcomes for individuals with this cancer of unmet need.
Collapse
Affiliation(s)
- Min Zhang
- National Institute for Health Research Biomedical Research Centre & Cancer Research UK Experimental Cancer Medicine Centre, University of Leicester, Leicester, UK
- Novogene Corporation, Beijing, China
| | - Aleksandra Bzura
- National Institute for Health Research Biomedical Research Centre & Cancer Research UK Experimental Cancer Medicine Centre, University of Leicester, Leicester, UK
| | - Essa Y Baitei
- National Institute for Health Research Biomedical Research Centre & Cancer Research UK Experimental Cancer Medicine Centre, University of Leicester, Leicester, UK
- Center for Genomic Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Zisen Zhou
- Department of Informatics, University of Leicester, Leicester, UK
| | - Jake B Spicer
- National Institute for Health Research Biomedical Research Centre & Cancer Research UK Experimental Cancer Medicine Centre, University of Leicester, Leicester, UK
| | - Charlotte Poile
- National Institute for Health Research Biomedical Research Centre & Cancer Research UK Experimental Cancer Medicine Centre, University of Leicester, Leicester, UK
| | - Jan Rogel
- National Institute for Health Research Biomedical Research Centre & Cancer Research UK Experimental Cancer Medicine Centre, University of Leicester, Leicester, UK
| | - Amy Branson
- Leicester Clinical Trials Unit, University of Leicester, Leicester, UK
| | - Amy King
- Department of Oncology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Shaun Barber
- Leicester Clinical Trials Unit, University of Leicester, Leicester, UK
| | - Tamihiro Kamata
- National Institute for Health Research Biomedical Research Centre & Cancer Research UK Experimental Cancer Medicine Centre, University of Leicester, Leicester, UK
| | - Joanna Dzialo
- National Institute for Health Research Biomedical Research Centre & Cancer Research UK Experimental Cancer Medicine Centre, University of Leicester, Leicester, UK
| | - James Harber
- Harry Perkins Institute of Medical Research and The University of Western Australia Centre for Cancer Research, Perth, WA, Australia
| | | | - Nada Nusrat
- National Institute for Health Research Biomedical Research Centre & Cancer Research UK Experimental Cancer Medicine Centre, University of Leicester, Leicester, UK
| | - Daniel Faulkner
- National Institute for Health Research Biomedical Research Centre & Cancer Research UK Experimental Cancer Medicine Centre, University of Leicester, Leicester, UK
| | | | - Luke Nolan
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jens C Hahne
- National Institute for Health Research Biomedical Research Centre & Cancer Research UK Experimental Cancer Medicine Centre, University of Leicester, Leicester, UK
| | - Molly Scotland
- Department of Oncology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Harriet Walter
- National Institute for Health Research Biomedical Research Centre & Cancer Research UK Experimental Cancer Medicine Centre, University of Leicester, Leicester, UK
- Department of Oncology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | | | - Bruno Morgan
- Department of Radiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Amrita Bajaj
- Department of Radiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Cassandra Brookes
- Leicester Clinical Trials Unit, University of Leicester, Leicester, UK
| | - Edward J Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Dominika Lubawska
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Maymun Jama
- National Institute for Health Research Biomedical Research Centre & Cancer Research UK Experimental Cancer Medicine Centre, University of Leicester, Leicester, UK
| | | | - Apostolos Nakas
- Department of Cardiothoracic Surgery, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Kudzayi Kutywayo
- Department of Cardiothoracic Surgery, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Jin-Li Luo
- Bioinformatics and Statistics Analysis Hub, University of Leicester, Leicester, UK
| | | | - Andrea Cooper
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Koirobi Halder
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Peter Wells-Jordan
- National Institute for Health Research Biomedical Research Centre & Cancer Research UK Experimental Cancer Medicine Centre, University of Leicester, Leicester, UK
| | - Huiyu Zhou
- Department of Informatics, University of Leicester, Leicester, UK
| | - Frank Dudbridge
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Anne Thomas
- National Institute for Health Research Biomedical Research Centre & Cancer Research UK Experimental Cancer Medicine Centre, University of Leicester, Leicester, UK
- Department of Oncology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | | | - Catrin Pritchard
- National Institute for Health Research Biomedical Research Centre & Cancer Research UK Experimental Cancer Medicine Centre, University of Leicester, Leicester, UK
| | - Hongji Yang
- Department of Informatics, University of Leicester, Leicester, UK
| | - Michael Barer
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Dean A Fennell
- National Institute for Health Research Biomedical Research Centre & Cancer Research UK Experimental Cancer Medicine Centre, University of Leicester, Leicester, UK.
- Department of Oncology, University Hospitals of Leicester NHS Trust, Leicester, UK.
| |
Collapse
|
5
|
Martin MV, Aguilar-Rosas S, Franke K, Pieterse M, Langelaar JV, Schreurs R, Bijlsma MF, Besselink MG, Koster J, Timens W, Khasraw M, Ashley DM, Keir ST, Ottensmeier CH, King EV, Verheij J, Waasdorp C, Valk PJM, Engels SAG, Oostenbach E, van Dinter JT, Hofman DA, Mok JY, van Esch WJE, Wilmink H, Monkhorst K, Verheul HMW, Poel D, Hiltermann TJN, Kempen LCLTV, Groen HJM, Aerts JGJV, Heesch SV, Löwenberg B, Plasterk R, Kloosterman WP. The Neo-Open Reading Frame Peptides That Comprise the Tumor Framome Are a Rich Source of Neoantigens for Cancer Immunotherapy. Cancer Immunol Res 2024; 12:759-778. [PMID: 38573707 DOI: 10.1158/2326-6066.cir-23-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/22/2023] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
Identification of immunogenic cancer neoantigens as targets for therapy is challenging. Here, we integrate the whole-genome and long-read transcript sequencing of cancers to identify the collection of neo-open reading frame peptides (NOP) expressed in tumors. We termed this collection of NOPs the tumor framome. NOPs represent tumor-specific peptides that are different from wild-type proteins and may be strongly immunogenic. We describe a class of hidden NOPs that derive from structural genomic variants involving an upstream protein coding gene driving expression and translation of noncoding regions of the genome downstream of a rearrangement breakpoint, i.e., where no gene annotation or evidence for transcription exists. The entire collection of NOPs represents a vast number of possible neoantigens particularly in tumors with many structural genomic variants and a low number of missense mutations. We show that NOPs are immunogenic and epitopes derived from NOPs can bind to MHC class I molecules. Finally, we provide evidence for the presence of memory T cells specific for hidden NOPs in peripheral blood from a patient with lung cancer. This work highlights NOPs as a major source of possible neoantigens for personalized cancer immunotherapy and provides a rationale for analyzing the complete cancer genome and transcriptome as a basis for the detection of NOPs.
Collapse
Affiliation(s)
| | | | - Katka Franke
- CureVac Netherlands B.V., Amsterdam, the Netherlands
| | - Mark Pieterse
- CureVac Netherlands B.V., Amsterdam, the Netherlands
| | | | | | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Marc G Besselink
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Surgery, Amsterdam, the Netherlands
| | - Jan Koster
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University, Medical Center Groningen, the Netherlands
| | - Mustafa Khasraw
- Duke University Medical Center, Duke University, Durham, North Carolina
| | - David M Ashley
- Preston Robert Tisch Brain Tumor Center, Department of Neurosurgery, Duke University, Durham, North Carolina
| | - Stephen T Keir
- Duke University Medical Center, Duke University, Durham, North Carolina
| | - Christian H Ottensmeier
- Liverpool Head and Neck Centre, Institute of Systems, Molecular and Integrative Biology, University of Liverpool and Clatterbridge Cancer Center NHS Foundation Trust, Liverpool, UK
| | - Emma V King
- Department of Otorhinolaryngology, Head and Neck Surgery, Poole Hospital, Poole, UK
| | - Joanne Verheij
- Amsterdam UMC, location University of Amsterdam, Department of Pathology, Amsterdam, the Netherlands
| | - Cynthia Waasdorp
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sem A G Engels
- The Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Ellen Oostenbach
- The Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jip T van Dinter
- The Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Damon A Hofman
- The Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Juk Yee Mok
- Sanquin Reagents, Sanquin, Amsterdam, the Netherlands
| | | | - Hanneke Wilmink
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Kim Monkhorst
- Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Dennis Poel
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the, Netherlands
| | - T Jeroen N Hiltermann
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Léon C L T van Kempen
- Department of Pathology and Medical Biology, University of Groningen, University, Medical Center Groningen, the Netherlands
- University of Antwerp, Antwerp University Hospital, Edegem, Belgium
| | - Harry J M Groen
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | | | | | - Bob Löwenberg
- CureVac Netherlands B.V., Amsterdam, the Netherlands
| | | | | |
Collapse
|
6
|
Hung YP, Chirieac LR. Molecular and Immunohistochemical Testing in Mesothelioma and Other Mesothelial Lesions. Arch Pathol Lab Med 2024; 148:e77-e89. [PMID: 38190277 DOI: 10.5858/arpa.2023-0213-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 01/10/2024]
Abstract
CONTEXT.— Molecular testing has increasingly been utilized in the evaluation of mesothelioma. Diffuse mesothelioma comprises multiple distinct genetic subgroups. While most diffuse mesotheliomas lack oncogenic kinase mutations and instead harbor alterations involving tumor suppressors and chromatin regulators, a minor subset of tumors is characterized by uncommon alterations such as germline mutations, genomic near-haploidization, ALK rearrangement, ATF1 rearrangement, or EWSR1::YY1 fusion. OBJECTIVE.— To provide updates on the salient molecular features of diffuse mesothelioma, mesothelioma in situ, and other mesothelial lesions: well-differentiated papillary mesothelial tumor, adenomatoid tumor, peritoneal inclusion cyst, and others. We consider the diagnostic, prognostic, and predictive utility of molecular testing in mesothelial lesions. DATA SOURCES.— We performed a literature review of recently described genetic features, molecular approaches, and immunohistochemical tools, including BAP1, MTAP, and merlin in mesothelioma and other mesothelial lesions. CONCLUSIONS.— Our evolving understanding of the molecular diversity of diffuse mesothelioma and other mesothelial lesions has led to considerable changes in pathology diagnostic practice, including the application of immunohistochemical markers such as BAP1, MTAP, and merlin (NF2), which are surrogates of mutation status. In young patients and/or those without significant asbestos exposure, unusual mesothelioma genetics such as germline mutations, ALK rearrangement, and ATF1 rearrangement should be considered.
Collapse
MESH Headings
- Humans
- Mesothelioma/diagnosis
- Mesothelioma/genetics
- Mesothelioma/metabolism
- Mesothelioma/pathology
- Immunohistochemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/analysis
- Neoplasms, Mesothelial/diagnosis
- Neoplasms, Mesothelial/genetics
- Neoplasms, Mesothelial/metabolism
- Neoplasms, Mesothelial/pathology
- Mesothelioma, Malignant/diagnosis
- Mesothelioma, Malignant/genetics
- Mesothelioma, Malignant/pathology
- Mesothelioma, Malignant/metabolism
- Mutation
- Tumor Suppressor Proteins
- Ubiquitin Thiolesterase
Collapse
Affiliation(s)
- Yin P Hung
- From the Department of Pathology, Massachusetts General Hospital. Boston (Hung)
- the Department of Pathology, Harvard Medical School, Boston, Massachusetts (Hung, Chirieac)
| | - Lucian R Chirieac
- the Department of Pathology, Harvard Medical School, Boston, Massachusetts (Hung, Chirieac)
- the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Chirieac)
| |
Collapse
|
7
|
Lagunas-Rangel FA. Chromothripsis in hematologic malignancies. Exp Hematol 2024; 132:104172. [PMID: 38309572 DOI: 10.1016/j.exphem.2024.104172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Chromotrypsis, a phenomenon resulting from catastrophic mitotic errors and genomic instability, is defined by the occurrence of multiple DNA double-strand breaks in one or more chromosomes, subsequently subject to error-prone repair mechanisms. This unique process results in extensive rearrangements in the affected chromosomes, leading to loss of tumor suppressor function, the creation of fusion genes, and/or activation of oncogenes. The importance of chromothripsis in cancer, especially in the field of hematologic disorders, underscores the intricate interplay between genomic instability and the genesis of alterations that contribute to cancer. This accentuates the critical need to unravel these complex processes for the targeted development of specific therapeutic interventions. This review delves into the analysis of chromothripsis cases in various hematologic diseases, such as leukemia, lymphoma, and myeloma, with the aim of unveiling its profound impact on patient prognosis. Furthermore, the study explores the intricate molecular mechanisms underlying chromothripsis and investigates its consequences.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
8
|
Krupina K, Goginashvili A, Cleveland DW. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements. Nat Rev Genet 2024; 25:196-210. [PMID: 37938738 PMCID: PMC10922386 DOI: 10.1038/s41576-023-00663-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 11/09/2023]
Abstract
Complex chromosome rearrangements, known as chromoanagenesis, are widespread in cancer. Based on large-scale DNA sequencing of human tumours, the most frequent type of complex chromosome rearrangement is chromothripsis, a massive, localized and clustered rearrangement of one (or a few) chromosomes seemingly acquired in a single event. Chromothripsis can be initiated by mitotic errors that produce a micronucleus encapsulating a single chromosome or chromosomal fragment. Rupture of the unstable micronuclear envelope exposes its chromatin to cytosolic nucleases and induces chromothriptic shattering. Found in up to half of tumours included in pan-cancer genomic analyses, chromothriptic rearrangements can contribute to tumorigenesis through inactivation of tumour suppressor genes, activation of proto-oncogenes, or gene amplification through the production of self-propagating extrachromosomal circular DNAs encoding oncogenes or genes conferring anticancer drug resistance. Here, we discuss what has been learned about the mechanisms that enable these complex genomic rearrangements and their consequences in cancer.
Collapse
Affiliation(s)
- Ksenia Krupina
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Alexander Goginashvili
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Baker TM, Waise S, Tarabichi M, Van Loo P. Aneuploidy and complex genomic rearrangements in cancer evolution. NATURE CANCER 2024; 5:228-239. [PMID: 38286829 PMCID: PMC7616040 DOI: 10.1038/s43018-023-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
Mutational processes that alter large genomic regions occur frequently in developing tumors. They range from simple copy number gains and losses to the shattering and reassembly of entire chromosomes. These catastrophic events, such as chromothripsis, chromoplexy and the formation of extrachromosomal DNA, affect the expression of many genes and therefore have a substantial effect on the fitness of the cells in which they arise. In this review, we cover large genomic alterations, the mechanisms that cause them and their effect on tumor development and evolution.
Collapse
Affiliation(s)
- Toby M Baker
- The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara Waise
- The Francis Crick Institute, London, UK
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Maxime Tarabichi
- The Francis Crick Institute, London, UK
- Institute for Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Peter Van Loo
- The Francis Crick Institute, London, UK.
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Tuncel T, Ak G, Güneş HV, Metintaş M. Complex Genomic Rearrangement Patterns in Malignant Pleural Mesothelioma due to Environmental Asbestos Exposure. J Environ Pathol Toxicol Oncol 2024; 43:13-27. [PMID: 38505910 DOI: 10.1615/jenvironpatholtoxicoloncol.2023046200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare type of cancer, and its main risk factor is exposure to asbestos. Accordingly, our knowledge of the genomic structure of an MPM tumor is limited when compared to other cancers. In this study, we aimed to characterize complex genomic rearrangement patterns and variations to better understand the genomics of MPM tumors. We comparatively scanned 3 MPM tumor genomes by Whole-Genome Sequencing and High-Resolution SNP array. We also used various computational algorithms to detect both CNAs and complex chromosomal rearrangements. Genomic data obtained from each bioinformatics tool are interpreted comparatively to better understand CNAs and cancer-related Nucleotide variations in MPM tumors. In patients 1 and 2, we found pathogenic nucleotide variants of BAP1, RB1, and TP53. These two MPM genomes exhibited a highly rearranged chromosomal rearrangement pattern resembling Chromomanagesis particularly in the form of Chromoanasynthesis. In patient 3, we found nucleotide variants of important cancer-related genes, including TGFBR1, KMT2C, and PALLD, to have lower chromosomal rearrangement complexity compared with patients 1 and 2. We also detected several actionable nucleotide variants including XRCC1, ERCC2. We also discovered the SKA3-DDX10 fusion in two MPM genomes, which is a novel finding for MPM. We found that MPM genomes are very complex, suggesting that this highly rearranged pattern is strongly related to driver mutational status like BAP1, TP53 and RB1.
Collapse
Affiliation(s)
- Tunç Tuncel
- Health Institutes of Turkey, Turkish Biotechnology Institute, Ankara, Turkey
| | - Güntülü Ak
- Eskisehir Osmangazi University Medical Faculty, Department of Chest Diseases, Lung and Pleural Cancers Research and Clinical Center, Eskisehir, Turkey
| | - Hasan Veysi Güneş
- Eskisehir Osmangazi University Medical Faculty, Department of Medical Biology, Eskisehir, Turkey
| | - Muzaffer Metintaş
- Eskisehir Osmangazi University Medical Faculty, Department of Chest Diseases, Lung and Pleural Cancers Research and Clinical Center, Eskisehir, Turkey
| |
Collapse
|
11
|
Sourty B, Basset L, Fontaine A, Garcion E, Rousseau A. Chromothripsis is rare in IDH-mutant gliomas compared to IDH-wild-type glioblastomas whereas whole-genome duplication is equally frequent in both tumor types. Neurooncol Adv 2024; 6:vdae059. [PMID: 38800696 PMCID: PMC11125406 DOI: 10.1093/noajnl/vdae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Background Adult-type diffuse gliomas comprise IDH (isocitrate dehydrogenase)-mutant astrocytomas, IDH-mutant 1p/19q-codeleted oligodendrogliomas (ODG), and IDH-wild-type glioblastomas (GBM). GBM displays genome instability, which may result from 2 genetic events leading to massive chromosome alterations: Chromothripsis (CT) and whole-genome duplication (WGD). These events are scarcely described in IDH-mutant gliomas. The better prognosis of the latter may be related to their genome stability compared to GBM. Methods Pangenomic profiles of 297 adult diffuse gliomas were analyzed at initial diagnosis using SNP arrays, including 192 GBM and 105 IDH-mutant gliomas (61 astrocytomas and 44 ODG). Tumor ploidy was assessed with Genome Alteration Print and CT events with CTLPScanner and through manual screening. Survival data were compared using the Kaplan-Meier method. Results At initial diagnosis, 37 GBM (18.7%) displayed CT versus 5 IDH-mutant gliomas (4.7%; P = .0008), the latter were all high-grade (grade 3 or 4) astrocytomas. WGD was detected at initial diagnosis in 18 GBM (9.3%) and 9 IDH-mutant gliomas (5 astrocytomas and 4 oligodendrogliomas, either low- or high-grade; 8.5%). Neither CT nor WGD was associated with overall survival in GBM or in IDH-mutant gliomas. Conclusions CT is less frequent in IDH-mutant gliomas compared to GBM. The absence of CT in ODG and grade 2 astrocytomas might, in part, explain their genome stability and better prognosis, while CT might underlie aggressive biological behavior in some high-grade astrocytomas. WGD is a rare and early event occurring equally in IDH-mutant gliomas and GBM.
Collapse
Affiliation(s)
- Baptiste Sourty
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000Angers, France
- Department of Pathology, University Hospital of Angers, Angers, France
| | - Laëtitia Basset
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000Angers, France
- Department of Pathology, University Hospital of Angers, Angers, France
| | - Alix Fontaine
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000Angers, France
- Department of Pathology, University Hospital of Angers, Angers, France
| | - Emmanuel Garcion
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000Angers, France
| | - Audrey Rousseau
- Univ Angers, Nantes Université, Inserm, CNRS, CRCI2NA, SFR ICAT, F-49000Angers, France
- Department of Pathology, University Hospital of Angers, Angers, France
| |
Collapse
|
12
|
Addala V, Newell F, Pearson JV, Redwood A, Robinson BW, Creaney J, Waddell N. Computational immunogenomic approaches to predict response to cancer immunotherapies. Nat Rev Clin Oncol 2024; 21:28-46. [PMID: 37907723 DOI: 10.1038/s41571-023-00830-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
Cancer immunogenomics is an emerging field that bridges genomics and immunology. The establishment of large-scale genomic collaborative efforts along with the development of new single-cell transcriptomic techniques and multi-omics approaches have enabled characterization of the mutational and transcriptional profiles of many cancer types and helped to identify clinically actionable alterations as well as predictive and prognostic biomarkers. Researchers have developed computational approaches and machine learning algorithms to accurately obtain clinically useful information from genomic and transcriptomic sequencing data from bulk tissue or single cells and explore tumours and their microenvironment. The rapid growth in sequencing and computational approaches has resulted in the unmet need to understand their true potential and limitations in enabling improvements in the management of patients with cancer who are receiving immunotherapies. In this Review, we describe the computational approaches currently available to analyse bulk tissue and single-cell sequencing data from cancer, stromal and immune cells, as well as how best to select the most appropriate tool to address various clinical questions and, ultimately, improve patient outcomes.
Collapse
Affiliation(s)
- Venkateswar Addala
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| | - Felicity Newell
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John V Pearson
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Alec Redwood
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Western Australia, Australia
- Institute of Respiratory Health, Perth, Western Australia, Australia
- School of Biomedical Science, University of Western Australia, Perth, Western Australia, Australia
| | - Bruce W Robinson
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Western Australia, Australia
- Institute of Respiratory Health, Perth, Western Australia, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, Western Australia, Australia
- Institute of Respiratory Health, Perth, Western Australia, Australia
- School of Biomedical Science, University of Western Australia, Perth, Western Australia, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Nicola Waddell
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
13
|
Tuncel T, Metintas M, Güntülü AK, Güneş HV. Whole-Genome Comparative Copy Number Alteration Profiling between Malignant Pleural Mesothelioma and Asbestos-Induced Chronic Pleuritis. J Environ Pathol Toxicol Oncol 2024; 43:31-44. [PMID: 37824368 DOI: 10.1615/jenvironpatholtoxicoloncol.2023047755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is rare and aggressive cancer. The most important risk factor for MPM is exposure to asbestos. In this study, we scanned the genomes of individuals MPM and asbestos-induced chronic pleuritis (AICP) to compare and determine copy number alterations (CNAs) between two asbestos-related diseases. We used high-resolution SNP arrays to compare CNA profiles between MPM (n = 55) and AICP (n = 18). DNAs extracted from pleural tissues in both groups. SNP array analysis revealed common losses at 1p, 3p, 6q, 9p, 13q, 14q, 15q, 16q, 22q and frequent gains at chromosomes 1, 3, 5, 7, 8, and 6p, 12q, 15q, 17p, 20q in MPMs (frequencies max 67%-min 30%; these alterations were not detected in AICPs. Besides detecting well-known MPM-associated CNAs, our high -resolution copy number profiling also detected comparatively rare CNAs for MPMs including losses like 9q33.3, 16q and gains of 1p, 1q, 3p, 3q, 6p, 7q, 15q, 12q, 17p, 20q at significant frequencies in the MPM cohort. We also observed Copy Number gains clustered on the NF2 locus in AICPs, whereas this region was commonly deleted in MPMs. According to this distinct genomic profiles between the two groups, AICPs genomes can be clearly distinguished from highly altered MPM genomes. Hence, we can suggest that SNP arrays can be used as a supporting diagnostic tool in terms of discriminating asbestos-related malignant disease such as MPM and benign pleural lesions, which can be challenging in most instances.
Collapse
Affiliation(s)
- Tunç Tuncel
- Health Institutes of Turkey, Turkish Biotechnology Institute, Ankara, Turkey
| | - Muzaffer Metintas
- Eskisehir Osmangazi University Medical Faculty, Department of Chest Diseases, Lung and Pleural Cancers Research and Clinical Center, Eskisehir, Turkey
| | - A K Güntülü
- Eskisehir Osmangazi University Medical Faculty, Department of Chest Diseases, Lung and Pleural Cancers Research and Clinical Center, Eskisehir, Turkey
| | - Hasan Veysi Güneş
- Eskisehir Osmangazi University Medical Faculty, Department of Medical Biology, Eskisehir, Turkey
| |
Collapse
|
14
|
Cedres S, Valdivia A, Iranzo P, Callejo A, Pardo N, Navarro A, Martinez-Marti A, Assaf-Pastrana JD, Felip E, Garrido P. Current State-of-the-Art Therapy for Malignant Pleural Mesothelioma and Future Options Centered on Immunotherapy. Cancers (Basel) 2023; 15:5787. [PMID: 38136333 PMCID: PMC10741743 DOI: 10.3390/cancers15245787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a locally aggressive disease related to asbestos exposure with a median survival for untreated patients of 4-8 months. The combination of chemotherapy based on platinum and antifolate is the standard treatment, and the addition of bevacizumab adds two months to median survival. Recently, in first-line treatment, immunotherapy combining nivolumab with ipilimumab has been shown to be superior to chemotherapy in the CheckMate-743 study in terms of overall survival (18.1 months), leading to its approval by the FDA and EMA. The positive results of this study represent a new standard of treatment for patients with MPM; however, not all patients will benefit from immunotherapy treatment. In an effort to improve the selection of patient candidates for immunotherapy for different tumors, biomarkers that have been associated with a greater possibility of response to treatment have been described. MPM is a type of tumor with low mutational load and neo-antigens, making it a relatively non-immunogenic tumor for T cells and possibly less susceptible to responding to immunotherapy. Different retrospective studies have shown that PD-L1 expression occurs in 20-40% of patients and is associated with a poor prognosis; however, the predictive value of PD-L1 in response to immunotherapy has not been confirmed. The purpose of this work is to review the state of the art of MPM treatment in the year 2023, focusing on the efficacy results of first-line or subsequent immunotherapy studies on patients with MPM and possible chemo-immunotherapy combination strategies. Additionally, potential biomarkers of response to immunotherapy will be reviewed, such as histology, PD-L1, lymphocyte populations, and TMB.
Collapse
Affiliation(s)
- Susana Cedres
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
| | - Augusto Valdivia
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
| | - Patricia Iranzo
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
| | - Ana Callejo
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
| | - Nuria Pardo
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
| | - Alejandro Navarro
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
| | - Alex Martinez-Marti
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
| | - Juan David Assaf-Pastrana
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
| | - Enriqueta Felip
- Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (A.V.); (P.I.); (A.C.); (N.P.); (A.N.); (A.M.-M.); (J.D.A.-P.); (E.F.)
- Thoracic Cancers Translational Genomics Unit, Medical Oncology Department, Vall d´Hebron Institute of Oncology (VHIO), Vall d´Hebron Hospital Universitari, 08035 Barcelona, Spain
| | - Pilar Garrido
- Medical Oncology Department, Ramón y Cajal University Hospital, 28034 Madrid, Spain;
| |
Collapse
|
15
|
Homicsko K, Zygoura P, Norkin M, Tissot S, Shakarishvili N, Popat S, Curioni-Fontecedro A, O'Brien M, Pope A, Shah R, Fisher P, Spicer J, Roy A, Gilligan D, Rusakiewicz S, Fortis E, Marti N, Kammler R, Finn SP, Coukos G, Dafni U, Peters S, Stahel RA. PD-1-expressing macrophages and CD8 T cells are independent predictors of clinical benefit from PD-1 inhibition in advanced mesothelioma. J Immunother Cancer 2023; 11:e007585. [PMID: 37880184 PMCID: PMC10603330 DOI: 10.1136/jitc-2023-007585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Few tissue biomarkers exist to date that could enrich patient with cancer populations to benefit from immune checkpoint blockade by programmed cell death protein 1/ligand-1 (PD-/L-1) inhibitors. PD-L1 expression has value in this context in some tumor types but is an imperfect predictor of clinical benefit. In malignant pleural mesothelioma, PD-L1 expression is not predictive of the benefit from PD-1 blockade. We aimed to identify novel markers in malignant pleural mesothelioma to select patients better. METHODS We performed a multiplex-immune histochemistry analysis of tumor samples from the phase III PROMISE-meso study, which randomized 144 pretreated patients to receive either pembrolizumab or standard second-line chemotherapy. Our panel focused on CD8+T cell, CD68+macrophages, and the expression of PD-1 and PD-L1 on these and cancer cells. We analyzed single and double positive cells within cancer tissues (infiltrating immune cells) and in the stroma. In addition, we performed cell neighborhood analysis. The cell counts were compared with clinical outcomes, including responses, progression-free and overall survivals. RESULTS We confirmed the absence of predictive value for PD-L1 in this cohort of patients. Furthermore, total CD8 T cells, CD68+macrophages, or inflammatory subtypes (desert, excluded, inflamed) did not predict outcomes. In contrast, PD-1-expressing CD8+T cells (exhausted T cells) and PD-1-expressing CD68+macrophages were both independent predictors of progression-free survival benefit from pembrolizumab. Patients with tumors simultaneously harboring PD1+T cells and PD-1+macrophages benefited the most from immune therapy. CONCLUSION We analyzed a large cohort of patients within a phase III study and found that not only PD-1+CD8 T cells but also PD-1+CD68+ macrophages are predictive. This data provides evidence for the first time for the existence of PD-1+macrophages in mesothelioma and their clinical relevance for immune checkpoint blockade.
Collapse
Affiliation(s)
- Krisztian Homicsko
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne branch, Lausanne, Switzerland
| | - Panagiota Zygoura
- ETOP Statistical Center, Frontier Science Foundation - Hellas, Athens, Greece
| | - Maxim Norkin
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne branch, Lausanne, Switzerland
| | - Stephanie Tissot
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Immune Landscape Laboratory, Centre Thérapies Expérimentales (CTE), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | - Sanjay Popat
- Lung Unit, Royal Marsden Hospital NHS Trust, London, UK
| | - Alessandra Curioni-Fontecedro
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Oncology, Fribourg Hospitals, Fribourg, Switzerland
| | - Mary O'Brien
- Department of Oncology, Royal Marsden Hospital NHS Trust, London, UK
| | - Anthony Pope
- Department of Oncology, Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, UK
| | - Riyaz Shah
- Department of Medical Oncology, Kent Oncology Centre, Maidstone, UK
| | - Patricia Fisher
- Department of Medical Oncology, Weston Park Hospital, Sheffield, UK
| | - James Spicer
- Comprehensive Cancer Center, King's College London, London, UK
| | - Amy Roy
- Department of Medical Oncology, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - David Gilligan
- Department of Medical Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Sylvie Rusakiewicz
- Immune Landscape Laboratory, Centre Thérapies Expérimentales (CTE), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Ekaterina Fortis
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Immune Landscape Laboratory, Centre Thérapies Expérimentales (CTE), Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nesa Marti
- Translational Research Coordination, ETOP IBCSG Partners Foundation, Bern, Switzerland
| | - Roswitha Kammler
- Translational Research Coordination, ETOP IBCSG Partners Foundation, Bern, Switzerland
| | - Stephen P Finn
- Molecular Diagnostics and Histopathology, Trinity College, Dublin, Ireland
| | - Georges Coukos
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne branch, Lausanne, Switzerland
| | - Urania Dafni
- ETOP Statistical Center, Frontier Science Foundation - Hellas, Athens, Greece
- National and Kapodistrian University of Athens, Athens, Greece
| | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Agora Research Center, Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Rolf A Stahel
- President, ETOP IBCSG Partners Foundation, Bern, Switzerland
| |
Collapse
|
16
|
Peri A, Salomon N, Wolf Y, Kreiter S, Diken M, Samuels Y. The landscape of T cell antigens for cancer immunotherapy. NATURE CANCER 2023:10.1038/s43018-023-00588-x. [PMID: 37415076 DOI: 10.1038/s43018-023-00588-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
The remarkable capacity of immunotherapies to induce durable regression in some patients with metastatic cancer relies heavily on T cell recognition of tumor-presented antigens. As checkpoint-blockade therapy has limited efficacy, tumor antigens have the potential to be exploited for complementary treatments, many of which are already in clinical trials. The surge of interest in this topic has led to the expansion of the tumor antigen landscape with the emergence of new antigen categories. Nonetheless, how different antigens compare in their ability to elicit efficient and safe clinical responses remains largely unknown. Here, we review known cancer peptide antigens, their attributes and the relevant clinical data and discuss future directions.
Collapse
Affiliation(s)
- Aviyah Peri
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nadja Salomon
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany
| | - Yochai Wolf
- Ella Lemelbaum Institute for Immuno-oncology and Skin Cancer, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Sebastian Kreiter
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany.
| | - Mustafa Diken
- TRON - Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz gGmbH, Mainz, Germany.
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
17
|
Desai AP, Kosari F, Disselhorst M, Yin J, Agahi A, Peikert T, Udell J, Johnson SH, Smadbeck J, Murphy S, Karagouga G, McCune A, Schaefer-Klein J, Borad MJ, Cheville J, Vasmatzis G, Baas P, Mansfield A. Dynamics and survival associations of T cell receptor clusters in patients with pleural mesothelioma treated with immunotherapy. J Immunother Cancer 2023; 11:e006035. [PMID: 37279993 PMCID: PMC10255162 DOI: 10.1136/jitc-2022-006035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are now a first-line treatment option for patients with pleural mesothelioma with the recent approval of ipilimumab and nivolumab. Mesothelioma has a low tumor mutation burden and no robust predictors of survival with ICI. Since ICIs enable adaptive antitumor immune responses, we investigated T-cell receptor (TCR) associations with survival in participants from two clinical trials treated with ICI. METHODS We included patients with pleural mesothelioma who were treated with nivolumab (NivoMes, NCT02497508) or nivolumab and ipilimumab (INITIATE, NCT03048474) after first-line therapy. TCR sequencing was performed with the ImmunoSEQ assay in 49 and 39 pretreatment and post-treatment patient peripheral blood mononuclear cell (PBMC) samples. These data were integrated with TCR sequences found in bulk RNAseq data by TRUST4 program in 45 and 35 pretreatment and post-treatment tumor biopsy samples and TCR sequences from over 600 healthy controls. The TCR sequences were clustered into groups of shared antigen specificity using GIANA. Associations of TCR clusters with overall survival were determined by cox proportional hazard analysis. RESULTS We identified 4.2 million and 12 thousand complementarity-determining region 3 (CDR3) sequences from PBMCs and tumors, respectively, in patients treated with ICI. These CDR3 sequences were integrated with 2.1 million publically available CDR3 sequences from healthy controls and clustered. ICI-enhanced T-cell infiltration and expanded T cell diversity in tumors. Cases with TCR clones in the top tertile in the pretreatment tissue or in circulation had significantly better survival than the bottom two tertiles (p<0.04). Furthermore, a high number of shared TCR clones between pretreatment tissue and in circulation was associated with improved survival (p=0.01). To potentially select antitumor clusters, we filtered for clusters that were (1) not found in healthy controls, (2) recurrent in multiple patients with mesothelioma, and (3) more prevalent in post-treatment than pretreatment samples. The detection of two-specific TCR clusters provided significant survival benefit compared with detection of 1 cluster (HR<0.001, p=0.026) or the detection of no TCR clusters (HR=0.10, p=0.002). These two clusters were not found in bulk tissue RNA-seq data and have not been reported in public CDR3 databases. CONCLUSIONS We identified two unique TCR clusters that were associated with survival on treatment with ICI in patients with pleural mesothelioma. These clusters may enable approaches for antigen discovery and inform future targets for design of adoptive T cell therapies.
Collapse
Affiliation(s)
- Aakash P Desai
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Farhad Kosari
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Maria Disselhorst
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jun Yin
- Quantitative Health Sciences, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Alireza Agahi
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Tobias Peikert
- Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Julia Udell
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Sarah H Johnson
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - James Smadbeck
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Stephen Murphy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Giannoula Karagouga
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Alexa McCune
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Janet Schaefer-Klein
- Center for Individualized Medicine, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Mitesh J Borad
- Hematology/Medical Oncology, Mayo Clinic, Phoenix, Arizona, USA
| | - John Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - George Vasmatzis
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Paul Baas
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Aaron Mansfield
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Kwon J, Lee D, Lee SA. BAP1 as a guardian of genome stability: implications in human cancer. Exp Mol Med 2023; 55:745-754. [PMID: 37009801 PMCID: PMC10167335 DOI: 10.1038/s12276-023-00979-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 04/04/2023] Open
Abstract
BAP1 is a ubiquitin C-terminal hydrolase domain-containing deubiquitinase with a wide array of biological activities. Studies in which advanced sequencing technologies were used have uncovered a link between BAP1 and human cancer. Somatic and germline mutations of the BAP1 gene have been identified in multiple human cancers, with a particularly high frequency in mesothelioma, uveal melanoma and clear cell renal cell carcinoma. BAP1 cancer syndrome highlights that all carriers of inherited BAP1-inactivating mutations develop at least one and often multiple cancers with high penetrance during their lifetime. These findings, together with substantial evidence indicating the involvement of BAP1 in many cancer-related biological activities, strongly suggest that BAP1 functions as a tumor suppressor. Nonetheless, the mechanisms that account for the tumor suppressor function of BAP1 have only begun to be elucidated. Recently, the roles of BAP1 in genome stability and apoptosis have drawn considerable attention, and they are compelling candidates for key mechanistic factors. In this review, we focus on genome stability and summarize the details of the cellular and molecular functions of BAP1 in DNA repair and replication, which are crucial for genome integrity, and discuss the implications for BAP1-associated cancer and relevant therapeutic strategies. We also highlight some unresolved issues and potential future research directions.
Collapse
Affiliation(s)
- Jongbum Kwon
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - Daye Lee
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Shin-Ai Lee
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Building 37, Room 1068, Bethesda, MD, 20892-4263, USA
| |
Collapse
|
19
|
Mangiante L, Alcala N, Sexton-Oates A, Di Genova A, Gonzalez-Perez A, Khandekar A, Bergstrom EN, Kim J, Liu X, Blazquez-Encinas R, Giacobi C, Le Stang N, Boyault S, Cuenin C, Tabone-Eglinger S, Damiola F, Voegele C, Ardin M, Michallet MC, Soudade L, Delhomme TM, Poret A, Brevet M, Copin MC, Giusiano-Courcambeck S, Damotte D, Girard C, Hofman V, Hofman P, Mouroux J, Cohen C, Lacomme S, Mazieres J, de Montpreville VT, Perrin C, Planchard G, Rousseau N, Rouquette I, Sagan C, Scherpereel A, Thivolet F, Vignaud JM, Jean D, Ilg AGS, Olaso R, Meyer V, Boland-Auge A, Deleuze JF, Altmuller J, Nuernberg P, Ibáñez-Costa A, Castaño JP, Lantuejoul S, Ghantous A, Maussion C, Courtiol P, Hernandez-Vargas H, Caux C, Girard N, Lopez-Bigas N, Alexandrov LB, Galateau-Salle F, Foll M, Fernandez-Cuesta L. Multiomic analysis of malignant pleural mesothelioma identifies molecular axes and specialized tumor profiles driving intertumor heterogeneity. Nat Genet 2023; 55:607-618. [PMID: 36928603 PMCID: PMC10101853 DOI: 10.1038/s41588-023-01321-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/26/2023] [Indexed: 03/17/2023]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with rising incidence and challenging clinical management. Through a large series of whole-genome sequencing data, integrated with transcriptomic and epigenomic data using multiomics factor analysis, we demonstrate that the current World Health Organization classification only accounts for up to 10% of interpatient molecular differences. Instead, the MESOMICS project paves the way for a morphomolecular classification of MPM based on four dimensions: ploidy, tumor cell morphology, adaptive immune response and CpG island methylator profile. We show that these four dimensions are complementary, capture major interpatient molecular differences and are delimited by extreme phenotypes that-in the case of the interdependent tumor cell morphology and adapted immune response-reflect tumor specialization. These findings unearth the interplay between MPM functional biology and its genomic history, and provide insights into the variations observed in the clinical behavior of patients with MPM.
Collapse
Affiliation(s)
- Lise Mangiante
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nicolas Alcala
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Alexandra Sexton-Oates
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Alex Di Genova
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
- Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile
- Centro de Modelamiento Matemático UMI-CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Abel Gonzalez-Perez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer, Instituto de Salud Carlos III, Madrid, Spain
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Jaehee Kim
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Xiran Liu
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Ricardo Blazquez-Encinas
- Maimonides Biomedical Research Institute of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Colin Giacobi
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Nolwenn Le Stang
- UMR INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, MESOPATH-MESOBANK, Department of Biopathology, Cancer Centre Léon Bérard, Lyon, France
| | - Sandrine Boyault
- Cancer Genomic Platform, Translational Research and Innovation Department, Centre Léon Bérard, Lyon, France
| | - Cyrille Cuenin
- EpiGenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Severine Tabone-Eglinger
- UMR INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, MESOPATH-MESOBANK, Department of Biopathology, Cancer Centre Léon Bérard, Lyon, France
| | - Francesca Damiola
- UMR INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, MESOPATH-MESOBANK, Department of Biopathology, Cancer Centre Léon Bérard, Lyon, France
| | - Catherine Voegele
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Maude Ardin
- Tumor Escape, Resistance and Immunity Department, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Marie-Cecile Michallet
- Tumor Escape, Resistance and Immunity Department, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Lorraine Soudade
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Tiffany M Delhomme
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Arnaud Poret
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | | | - Marie-Christine Copin
- University of Lille, Centre Hospitalier Universitaire Lille, Institut de Pathologie, Tumorothèque du Centre de Référence Régional en Cancérologie, Lille, France
| | | | - Diane Damotte
- Centre de Recherche des Cordeliers, Inflammation, Complement and Cancer Team, Sorbonne Université, INSERM, Université de Paris, Paris, France
- Department of Pathology, Hôpitaux Universitaire Paris Centre, Tumorothèque/CRB Cancer, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cecile Girard
- Tumorothèque Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Veronique Hofman
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Nice Center Hospital, FHU OncoAge, Biobank BB-0033-00025 and IRCAN Inserm U1081/CNRS 7284, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, Laboratory of Clinical and Experimental Pathology, Nice Center Hospital, FHU OncoAge, Biobank BB-0033-00025 and IRCAN Inserm U1081/CNRS 7284, Nice, France
| | - Jérôme Mouroux
- Université Côte d'Azur, Department of Thoracic Surgery, Nice Center Hospital, FHU OncoAge and IRCAN Inserm U1081/CNRS 7284, Nice, France
| | - Charlotte Cohen
- Department of Thoracic Surgery, FHU OncoAge, Nice Pasteur Hospital, Université Côte d'Azur, Nice, France
| | - Stephanie Lacomme
- Nancy Regional University Hospital, Centre Hospitalier Régional Universitaire, CRB BB-0033-00035, INSERM U1256, Nancy, France
| | - Julien Mazieres
- Toulouse University Hospital, Université Paul Sabatier, Toulouse, France
| | | | - Corinne Perrin
- Hospices Civils de Lyon, Institut de Pathologie, Centre de Ressources Biologiques des HCL, Tissu-Tumorothèque Est, Lyon, France
| | - Gaetane Planchard
- Centre Hospitalier Universitaire de Caen, MESOPATH Regional Center, Caen, France
| | - Nathalie Rousseau
- Centre Hospitalier Universitaire de Caen, MESOPATH Regional Center, Caen, France
| | - Isabelle Rouquette
- Centre de Pathologie des Côteaux, Centre de Ressources Biologiques (CRB Cancer), IUCT Oncopole, Toulouse, France
| | - Christine Sagan
- Tumorothèque Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Arnaud Scherpereel
- University of Lille, Centre Hospitalier Universitaire Lille, INSERM, OncoThAI, NETMESO Network, Lille, France
| | - Francoise Thivolet
- Hospices Civils de Lyon, Institut de Pathologie, Centre de Ressources Biologiques des HCL, Tissu-Tumorothèque Est, Lyon, France
| | - Jean-Michel Vignaud
- Department of Biopathology, Centre Hospitalier Régional Universitaire de Nancy, Vandoeuvre-les-Nancy, France
- BRC, BB-0033-00035, Centre Hospitalier Régional Universitaire de Nancy, Vandoeuvre-les-Nancy, France
| | - Didier Jean
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | | | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Vincent Meyer
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Anne Boland-Auge
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Jean-Francois Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | | | | | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Sylvie Lantuejoul
- UMR INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, MESOPATH-MESOBANK, Department of Biopathology, Cancer Centre Léon Bérard, Lyon, France
- Grenoble Alpes University, Saint-Martin-d'Hères, France
| | - Akram Ghantous
- EpiGenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | | | | | - Hector Hernandez-Vargas
- UMR INSERM 1052, CNRS 5286, UCBL1, Centre Léon Bérard, Lyon, France
- Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Christophe Caux
- Tumor Escape, Resistance and Immunity Department, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Lyon, France
| | - Nicolas Girard
- Institut Curie, Institut du Thorax Curie Montsouris, Paris, France
- Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, Versailles, France
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Cáncer, Instituto de Salud Carlos III, Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, Department of Bioengineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Françoise Galateau-Salle
- UMR INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, MESOPATH-MESOBANK, Department of Biopathology, Cancer Centre Léon Bérard, Lyon, France
| | - Matthieu Foll
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France.
| | - Lynnette Fernandez-Cuesta
- Rare Cancers Genomics Team, Genomic Epidemiology Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France.
| |
Collapse
|
20
|
Aksoy Y, Chou A, Mahjoub M, Sheen A, Sioson L, Ahadi MS, Gill AJ, Fuchs TL. A novel prognostic nomogram for predicting survival in diffuse pleural mesothelioma. Pathology 2023; 55:449-455. [PMID: 36842876 DOI: 10.1016/j.pathol.2022.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/29/2022] [Accepted: 11/20/2022] [Indexed: 02/09/2023]
Abstract
Recent advances in the management of diffuse pleural mesothelioma (DPM) have increased interest in prognostication and risk stratification on the basis that maximum benefit of combination immunotherapy appears to be seen in patients who otherwise would have the worst prognosis. Various grading schemes have been proposed, including the recently published Mesothelioma Weighted Grading Scheme (MWGS). However, predictive modelling using deep learning algorithms is increasingly regarded as the gold standard in prognostication. We therefore sought to develop and validate a prognostic nomogram for DPM. Data from 369 consecutive patients with DPM were used as independent training and validation cohorts to develop a prognostic tool that included the following variables: age, sex, histological type, nuclear atypia, mitotic count, necrosis, and BAP1 immunohistochemistry. Patients were stratified into four risk groups to assess model discrimination and calibration. To assess discrimination, the area-under-the-curve (AUC) of a receiver-operator-curve (ROC), concordance-index (C-index), and dissimilarity index (D-index) were calculated. Based on the 5-year ROC analysis, the AUC for our model was 0.75. Our model had a C-index of 0.67 (95% CI 0.53-0.79) and a D-index of 2.40 (95% CI 1.69-3.43). Our prognostic nomogram for DPM is the first of its kind, incorporates well established prognostic markers, and demonstrates excellent predictive capability. As these factors are routinely assessed in most pathology laboratories, it is hoped that this model will help inform prognostication and difficult management decisions, such as patient selection for novel therapies. This nomogram is now freely available online at: https://nomograms.shinyapps.io/Meso_Cox_ML/.
Collapse
Affiliation(s)
- Yagiz Aksoy
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Angela Chou
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mahiar Mahjoub
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Amy Sheen
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Loretta Sioson
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Mahsa S Ahadi
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Talia L Fuchs
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia.
| |
Collapse
|
21
|
Perrino M, De Vincenzo F, Cordua N, Borea F, Aliprandi M, Santoro A, Zucali PA. Immunotherapy with immune checkpoint inhibitors and predictive biomarkers in malignant mesothelioma: Work still in progress. Front Immunol 2023; 14:1121557. [PMID: 36776840 PMCID: PMC9911663 DOI: 10.3389/fimmu.2023.1121557] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Malignant mesothelioma (MM) is a rare and aggressive neoplasm, usually associated with a poor prognosis (5 years survival rate <10%). For unresectable disease, platinum and pemetrexed chemotherapy has been the only standard of care in first line for more than two decades, while no standard treatments have been approved in subsequent lines. Recently, immunotherapy has revolutionized the therapeutic landscape of MM. In fact, the combination of ipilimumab plus nivolumab has been approved in first line setting. Moreover, immune checkpoint inhibitors (ICIs) showed promising results also in second-third line setting after platinum-based chemotherapy. Unfortunately, approximately 20% of patients are primary refractory to ICIs and there is an urgent need for reliable biomarkers to improve patient's selection. Several biological and molecular features have been studied for this goal. In particular, histological subtype (recognized as prognostic factor for MM and predictive factor for chemotherapy response), programmed death ligand 1 (PD-L1) expression, and tumor mutational burden (widely hypothesized as predictive biomarkers for ICIs in several solid tumors) have been evaluated, but with unconclusive results. On the other hand, the deep analysis of tumor infiltrating microenvironment and the improvement in genomic profiling techniques has led to a better knowledge of several mechanisms underlying the MM biology and a greater or poorer immune activation. Consequentially, several potential biomarkers predictive of response to immunotherapy in patients with MM have been identified, also if all these elements need to be further investigated and prospectively validated. In this paper, the main evidences about clinical efficacy of ICIs in MM and the literature data about the most promising predictive biomarkers to immunotherapy are reviewed.
Collapse
Affiliation(s)
- Matteo Perrino
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Fabio De Vincenzo
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Nadia Cordua
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Federica Borea
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Marta Aliprandi
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Armando Santoro
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Paolo Andrea Zucali
- Department of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Milan, Italy,*Correspondence: Paolo Andrea Zucali,
| |
Collapse
|
22
|
Zhang Q, Yang L, Xiao H, Dang Z, Kuang X, Xiong Y, Zhu J, Huang Z, Li M. Pan-cancer analysis of chromothripsis-related gene expression patterns indicates an association with tumor immune and therapeutic agent responses. Front Oncol 2023; 13:1074955. [PMID: 36761982 PMCID: PMC9902954 DOI: 10.3389/fonc.2023.1074955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Chromothripsis is a catastrophic event involving numerous chromosomal rearrangements in confined genomic regions of one or a few chromosomes, causing complex effects on cells via the extensive structural variation. The development of whole-genome sequencing (WGS) has promoted great progress in exploring the mechanism and effect of chromothripsis. However, the gene expression characteristics of tumors undergone chromothripsis have not been well characterized. In this study, we found that the transcriptional profile of five tumor types experiencing chromothripsis is associated with an immune evasion phenotype. A gene set variation analysis (GSVA) was used to develop a CHP score, which is based on differentially expressed gene sets in the TCGA database, revealing that chromothripsis status in multiple cancers is consistent with an abnormal tumor immune microenvironment and immune cell cytotoxicity. Evaluation using four immunotherapy datasets uncovered the ability of the CHP score to predict immunotherapy response in diverse tumor types. In addition, the CHP score was found to be related to resistance against a variety of anti-tumor drugs, including anti-angiogenesis inhibitors and platinum genotoxins, while EGFR pathway inhibitors were found to possibly be sensitizers for high CHP score tumors. Univariate COX regression analysis indicated that the CHP score can be prognostic for several types of tumors. Our study has defined gene expression characteristics of tumors with chromothripsis, supporting the controversial link between chromothripsis and tumor immunity. We also describe the potential value of the CHP score in predicting the efficacy of immunotherapy and other treatments, elevating chromothripsis as a tool in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhou Huang
- *Correspondence: Zhou Huang, ; Mengxia Li,
| | - Mengxia Li
- *Correspondence: Zhou Huang, ; Mengxia Li,
| |
Collapse
|
23
|
Immune Checkpoint Inhibitors in Malignant Pleural Mesothelioma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14246063. [PMID: 36551550 PMCID: PMC9775536 DOI: 10.3390/cancers14246063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/27/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Many clinical trials have investigated the role of ICIs in PM, with contrasting results. We performed a systematic review and meta-analysis of clinical trials testing single-agent anti-Programmed Death -1 (PD-1)/Programmed Death-Ligand 1 (PD-L1), anti-Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) or combined treatment in PM patients, analyzing response and survival rate as well as safety data. We selected 17 studies including 2328 patients. Both OS and PFS rates were significantly higher with combined ICI treatments than with single agent anti-PD-1/PD-L1 (p < 0.001 and p = 0.006, respectively) or anti CTLA-4 (p < 0.001) treatments. ORR and DCR for all ICI treatments were 20% (95% CI 13−27%) and 56% (95% CI 45−67%), respectively, and they did not significantly differ between combined and single agent treatments (p = 0.088 and p = 0.058, respectively). The 12-month OS and 6-month PFS rates did not differ significantly (p = 0.0545 and p = 0.1464, respectively) among pre-treated or untreated patients. Combined ICI treatments had a significantly higher rate of Adverse Events (AEs) (p = 0.01). PD-L1-positive patients had a higher probability of response and survival. In conclusion, combined ICI treatments have higher efficacy than single agents but are limited by higher toxicity. Efficacy was independent of treatment line, so a customized sequential strategy should still be speculated. PD-L1 expression could influence response to ICIs; however, reliable biomarkers are warranted.
Collapse
|
24
|
Paajanen J, Bueno R, De Rienzo A. The Rocky Road from Preclinical Findings to Successful Targeted Therapy in Pleural Mesothelioma. Int J Mol Sci 2022; 23:13422. [PMID: 36362209 PMCID: PMC9658134 DOI: 10.3390/ijms232113422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2023] Open
Abstract
Pleural mesothelioma (PM) is a rare and aggressive disease that arises from the mesothelial cells lining the pleural cavity. Approximately 80% of PM patients have a history of asbestos exposure. The long latency period of 20-40 years from the time of asbestos exposure to diagnosis, suggests that multiple somatic genetic alterations are required for the tumorigenesis of PM. The genomic landscape of PM has been characterized by inter- and intratumor heterogeneity associated with the impairment of tumor suppressor genes such as CDKN2A, NF2, and BAP1. Current systemic therapies have shown only limited efficacy, and none is approved for patients with relapsed PM. Advances in understanding of the molecular landscape of PM has facilitated several biomarker-driven clinical trials but so far, no predictive biomarkers for targeted therapies are in clinical use. Recent advances in the PM genetics have provided optimism for successful molecular strategies in the future. Here, we summarize the molecular mechanism underlying PM pathogenesis and review potential therapeutic targets.
Collapse
Affiliation(s)
| | - Raphael Bueno
- The Thoracic Surgery Oncology Laboratory and The International Mesothelioma Program, Division of Thoracic Surgery and the Lung Center, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | | |
Collapse
|
25
|
Perera ND, Mansfield AS. The Evolving Therapeutic Landscape for Malignant Pleural Mesothelioma. Curr Oncol Rep 2022; 24:1413-1423. [PMID: 35657483 PMCID: PMC9613518 DOI: 10.1007/s11912-022-01302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW For patients with malignant pleural mesothelioma, prognosis is poor with extremely low 5-year survival rates and limited therapeutic options. Here, we review the current treatment landscape for mesothelioma and highlight promising future therapeutic directions. RECENT FINDINGS Evolving frontline therapeutic options for mesothelioma include VEGF inhibition in combination with chemotherapy and dual immune checkpoint inhibition, with synergisms between the therapies and response prediction via biomarkers also being explored. Evolving experimental treatments for mesothelioma include PARP and ALK inhibitors, dendritic and CAR T-cell therapies, anti-mesothelin vaccines, and oncolytic viral therapies, representing timely advances in the field. The therapeutic landscape for malignant pleural mesothelioma is evolving and preferred treatment in the frontline and later settings will likely evolve with it. However, this does not preclude the evidence for including multi-modal therapies spanning angiogenesis and immune checkpoint inhibitors, and biomarker utilization, in current clinical trials and management.
Collapse
Affiliation(s)
- Nirosha D Perera
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aaron S Mansfield
- Division of Medical Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN, 55905, USA.
| |
Collapse
|
26
|
Fennell DA, Dulloo S, Harber J. Immunotherapy approaches for malignant pleural mesothelioma. Nat Rev Clin Oncol 2022; 19:573-584. [PMID: 35778611 DOI: 10.1038/s41571-022-00649-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 12/27/2022]
Abstract
Over the past decade, immune-checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer. In mesothelioma, a rare cancer with a dismal prognosis generally caused by exposure to asbestos, treatment with single or dual ICIs results in robust improvements in overall survival over previous standard-of-care therapies, both in the first-line and relapsed disease settings. Predictive biological features that underpin response to ICIs remain poorly understood; however, insights into the immune microenvironment and genomic landscape of mesothelioma as well as into their association with response or acquired resistance to ICIs are emerging. Several studies of rational combinations involving ICIs with either another ICI or a different agent are ongoing, with emerging evidence of synergistic antitumour activity. Non-ICI-based immunotherapies, such as peptide-based vaccines and mesothelin-targeted chimeric antigen receptor T cells, have demonstrated promising efficacy. Moreover, results from pivotal trials of dendritic cell vaccines and viral cytokine delivery, among others, are eagerly awaited. In this Review, we comprehensively summarize the key steps in the development of immunotherapies for mesothelioma, focusing on strategies that have led to randomized clinical evaluation and emerging predictors of response. We then forecast the future treatment opportunities that could arise from ongoing research.
Collapse
Affiliation(s)
- Dean A Fennell
- Mesothelioma Research Programme, Centre for Cancer Research, University of Leicester & University of Leicester Hospitals NHS Trust, Leicester, UK.
| | - Sean Dulloo
- Mesothelioma Research Programme, Centre for Cancer Research, University of Leicester & University of Leicester Hospitals NHS Trust, Leicester, UK
| | - James Harber
- Mesothelioma Research Programme, Centre for Cancer Research, University of Leicester & University of Leicester Hospitals NHS Trust, Leicester, UK
- Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
27
|
Shen Y, Yu L, Xu X, Yu S, Yu Z. Neoantigen vaccine and neoantigen-specific cell adoptive transfer therapy in solid tumors: Challenges and future directions. CANCER INNOVATION 2022; 1:168-182. [PMID: 38090649 PMCID: PMC10686129 DOI: 10.1002/cai2.26] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 06/11/2024]
Abstract
The phenomenon of tumor hierarchy and genetic instability can be explained by the "two-hits theory" and results in the occurrence of many somatic mutations. The expression of nonsynonymous mutations results in the production of mutant proteins from tumor cells, namely tumor-specific antigens called neoantigens. Because neoantigens do not exist in healthy cells, they have the potential to stimulate antitumor immune responses by CD4+ and CD8+ T-cell activation without jeopardizing normal tissues. Immunotherapy has reshaped the cancer treatment paradigm in recent decades with the introduction of immune-checkpoint blockade therapy and transgenic T-cell receptor/chimeric antigen receptor T cells. However, these strategies performed poorly in solid tumors because of the obstacles of the immunosuppressive microenvironment caused by regulatory T cells and other suppressor cells. Therefore, other immunotherapeutic strategies are under development, such as personalized vaccines, to trigger de novo T-cell responses against neoantigens and lead to the amplification of tumor-specific T-cell subclones. Neoantigen epitope prediction algorithms have enabled the detection of neoantigens and the creation of tailored neoantigen vaccines as a result of the fast development of next-generation sequencing and cancer bioinformatics. Here we provide an overview of the current neoantigen cancer vaccines and adoptive T-cell transfer therapy with neoantigen-specific lymphocytes. We also discuss the challenges in developing neoantigen-targeted immunotherapeutic strategies for cancer.
Collapse
Affiliation(s)
- Yanwei Shen
- Shanghai Jianshan Medical Tech Co LtdShanghaiChina
| | - Lu Yu
- Shanghai Jianshan Medical Tech Co LtdShanghaiChina
| | - Xiaoli Xu
- Shanghai Jianshan Medical Tech Co LtdShanghaiChina
| | - Shaojun Yu
- Department of Surgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhuo Yu
- Department of Medical Oncology, Beijing Tsinghua Changgung Hospital, School of Clinical MedicineTsinghua UniversityBeijingChina
| |
Collapse
|
28
|
Hamdan A, Ewing A. Unravelling the tumour genome: The evolutionary and clinical impacts of structural variants in tumourigenesis. J Pathol 2022; 257:479-493. [PMID: 35355264 PMCID: PMC9321913 DOI: 10.1002/path.5901] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 11/15/2022]
Abstract
Structural variants (SVs) represent a major source of aberration in tumour genomes. Given the diversity in the size and type of SVs present in tumours, the accurate detection and interpretation of SVs in tumours is challenging. New classes of complex structural events in tumours are discovered frequently, and the definitions of the genomic consequences of complex events are constantly being refined. Detailed analyses of short-read whole-genome sequencing (WGS) data from large tumour cohorts facilitate the interrogation of SVs at orders of magnitude greater scale and depth. However, the inherent technical limitations of short-read WGS prevent us from accurately detecting and investigating the impact of all the SVs present in tumours. The expanded use of long-read WGS will be critical for improving the accuracy of SV detection, and in fully resolving complex SV events, both of which are crucial for determining the impact of SVs on tumour progression and clinical outcome. Despite the present limitations, we demonstrate that SVs play an important role in tumourigenesis. In particular, SVs contribute significantly to late-stage tumour development and to intratumoural heterogeneity. The evolutionary trajectories of SVs represent a window into the clonal dynamics in tumours, a comprehensive understanding of which will be vital for influencing patient outcomes in the future. Recent findings have highlighted many clinical applications of SVs in cancer, from early detection to biomarkers for treatment response and prognosis. As the methods to detect and interpret SVs improve, elucidating the full breadth of the complex SV landscape and determining how these events modulate tumour evolution will improve our understanding of cancer biology and our ability to capitalise on the utility of SVs in the clinical management of cancer patients. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Alhafidz Hamdan
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Ailith Ewing
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
- Cancer Research UK Edinburgh Centre, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
29
|
Espejo Valle-Inclan J, Besselink NJ, de Bruijn E, Cameron DL, Ebler J, Kutzera J, van Lieshout S, Marschall T, Nelen M, Priestley P, Renkens I, Roemer MG, van Roosmalen MJ, Wenger AM, Ylstra B, Fijneman RJ, Kloosterman WP, Cuppen E. A multi-platform reference for somatic structural variation detection. CELL GENOMICS 2022; 2:100139. [PMID: 36778136 PMCID: PMC9903816 DOI: 10.1016/j.xgen.2022.100139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 05/06/2021] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Accurate detection of somatic structural variation (SV) in cancer genomes remains a challenging problem. This is in part due to the lack of high-quality, gold-standard datasets that enable the benchmarking of experimental approaches and bioinformatic analysis pipelines. Here, we performed somatic SV analysis of the paired melanoma and normal lymphoblastoid COLO829 cell lines using four different sequencing technologies. Based on the evidence from multiple technologies combined with extensive experimental validation, we compiled a comprehensive set of carefully curated and validated somatic SVs, comprising all SV types. We demonstrate the utility of this resource by determining the SV detection performance as a function of tumor purity and sequence depth, highlighting the importance of assessing these parameters in cancer genomics projects. The truth somatic SV dataset as well as the underlying raw multi-platform sequencing data are freely available and are an important resource for community somatic benchmarking efforts.
Collapse
Affiliation(s)
| | - Nicolle J.M. Besselink
- Center for Molecular Medicine and Oncode Institute, UMC Utrecht, Utrecht, the Netherlands
| | | | - Daniel L. Cameron
- Hartwig Medical Foundation, Amsterdam, the Netherlands,Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Jana Ebler
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Joachim Kutzera
- Center for Molecular Medicine and Oncode Institute, UMC Utrecht, Utrecht, the Netherlands
| | | | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marcel Nelen
- Department of Human Genetics, Radboud UMC, Nijmegen, the Netherlands
| | | | - Ivo Renkens
- Center for Molecular Medicine and Oncode Institute, UMC Utrecht, Utrecht, the Netherlands
| | - Margaretha G.M. Roemer
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | | | | | - Bauke Ylstra
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Remond J.A. Fijneman
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Wigard P. Kloosterman
- Center for Molecular Medicine and Oncode Institute, UMC Utrecht, Utrecht, the Netherlands,Corresponding author
| | - Edwin Cuppen
- Center for Molecular Medicine and Oncode Institute, UMC Utrecht, Utrecht, the Netherlands,Hartwig Medical Foundation, Amsterdam, the Netherlands,Corresponding author
| |
Collapse
|
30
|
Creaney J, Patch AM, Addala V, Sneddon SA, Nones K, Dick IM, Lee YCG, Newell F, Rouse EJ, Naeini MM, Kondrashova O, Lakis V, Nakas A, Waller D, Sharkey A, Mukhopadhyay P, Kazakoff SH, Koufariotis LT, Davidson AL, Ramarao-Milne P, Holmes O, Xu Q, Leonard C, Wood S, Grimmond SM, Bueno R, Fennell DA, Pearson JV, Robinson BW, Waddell N. Comprehensive genomic and tumour immune profiling reveals potential therapeutic targets in malignant pleural mesothelioma. Genome Med 2022; 14:58. [PMID: 35637530 PMCID: PMC9150319 DOI: 10.1186/s13073-022-01060-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/15/2022] [Indexed: 12/14/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) has a poor overall survival with few treatment options. Whole genome sequencing (WGS) combined with the immune features of MPM offers the prospect of identifying changes that could inform future clinical trials. Methods We analysed somatic mutations from 229 MPM samples, including previously published data and 58 samples that had undergone WGS within this study. This was combined with RNA-seq analysis to characterize the tumour immune environment. Results The comprehensive genome analysis identified 12 driver genes, including new candidate genes. Whole genome doubling was a frequent event that correlated with shorter survival. Mutational signature analysis revealed SBS5/40 were dominant in 93% of samples, and defects in homologous recombination repair were infrequent in our cohort. The tumour immune environment contained high M2 macrophage infiltrate linked with MMP2, MMP14, TGFB1 and CCL2 expression, representing an immune suppressive environment. The expression of TGFB1 was associated with overall survival. A small subset of samples (less than 10%) had a higher proportion of CD8 T cells and a high cytolytic score, suggesting a ‘hot’ immune environment independent of the somatic mutations. Conclusions We propose accounting for genomic and immune microenvironment status may influence therapeutic planning in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01060-8.
Collapse
|
31
|
Carbone M, Pass HI, Ak G, Alexander HR, Baas P, Baumann F, Blakely AM, Bueno R, Bzura. A, Cardillo G, Churpek JE, Dianzani I, De Rienzo A, Emi M, Emri S, Felley-Bosco E, Fennell DA, Flores RM, Grosso F, Hayward NK, Hesdorffer M, Hoang CD, Johansson PA, Kindler HL, Kittaneh M, Krausz T, Mansfield A, Metintas M, Minaai M, Mutti L, Nielsen M, O’Byrne K, Opitz I, Pastorino S, Pentimalli F, de Perrot M, Pritchard A, Ripley RT, Robinson B, Rusch V, Taioli E, Takinishi Y, Tanji M, Tsao AS, Tuncer AM, Walpole S, Wolf A, Yang H, Yoshikawa Y, Zolodnick A, Schrump DS, Hassan R. Medical and surgical care of mesothelioma patients and their relatives carrying germline BAP1 mutations. J Thorac Oncol 2022; 17:873-889. [DOI: 10.1016/j.jtho.2022.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022]
|
32
|
Cantini L, Laniado I, Murthy V, Sterman D, Aerts JGJV. Immunotherapy for mesothelioma: Moving beyond single immune check point inhibition. Lung Cancer 2022; 165:91-101. [PMID: 35114509 DOI: 10.1016/j.lungcan.2022.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 12/29/2022]
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive neoplasm with low survival rates. Platinum-based chemotherapy has represented the cornerstone of treatment for over a decade, prompting the investigation of new therapeutic strategies both in the early stage of the disease and in the advanced setting. The advent of immune check-point inhibitors (ICIs) has recently revamped the enthusiasm for using immunotherapy also in MPM. However, results from first clinical trials using single immune check-point inhibition have been conflicting, and this may be mainly attributed to the lack of specific biomarkers as well as to intra- and inter- patient heterogeneity. The phase III Checkmate743 firstly demonstrated the superiority of an ICI combination (nivolumab plus ipilimumab) over chemotherapy in the first-line treatment of unresectable MPM, leading to FDA approval of this regimen and showing that moving beyond single immune check point inhibition might be a successful strategy to overcome resistance in the majority of MPM patients. In this review, we describe the emerging immunotherapy strategies for the treatment of MPM. We also discuss how refining the approach in pre-clinical studies towards a more holistic perspective (which takes into account not only genetic but also pathophysiological vulnerabilities) and strengthening multi-institutional collaboration in clinical trials is finally helping the clinical development of immunotherapy in MPM.
Collapse
Affiliation(s)
- Luca Cantini
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands; Clinical Oncology, Università Politecnica Delle Marche, AOU Ospedali Riuniti Ancona, Italy
| | - Isaac Laniado
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University (NYU), School of Medicine/NYU Langone Medical Center, New York, NY, United States
| | - Vivek Murthy
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University (NYU), School of Medicine/NYU Langone Medical Center, New York, NY, United States
| | - Daniel Sterman
- Division of Pulmonary, Critical Care, and Sleep Medicine, New York University (NYU), School of Medicine/NYU Langone Medical Center, New York, NY, United States
| | - Joachim G J V Aerts
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
33
|
Kosari F, Disselhorst M, Yin J, Peikert T, Udell J, Johnson S, Smadbeck J, Murphy S, McCune A, Karagouga G, Desai A, Schaefer-Klein J, Borad MJ, Cheville J, Vasmatzis G, Baas P, Mansfield AS. Tumor Junction Burden and Antigen Presentation as Predictors of Survival in Mesothelioma Treated With Immune Checkpoint Inhibitors. J Thorac Oncol 2022; 17:446-454. [PMID: 34800701 PMCID: PMC8882146 DOI: 10.1016/j.jtho.2021.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The favorable outcomes with immunotherapy for mesothelioma were somewhat unexpected because this tumor has a low tumor mutation burden which has been associated with benefit in other cancers. Because chromosomal rearrangements are common in mesothelioma and have neoantigenic potential, we sought to determine whether they are associated with survival in patients treated with immunotherapy. METHODS Pleural biopsies of mesothelioma after at least one line of therapy were obtained from patients (n = 44) before treatment with nivolumab alone (NCT29908324) or in combination with ipilimumab (NCT30660511). RNA and whole-genome sequencing were performed to identify the junctions resulting from chromosomal rearrangements and antigen processing and presentation gene set expression. Associations with overall survival (OS) were estimated using Cox models. An OS cutoff of 1.5 years was used to distinguish patients with and without durable benefit for use in receiving operating characteristic curves. RESULTS Although tumor junction burdens were not predictive of OS, we identified significant interactions between the junction burdens and multiple antigen processing and presentation gene sets. The "regulation of antigen processing and presentation of peptide antigen" gene set revealed an interaction with tumor junction burden and was predictive of OS. This interaction also predicted 1.5-year or greater survival with an area under the receiving operating characteristic curve of 0.83. This interaction was not predictive of survival in a separate cohort of patients with mesothelioma who did not receive immune checkpoint inhibitors. CONCLUSIONS Analysis of structural variants and antigen presentation gene set expression may facilitate patient selection for immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Farhad Kosari
- Precision Cancer Therapeutics Program, Center for Individualized Medicine, Mayo Clinic Rochester, MN and Phoenix, AZ
| | - Maria Disselhorst
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jun Yin
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Tobias Peikert
- Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN
| | - Julia Udell
- Precision Cancer Therapeutics Program, Center for Individualized Medicine, Mayo Clinic Rochester, MN and Phoenix, AZ
| | - Sarah Johnson
- Precision Cancer Therapeutics Program, Center for Individualized Medicine, Mayo Clinic Rochester, MN and Phoenix, AZ
| | - James Smadbeck
- Precision Cancer Therapeutics Program, Center for Individualized Medicine, Mayo Clinic Rochester, MN and Phoenix, AZ
| | - Stephen Murphy
- Precision Cancer Therapeutics Program, Center for Individualized Medicine, Mayo Clinic Rochester, MN and Phoenix, AZ
| | - Alexa McCune
- Precision Cancer Therapeutics Program, Center for Individualized Medicine, Mayo Clinic Rochester, MN and Phoenix, AZ
| | - Giannoula Karagouga
- Precision Cancer Therapeutics Program, Center for Individualized Medicine, Mayo Clinic Rochester, MN and Phoenix, AZ
| | - Aakash Desai
- Division of Medical Oncology, Mayo Clinic, Rochester, MN
| | - Janet Schaefer-Klein
- Precision Cancer Therapeutics Program, Center for Individualized Medicine, Mayo Clinic Rochester, MN and Phoenix, AZ
| | - Mitesh J. Borad
- Precision Cancer Therapeutics Program, Center for Individualized Medicine, Mayo Clinic Rochester, MN and Phoenix, AZ,Department of Medical Oncology, Mayo Clinic, Phoenix, Arizona
| | - John Cheville
- Precision Cancer Therapeutics Program, Center for Individualized Medicine, Mayo Clinic Rochester, MN and Phoenix, AZ,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - George Vasmatzis
- Precision Cancer Therapeutics Program, Center for Individualized Medicine, Mayo Clinic Rochester, MN and Phoenix, AZ
| | - Paul Baas
- Department of Thoracic Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Aaron S. Mansfield
- Precision Cancer Therapeutics Program, Center for Individualized Medicine, Mayo Clinic Rochester, MN and Phoenix, AZ,Division of Medical Oncology, Mayo Clinic, Rochester, MN
| |
Collapse
|
34
|
Tsao AS, Pass HI, Rimner A, Mansfield AS. New Era for Malignant Pleural Mesothelioma: Updates on Therapeutic Options. J Clin Oncol 2022; 40:681-692. [PMID: 34985934 PMCID: PMC8853621 DOI: 10.1200/jco.21.01567] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/06/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare malignancy with few treatment options. Recent advances have led to US Food and Drug Administration approvals and changes in the standard of care with a novel biomedical device approved for use with platinum-pemetrexed, and also for immunotherapy agents to be included as a frontline treatment option in unresectable disease. Although predictive biomarkers for systemic therapy are not currently in use in clinical practice, it is essential to correctly identify the MPM histology to determine an optimal treatment plan. Patients with nonepithelioid MPM may have a greater magnitude of benefit to dual immunotherapy checkpoint inhibitors and this regimen should be preferred in the frontline setting for these patients. However, all patients with MPM can derive benefit from immunotherapy treatments, and these agents should ultimately be used at some point during their treatment journey. There are ongoing studies in the frontline unresectable setting that may further define the frontline therapy space, but a critical area of research will need to focus on the immunotherapy refractory population. This review article will describe the new developments in the areas of biology with genomics and chromothripsis, and also focus on updates in treatment strategies in radiology, surgery, radiation, and medical oncology with cellular therapies. These recent innovations are generating momentum to find better therapies for this disease.
Collapse
Affiliation(s)
- Anne S. Tsao
- The University of Texas MD Anderson Cancer Center, Department of Thoracic & Head and Neck Medical Oncology, Houston, TX
| | - Harvey I. Pass
- NYU Langone Medical Center, Department of Cardiothoracic Surgery, New York, NY
| | - Andreas Rimner
- Memorial Sloan Kettering Cancer Center, Department of Radiation Oncology, New York, NY
| | | |
Collapse
|
35
|
Peters S, Scherpereel A, Cornelissen R, Oulkhouir Y, Greillier L, Kaplan M, Talbot T, Monnet I, Hiret S, Baas P, Nowak A, Fujimoto N, Tsao A, Mansfield A, Popat S, Zhang X, Hu N, Balli D, Spires T, Zalcman G. First-line nivolumab plus ipilimumab versus chemotherapy in patients with unresectable malignant pleural mesothelioma: 3-year outcomes from CheckMate 743. Ann Oncol 2022; 33:488-499. [DOI: 10.1016/j.annonc.2022.01.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
|
36
|
Tagliamento M, Bironzo P, Curcio H, De Luca E, Pignataro D, Rapetti SG, Audisio M, Bertaglia V, Paratore C, Bungaro M, Olmetto E, Artusio E, Reale ML, Zichi C, Capelletto E, Carnio S, Buffoni L, Passiglia F, Novello S, Scagliotti GV, Di Maio M. A systematic review and meta-analysis of trials assessing PD-1/PD-L1 immune checkpoint inhibitors activity in pre-treated advanced stage malignant mesothelioma. Crit Rev Oncol Hematol 2022; 172:103639. [DOI: 10.1016/j.critrevonc.2022.103639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 12/29/2022] Open
|
37
|
Popat S, Sharma B, MacMahon S, Nicholson AG, Sharma RK, Schuster K, Lang Lazdunski L, Fennell D. Durable Response to Vismodegib in PTCH1 F1147fs Mutant Relapsed Malignant Pleural Mesothelioma: Implications for Mesothelioma Drug Treatment. JCO Precis Oncol 2022; 5:39-43. [PMID: 34994590 DOI: 10.1200/po.20.00260] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Sanjay Popat
- Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom.,Section of Clinical Studies, Institute of Cancer Research, London, United Kingdom.,National Centre for Mesothelioma Research, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Bhupinder Sharma
- Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Suzanne MacMahon
- Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom.,Section of Clinical Studies, Institute of Cancer Research, London, United Kingdom
| | - Andrew G Nicholson
- National Centre for Mesothelioma Research, National Heart & Lung Institute, Imperial College London, London, United Kingdom.,Department of Histopathology, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | - Rajaei K Sharma
- College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | | | | | - Dean Fennell
- Leicester Mesothelioma Research Programme, Leicester Cancer Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, Leicestershire, United Kingdom
| |
Collapse
|
38
|
Zavacka K, Plevova K. Chromothripsis in Chronic Lymphocytic Leukemia: A Driving Force of Genome Instability. Front Oncol 2021; 11:771664. [PMID: 34900721 PMCID: PMC8661134 DOI: 10.3389/fonc.2021.771664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022] Open
Abstract
Chromothripsis represents a mechanism of massive chromosome shattering and reassembly leading to the formation of derivative chromosomes with abnormal functions and expression. It has been observed in many cancer types, importantly, including chronic lymphocytic leukemia (CLL). Due to the associated chromosomal rearrangements, it has a significant impact on the pathophysiology of the disease. Recent studies have suggested that chromothripsis may be more common than initially inferred, especially in CLL cases with adverse clinical outcome. Here, we review the main features of chromothripsis, the challenges of its assessment, and the potential benefit of its detection. We summarize recent findings of chromothripsis occurrence across hematological malignancies and address its causes and consequences in the context of CLL clinical features, as well as chromothripsis-related molecular abnormalities described in published CLL studies. Furthermore, we discuss the use of the current knowledge about genome functions associated with chromothripsis in the optimization of treatment strategies in CLL.
Collapse
Affiliation(s)
- Kristyna Zavacka
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno & Faculty of Medicine, Masaryk University, Brno, Czechia.,Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Karla Plevova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno & Faculty of Medicine, Masaryk University, Brno, Czechia.,Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czechia.,Institute of Medical Genetics and Genomics, University Hospital Brno & Masaryk University, Brno, Czechia
| |
Collapse
|
39
|
Nowak AK, Chin WL, Keam S, Cook A. Immune checkpoint inhibitor therapy for malignant pleural mesothelioma. Lung Cancer 2021; 162:162-168. [PMID: 34823106 DOI: 10.1016/j.lungcan.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Mesothelioma is a rare and universally fatal cancer linked to exposure to asbestos. Until recently, standard of care treatment was chemotherapy; a treatment resulting in a minimal survival extension, and not improved upon for almost twenty years. However, the advent of cancer immunotherapy - and in particular the immune checkpoint inhibitor class of drugs - has resulted in recently approved new treatment options, with more currently under investigation. Here, we review clinical trials of both single agent and combination checkpoint inhibitors in mesothelioma, plus studies investigating their combination with chemotherapy. We also describe current advances in biomarker identification regarding prediction of patient response to checkpoint inhibitors. Finally, we assess the probable future direction of the field; including where current and developing technologies are likely to lead - in terms of both biomarker discovery and treatment options.
Collapse
Affiliation(s)
- Anna K Nowak
- National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, WA 6009, Australia; Medical School, University of Western Australia, Crawley, WA 6009, Australia; Institute for Respiratory Health, Perth, WA 6009, Australia; Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands WA 6009 Australia
| | - Wee Loong Chin
- National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, WA 6009, Australia; Medical School, University of Western Australia, Crawley, WA 6009, Australia; Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands WA 6009 Australia; Telethon Kids Institute, Nedlands, WA 6009 Australia
| | - Synat Keam
- National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, WA 6009, Australia; Medical School, University of Western Australia, Crawley, WA 6009, Australia; Institute for Respiratory Health, Perth, WA 6009, Australia
| | - Alistair Cook
- National Centre for Asbestos Related Diseases, University of Western Australia, Crawley, WA 6009, Australia; Institute for Respiratory Health, Perth, WA 6009, Australia; School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
40
|
Durvalumab with platinum-pemetrexed for unresectable pleural mesothelioma: survival, genomic and immunologic analyses from the phase 2 PrE0505 trial. Nat Med 2021; 27:1910-1920. [PMID: 34750557 PMCID: PMC8604731 DOI: 10.1038/s41591-021-01541-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/15/2021] [Indexed: 12/25/2022]
Abstract
Mesothelioma is a rare and fatal cancer with limited therapeutic options until the recent approval of combination immune checkpoint blockade. Here we report the results of the phase 2 PrE0505 trial (NCT02899195) of the anti-PD-L1 antibody durvalumab plus platinum-pemetrexed chemotherapy for 55 patients with previously untreated, unresectable pleural mesothelioma. The primary endpoint was overall survival compared to historical control with cisplatin and pemetrexed chemotherapy; secondary and exploratory endpoints included safety, progression-free survival and biomarkers of response. The combination of durvalumab with chemotherapy met the pre-specified primary endpoint, reaching a median survival of 20.4 months versus 12.1 months with historical control. Treatment-emergent adverse events were consistent with known side effects of chemotherapy, and all adverse events due to immunotherapy were grade 2 or lower. Integrated genomic and immune cell repertoire analyses revealed that a higher immunogenic mutation burden coupled with a more diverse T cell repertoire was linked to favorable clinical outcome. Structural genome-wide analyses showed a higher degree of genomic instability in responding tumors of epithelioid histology. Patients with germline alterations in cancer predisposing genes, especially those involved in DNA repair, were more likely to achieve long-term survival. Our findings indicate that concurrent durvalumab with platinum-based chemotherapy has promising clinical activity and that responses are driven by the complex genomic background of malignant pleural mesothelioma. In a phase 2 trial, the combination of chemotherapy with durvalumab, an anti-PD-L1 antibody, exhibited promising clinical activity in patients with previously untreated, unresectable mesothelioma, with additional analyses providing insights into genomic and immunologic features potentially associated with response.
Collapse
|
41
|
Harber J, Kamata T, Pritchard C, Fennell D. Matter of TIME: the tumor-immune microenvironment of mesothelioma and implications for checkpoint blockade efficacy. J Immunother Cancer 2021; 9:e003032. [PMID: 34518291 PMCID: PMC8438820 DOI: 10.1136/jitc-2021-003032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an incurable cancer with a dismal prognosis and few effective treatment options. Nonetheless, recent positive phase III trial results for immune checkpoint blockade (ICB) in MPM herald a new dawn in the fight to advance effective treatments for this cancer. Tumor mutation burden (TMB) has been widely reported to predict ICB in other cancers, but MPM is considered a low-TMB tumor. Similarly, tumor programmed death-ligand 1 (PD-L1) expression has not been proven predictive in phase III clinical trials in MPM. Consequently, the precise mechanisms that determine response to immunotherapy in this cancer remain unknown. The present review therefore aimed to synthesize our current understanding of the tumor immune microenvironment in MPM and reflects on how specific cellular features might impact immunotherapy responses or lead to resistance. This approach will inform stratified approaches to therapy and advance immunotherapy combinations in MPM to improve clinical outcomes further.
Collapse
Affiliation(s)
- James Harber
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Tamihiro Kamata
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Catrin Pritchard
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| | - Dean Fennell
- Cancer Research Centre, University of Leicester College of Life Sciences, Leicester, UK
| |
Collapse
|
42
|
Zauderer MG, Martin A, Egger J, Rizvi H, Offin M, Rimner A, Adusumilli PS, Rusch VW, Kris MG, Sauter JL, Ladanyi M, Shen R. The use of a next-generation sequencing-derived machine-learning risk-prediction model (OncoCast-MPM) for malignant pleural mesothelioma: a retrospective study. Lancet Digit Health 2021; 3:e565-e576. [PMID: 34332931 PMCID: PMC8459747 DOI: 10.1016/s2589-7500(21)00104-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/29/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Current risk stratification for patients with malignant pleural mesothelioma based on disease stage and histology is inadequate. For some individuals with early-stage epithelioid tumours, a good prognosis by current guidelines can progress rapidly; for others with advanced sarcomatoid cancers, a poor prognosis can progress slowly. Therefore, we aimed to develop and validate a machine-learning tool-known as OncoCast-MPM-that could create a model for patient prognosis. METHODS We did a retrospective study looking at malignant pleural mesothelioma tumours using next-generation sequencing from the Memorial Sloan Kettering Cancer Center-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT). We collected clinical, pathological, and routine next-generation sequencing data from consecutive patients with malignant pleural mesothelioma treated at the Memorial Sloan Kettering Cancer Center (New York, NY, USA), as well as the MSK-IMPACT data. Together, these data comprised the MSK-IMPACT cohort. Using OncoCast-MPM, an open-source, web-accessible, machine-learning risk-prediction model, we integrated available data to create risk scores that stratified patients into low-risk and high-risk groups. Risk stratification of the MSK-IMPACT cohort was then validated using publicly available malignant pleural mesothelioma data from The Cancer Genome Atlas (ie, the TCGA cohort). FINDINGS Between Feb 15, 2014, and Jan 28, 2019, we collected MSK-IMPACT data from the tumour tissue of 194 patients in the MSK-IMPACT cohort. The median overall survival was higher in the low-risk group than in the high-risk group as determined by OncoCast-MPM (30·8 months [95% CI 22·7-36·2] vs 13·9 months [10·7-18·0]; hazard ratio [HR] 3·0 [95% CI 2·0-4·5]; p<0·0001). No single factor or gene alteration drove risk differentiation. OncoCast-MPM was validated against the TCGA cohort, which consisted of 74 patients. The median overall survival was higher in the low-risk group than in the high-risk group (23·6 months [95% CI 15·1-28·4] vs 13·6 months [9·8-17·9]; HR 2·3 [95% CI 1·3-3·8]; p=0·0019). Although stage-based risk stratification was unable to differentiate survival among risk groups at 3 years in the MSK-IMPACT cohort (31% for early-stage disease vs 30% for advanced-stage disease; p=0·90), the OncoCast-MPM-derived 3-year survival was significantly higher in the low-risk group than in the high-risk group (40% vs 7%; p=0·0052). INTERPRETATION OncoCast-MPM generated accurate, individual patient-level risk assessment scores. After prospective validation with the TCGA cohort, OncoCast-MPM might offer new opportunities for enhanced risk stratification of patients with malignant pleural mesothelioma in clinical trials and drug development. FUNDING US National Institutes of Health/National Cancer Institute.
Collapse
Affiliation(s)
- Marjorie G Zauderer
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Axel Martin
- Biostatistics Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jacklynn Egger
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hira Rizvi
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Offin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasad S Adusumilli
- Thoracic Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Valerie W Rusch
- Thoracic Surgery, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark G Kris
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jennifer L Sauter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronglai Shen
- Biostatistics Service, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
43
|
Functionalized PDA/DEX-PEI@HA nanoparticles combined with sleeping-beauty transposons for multistage targeted delivery of CRISPR/Cas9 gene. Biomed Pharmacother 2021; 142:112061. [PMID: 34449313 DOI: 10.1016/j.biopha.2021.112061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
CRISPR/Cas9 system has been used as the most powerful gene editing tool for precision medicine and advanced gene therapy. However, its wide applications are limited by the poor biosafety of lentivirus delivery vectors though with high-efficiency transduction. To construct a safer vector and promote genome integration, the CRISPR/Cas9 gene is cloned into a plasmid-based non-viral safe vector Sleeping-Beauty (SB) transposon in this study to obtain pT2SpCas9. Meanwhile, PDA/DEX-PEI@HA (PDPH) nanoparticles are constructed to facilitate the precise CRISPR/Cas9 targeting delivery, by using polydopamine (PDA) as the carrier, hyaluronic acid (HA) as the cell-targeting ligand and dexamethasone (DEX) as the nuclear localization signal (NLS). The results showed that PDPH could deliver pDNA efficiently into the cell and further into the nucleus. The transfection efficiency of PDPH is much higher than that of NPs without HA and DEX. Remarkably, the cytotoxicity of PDPH is negligible in comparison to PEI25k and PEI10k. Western blots showed that after the transfection of PDPH/pT2SpCas9-Nanog/SB11, Nanog protein in HeLa cells is knocked out, and the proliferation and migration abilities of tumor cells are significantly decreased. This study demonstrates that PDA/DEX-PEI25k@HA/pT2SpCas9 (PDPH25 K/pT2SpCas9) has the great potential as a non-viral gene vector for CRISPR/Cas9 delivery and clinical medication.
Collapse
|
44
|
Hotta K, Fujimoto N. Current evidence and future perspectives of immune-checkpoint inhibitors in unresectable malignant pleural mesothelioma. J Immunother Cancer 2021; 8:jitc-2019-000461. [PMID: 32098830 PMCID: PMC7057421 DOI: 10.1136/jitc-2019-000461] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Platinum-based chemotherapy is commonly used as the standard first-line treatment for unresectable malignant pleural mesothelioma (MPM). However, in recent times, immune-checkpoint inhibitors (ICIs) have led to a paradigm shift. Herein, we review relevant literature and ongoing trials of ICIs used as both first-line and salvage therapies. Specifically, in the Japanese single-arm, phase II trial, the MERIT trial, nivolumab, an antiprogrammed cell death 1 (PD-1) antibody showed favorable efficacy when used as a salvage therapy. Currently, multiple ICI monotherapy or combination therapy trials have been conducted, which could provide further evidence. Among available ICIs, the anti-PD-1 antibody is promising for unresectable MPM, despite the limited efficacy of anti-CTLA4 monotherapy. Ongoing studies will further confirm the potential efficacy of ICIs for MPM, as observed across other malignancies. It is also crucial to identify any clinically useful predictive biomarkers that could reveal ICIs with maximal effects in MPM.
Collapse
Affiliation(s)
- Katsuyuki Hotta
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Nobukazu Fujimoto
- Department of Medical Oncology and Medicine, Okayama Rosai Hospitalosai Hospital, Okayama, Japan
| |
Collapse
|
45
|
Meiller C, Montagne F, Hirsch TZ, Caruso S, de Wolf J, Bayard Q, Assié JB, Meunier L, Blum Y, Quetel L, Gibault L, Pintilie E, Badoual C, Humez S, Galateau-Sallé F, Copin MC, Letouzé E, Scherpereel A, Zucman-Rossi J, Le Pimpec-Barthes F, Jaurand MC, Jean D. Multi-site tumor sampling highlights molecular intra-tumor heterogeneity in malignant pleural mesothelioma. Genome Med 2021; 13:113. [PMID: 34261524 PMCID: PMC8281651 DOI: 10.1186/s13073-021-00931-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/30/2021] [Indexed: 12/23/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a heterogeneous cancer. Better knowledge of molecular and cellular intra-tumor heterogeneity throughout the thoracic cavity is required to develop efficient therapies. This study focuses on molecular intra-tumor heterogeneity using the largest series to date in MPM and is the first to report on the multi-omics profiling of a substantial series of multi-site tumor samples. Methods Intra-tumor heterogeneity was investigated in 16 patients from whom biopsies were taken at distinct anatomical sites. The paired biopsies collected from apex, side wall, costo-diaphragmatic, or highest metabolic sites as well as 5 derived cell lines were screened using targeted sequencing. Whole exome sequencing, RNA sequencing, and DNA methylation were performed on a subset of the cohort for deep characterization. Molecular classification, recently defined histo-molecular gradients, and cell populations of the tumor microenvironment were assessed. Results Sequencing analysis identified heterogeneous variants notably in NF2, a key tumor suppressor gene of mesothelial carcinogenesis. Subclonal tumor populations were shared among paired biopsies, suggesting a polyclonal dissemination of the tumor. Transcriptome analysis highlighted dysregulation of cell adhesion and extracellular matrix pathways, linked to changes in histo-molecular gradient proportions between anatomic sites. Methylome analysis revealed the contribution of epigenetic mechanisms in two patients. Finally, significant changes in the expression of immune mediators and genes related to immunological synapse, as well as differential infiltration of immune populations in the tumor environment, were observed and led to a switch from a hot to a cold immune profile in three patients. Conclusions This comprehensive analysis reveals patient-dependent spatial intra-tumor heterogeneity at the genetic, transcriptomic, and epigenetic levels and in the immune landscape of the tumor microenvironment. Results support the need for multi-sampling for the implementation of molecular-based precision medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-021-00931-w.
Collapse
Affiliation(s)
- Clément Meiller
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - François Montagne
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.,Present address: Service de Chirurgie Thoracique, Hôpital Calmette, CHRU de Lille, Lille, France
| | - Theo Z Hirsch
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Julien de Wolf
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.,Present address: Service de Chirurgie Thoracique et Transplantation Pulmonaire, Hôpital Foch, Suresnes, France
| | - Quentin Bayard
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Jean-Baptiste Assié
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.,University Paris-Est Créteil (UPEC), CEpiA (Clinical Epidemiology and Ageing), EA 7376- IMRB, UPEC, Créteil, France.,GRC OncoThoParisEst, Service de Pneumologie, CHI Créteil, UPEC, Créteil, France
| | - Léa Meunier
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Yuna Blum
- Programme Cartes d'Identité des Tumeurs (CIT), Ligue Nationale Contre Le Cancer, Paris, France.,Present address: IGDR UMR 6290, CNRS, Université de Rennes 1, Rennes, France
| | - Lisa Quetel
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Laure Gibault
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.,Service d'Anatomopathologie et Cytologie, Université de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Ecaterina Pintilie
- Univ. Lille, CHU Lille, Service de Chirurgie Thoracique, Hôpital Calmette, Lille, France
| | - Cécile Badoual
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.,Service d'Anatomopathologie et Cytologie, Université de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Sarah Humez
- Univ. Lille, CHU Lille, Institut de Pathologie, Lille, France.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020 - UMR1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, Lille, France
| | | | - Marie-Christine Copin
- Univ. Lille, CHU Lille, Institut de Pathologie, Lille, France.,Present address: Département de Pathologie Cellulaire et Tissulaire, CHU d'Angers, Angers, France
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Arnaud Scherpereel
- Univ. Lille, CHU Lille, Service de Pneumologie et d'Oncologie Thoracique, unité INSERM 1189 OncoThAI, Lille, France.,Réseau National Expert pour le Mésothéliome Pleural Malin (NETMESO), Lille, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Françoise Le Pimpec-Barthes
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France.,Service de Chirurgie Thoracique, Hôpital Européen Georges Pompidou, Paris, France
| | - Marie-Claude Jaurand
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France
| | - Didier Jean
- Centre de Recherche des Cordeliers, Inserm UMRS-1138, Sorbonne Université, Université de Paris, Functional Genomics of Solid Tumors, Paris, France.
| |
Collapse
|
46
|
Wadowski B, Bueno R, De Rienzo A. Immune Microenvironment and Genetics in Malignant Pleural Mesothelioma. Front Oncol 2021; 11:684025. [PMID: 34178677 PMCID: PMC8226027 DOI: 10.3389/fonc.2021.684025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/28/2021] [Indexed: 01/29/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive malignancy with limited therapeutic options beyond surgery and cytotoxic chemotherapy. The success of immune checkpoint inhibition has been found to correlate with expression of immune-related genes such as CD274 (PD-L1) in lung and other solid cancers. However, only a small subset of MPM patients respond to checkpoint inhibition, and this response has been varied and unpredictable across several clinical trials. Recent advances in next-generation sequencing (NGS) technology have improved our understanding of the molecular features of MPM, also with respect to its genetic signature and how this impacts the immune microenvironment. This article will review current evidence surrounding the interplay between MPM genetics, including epigenetics and transcriptomics, and the immune response.
Collapse
Affiliation(s)
- Benjamin Wadowski
- Thoracic Surgery Oncology Laboratory and the International Mesothelioma Program, Division of Thoracic and Cardiovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Raphael Bueno
- Thoracic Surgery Oncology Laboratory and the International Mesothelioma Program, Division of Thoracic and Cardiovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Assunta De Rienzo
- Thoracic Surgery Oncology Laboratory and the International Mesothelioma Program, Division of Thoracic and Cardiovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
47
|
Cui W, Popat S. Immune Checkpoint Inhibition for Unresectable Malignant Pleural Mesothelioma. Drugs 2021; 81:971-984. [PMID: 34106454 DOI: 10.1007/s40265-021-01506-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 12/29/2022]
Abstract
Immune checkpoint inhibitors (ICI) have shown important but variable efficacy in mesothelioma despite a lack of strong biological rationale. Initial trials assessed ICI monotherapy in patients with relapsed mesothelioma, with objective response rates (ORR) between 4.5 and 29%, median progression-free survival (PFS) between 2.5-6.2 months, and median overall survival (OS) between 7.7 and 18.0 months. In randomised trials of chemotherapy pre-treated patients, nivolumab was recently shown to improve PFS compared to placebo, but tremelimumab was not superior to placebo, and there was no difference in OS between pembrolizumab and chemotherapy. However, response to combination ICI appear more promising in both pre-treated and treatment-naïve mesothelioma. The randomised Phase 3 trial of upfront ipilimumab-nivolumab versus platinum-pemetrexed chemotherapy demonstrated improved OS favouring ipilimumab-nivolumab (HR 0.74, 96.6% CI 0.60-0.91; p = 0.0020), establishing this regimen as a new standard of care, especially in non-epithelioid histological subtypes. However, initially PFS was poorer in the ipilimumab-nivolumab than chemotherapy treatment arms. A single-arm Phase 2 trial of upfront platinum chemotherapy and durvalumab met its primary endpoint, with a 6-month PFS of 57% (95% CI 44-70) with chemo-immunotherapy under evaluation as an alternative upfront regimen. Several questions remain unanswered. Comparative studies of chemo-immunotherapy versus chemotherapy are underway, but these do not compare chemo-immunotherapy to combination ICI. There is a critical need to establish predictive biomarkers to improve patient selection. As ICI use moves into the front-line setting, patient selection, role for operable patients, and understanding ICI resistance mechanisms alongside role of ICI rechallenge in previous responders need further evaluation.
Collapse
Affiliation(s)
- Wanyuan Cui
- Lung Unit, Department of Medicine, Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Sanjay Popat
- Lung Unit, Department of Medicine, Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK. .,National Heart and Lung Institute, Imperial College London, London, UK. .,Thoracic Oncology, Institute of Cancer Research, London, UK.
| |
Collapse
|
48
|
Menis J, Pasello G, Remon J. Immunotherapy in malignant pleural mesothelioma: a review of literature data. Transl Lung Cancer Res 2021; 10:2988-3000. [PMID: 34295692 PMCID: PMC8264322 DOI: 10.21037/tlcr-20-673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/04/2021] [Indexed: 01/09/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a rare, aggressive cancer of the pleural surface, associated with asbestos exposure, whose incidence is still growing in some areas of the world. MPM is still considered a rare and an orphan disease with an unchanged median overall survival (OS) ranging from 8 to 14 months and no treatment advances in the last 15 years both in local and advanced disease. In the recent years, chronic inflammation of the mesothelium together with local tumor suppression plays a major role in the malignant transformation. Also, significant heterogeneity in both tumor and the microenvironment is at the basis of MPM biology. Preclinical data have demonstrated the immunogenicity and the lack of an effective antitumor response by the immune system in MPM thus paving the way to the development of immune therapeutics in this disease. Still there is no clear evidence of any predictive biomarker so that, given the close interaction between the immune infiltrate and mesothelial cells, a number of trials are ongoing to investigate the role and prognostic value of the immune microenvironment. In this review we summarize the rationale for immune therapeutics development in MPM, as well as, the relevant literature and ongoing trials of immune checkpoint inhibitors (ICIs) and vaccines used as both first-line treatment and beyond.
Collapse
Affiliation(s)
- Jessica Menis
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy;,Medical Oncology Department, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Giulia Pasello
- Medical Oncology Department, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Jordi Remon
- Department of Medical Oncology, Centro Integral Oncológico Clara Campal (HM-CIOCC), Hospital HM Delfos, HM Hospitales, Barcelona, Spain
| |
Collapse
|
49
|
Wang P, Chen Y, Wang C. Beyond Tumor Mutation Burden: Tumor Neoantigen Burden as a Biomarker for Immunotherapy and Other Types of Therapy. Front Oncol 2021; 11:672677. [PMID: 33996601 PMCID: PMC8117238 DOI: 10.3389/fonc.2021.672677] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy has significantly improved the clinical outcome of patients with cancer. However, the immune response rate varies greatly, possibly due to lack of effective biomarkers that can be used to distinguish responders from non-responders. Recently, clinical studies have associated high tumor neoantigen burden (TNB) with improved outcomes in patients treated with immunotherapy. Therefore, TNB has emerged as a biomarker for immunotherapy and other types of therapy. In the present review, the potential application of TNB as a biomarker was evaluated. The methods of neoantigen prediction were summarized and the mechanisms involved in TNB were investigated. The impact of high TNB and increased number of infiltrating immune cells on the efficacy of immunotherapy was also addressed. Finally, the future challenges of TNB were discussed.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Biotherapy, Cancer Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yueyun Chen
- Department of Biotherapy, Cancer Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Chun Wang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
50
|
Brcic L, Mathilakathu A, Walter RFH, Wessolly M, Mairinger E, Beckert H, Kreidt D, Steinborn J, Hager T, Christoph DC, Kollmeier J, Mairinger T, Wohlschlaeger J, Schmid KW, Borchert S, Mairinger FD. Digital Gene Expression Analysis of Epithelioid and Sarcomatoid Mesothelioma Reveals Differences in Immunogenicity. Cancers (Basel) 2021; 13:1761. [PMID: 33917061 PMCID: PMC8067687 DOI: 10.3390/cancers13081761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/08/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated with asbestos exposure. Median survival ranges from 14 to 20 months after initial diagnosis. As of November 2020, the FDA approved a combination of immune checkpoint inhibitors after promising intermediate results. Nonetheless, responses remain unsatisfying. Adequate patient stratification to improve response rates is still lacking. This retrospective study analyzed formalin fixed paraffin embedded specimens from a cohort of 22 MPM. Twelve of those samples showed sarcomatoid, ten epithelioid differentiation. Complete follow-up, including radiological assessment of response by modRECIST and time to death, was available with reported deaths of all patients. RNA of all samples was isolated and subjected to digital gene expression pattern analysis. Our study revealed a notable difference between epithelioid and sarcomatoid mesothelioma, showing differential gene expression for 304/698 expressed genes. Whereas antigen processing and presentation to resident cytotoxic T cells as well as phagocytosis is highly affected in sarcomatoid mesothelioma, cell-cell interaction via cytokines seems to be of greater importance in epithelioid cases. Our work reveals the specific role of the immune system within the different histologic subtypes of MPM, providing a more detailed background of their immunogenic potential. This is of great interest regarding therapeutic strategies including immunotherapy in mesothelioma.
Collapse
Affiliation(s)
- Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Alexander Mathilakathu
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Robert F. H. Walter
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Hendrik Beckert
- Department of Pulmonary Medicine, University Hospital Essen—Ruhrlandklinik, 45239 Essen, Germany;
| | - Daniel Kreidt
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Julia Steinborn
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Thomas Hager
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Daniel C. Christoph
- Department of Medical Oncology, Evang. Kliniken Essen-Mitte, 45136 Essen, Germany;
| | - Jens Kollmeier
- Department of Pneumology, Helios Klinikum Emil von Behring, 14165 Berlin, Germany;
| | - Thomas Mairinger
- Department of Tissue Diagnostics, Helios Klinikum Emil von Behring, 14165 Berlin, Germany;
| | | | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg Essen, 45147 Essen, Germany; (A.M.); (R.F.H.W.); (M.W.); (E.M.); (D.K.); (J.S.); (T.H.); (K.W.S.); (S.B.)
| | - Fabian D. Mairinger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| |
Collapse
|