1
|
Heidari F, Raoufi Z, Abdollahi S, Asl HZ. Antibiotic delivery in the presence of green AgNPs using multifunctional bilayer carrageenan nanofiber/sodium alginate nanohydrogel for rapid control of wound infections. Int J Biol Macromol 2024; 277:134109. [PMID: 39048003 DOI: 10.1016/j.ijbiomac.2024.134109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
This study constructed bilayer nano-hydrogels using solvent casting and electrospinning techniques. The first layer consisted of a hydrogel containing sodium alginate and gellan gum, while the second layer was a carrageenan/polyvinyl alcohol nanofibrous membrane. The nanohydrogels were prepared with different doses of doxycycline antibiotic (0.12, 0.06, 0.03 g) and a fixed amount of silver nanoparticles (0.012 g), which were synthesized using the green method including Capparis spinosa leaf extract. The films were tested for their mechanical properties, swelling behavior, XRD, and FTIR, and their morphology was characterized using SEM. The biological properties of the nanohydrogels were also extensively assayed. X-ray diffraction analysis showed peak 111 for silver nanoparticles. Incorporating silver nanoparticles significantly enhanced nanohydrogels' mechanical and antibacterial properties and improved their ability to heal wounds. Nanohydrogels exhibited biodegradability, biocompatibility, anti-inflammatory properties (57.63 %), and high cell viability (>85 %) in laboratory conditions. The study confirmed that wound dressings containing doxycycline with controlled release are highly effective against pathogenic bacteria and prevent the formation of biofilms (92 %). The rats in-vivo study demonstrated that 100 % wound closure was achieved in nanohydrogels containing SA/GG/PVA/CAR/AgNPs/DOX0.12 after 14 days. The films could potentially lead to the development of new treatments against bacterial infections and inflammatory conditions of wounds.
Collapse
Affiliation(s)
- Fatemeh Heidari
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Zeinab Raoufi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Sajad Abdollahi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Hassan Zare Asl
- Department of Physics, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| |
Collapse
|
2
|
Benkhira I, Zermane F, Cheknane B, Trache D, Brosse N, Paolone A, Chader H, Sobhi W. Preparation and characterization of amidated pectin-gelatin-oxidized tannic acid hydrogel films supplemented with in-situ reduced silver nanoparticles for wound-dressing applications. Int J Biol Macromol 2024; 277:134158. [PMID: 39059528 DOI: 10.1016/j.ijbiomac.2024.134158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Wound dressings play a crucial role in protecting injured tissues and promoting the healing process. Traditional fabrication of antibacterial wound dressings can be complex and may involve toxic components. In this study, we developed an innovative hydrogel film (AP:GE@OTA/Ag) composed of amidated pectin (AP), gelatin (GE), oxidized tannic acid (OTA) at varying concentrations, and in-situ reduced silver nanoparticles (AgNPs). FTIR and XRD analyses confirmed that crosslinking occurs via interactions between OTA quinone groups and free amino groups in AP and GE. TEM imaging demonstrated the well-dispersed AgNPs with an average particle size of 58.64 nm, while the TG measurements indicated the enhancement of the thermal stability compared to AP:GE films. The AP:GE@OTA/Ag films exhibited superior fluid uptake ability (90.96 % at 2 h), water retention capacity (91.69 % at 2 h), and water vapor transmission rate (1903.29 g/m2/day), alongside improved tensile strength (38 MPa). Additionally, these films showed excellent cytocompatibility and sustained potent antimicrobial activity against S. aureus and E. coli with low AgNPs loadings of 1.02 ± 0.13 μg/cm2. NIT-1 mouse insulinoma cells demonstrated robust proliferation when cultured with the prepared dressings. These films significantly accelerated wound repair in a skin excision model, indicating their potential clinical applications for wound healing.
Collapse
Affiliation(s)
- Ilyas Benkhira
- Laboratoire Chimie Physique Des Interfaces Des Matériaux Appliqués à l'Environnement, Département de Génie Des Procédés, Université Saad Dahlab Blida 1, 09000 Blida, Algeria.
| | - Faiza Zermane
- Laboratoire Chimie Physique Des Interfaces Des Matériaux Appliqués à l'Environnement, Département de Génie Des Procédés, Université Saad Dahlab Blida 1, 09000 Blida, Algeria
| | - Benamar Cheknane
- Laboratoire Chimie Physique Des Interfaces Des Matériaux Appliqués à l'Environnement, Département de Génie Des Procédés, Université Saad Dahlab Blida 1, 09000 Blida, Algeria
| | - Djalal Trache
- Energetic Materials Laboratory (EMLab), Teaching and Research Unit of Energetic Processes, Polytechnic Military School, BP 17, Bordj El-Bahri, 16046 Algiers, Algeria
| | - Nicolas Brosse
- LERMAB, Faculty of Science and Technology, University of Lorraine, Vandoeuvre-Les-Nancy, 54506, France
| | - Annalisa Paolone
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Piazzale A. Moro 5, I-00185 Rome, Italy
| | - Henni Chader
- Department of Pharmacy, Faculty of Medicine, University of Algiers 1, Algiers 16001, Algeria
| | - Widad Sobhi
- Research Center of Biotechnology (CRBt), Constantine 25000, Algeria
| |
Collapse
|
3
|
Chen T, Li X, Wang Q, Li Y, Xu L, Yang Y, Qiao Y, Dai Y, Ke J, Wan H, Zhou S, Gao Z. A multifunctional Ag NPs/guar gum hydrogel as versatile platform for catalysts, antibacterial agents, and construction of oil-water separation interfaces. Int J Biol Macromol 2024; 270:132035. [PMID: 38705316 DOI: 10.1016/j.ijbiomac.2024.132035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/24/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
The frequently encountered wastewater contaminations, including soluble aromatic compound and dye pollutants, pathogenic bacteria, and insoluble oils, have resulted in significant environmental and human health issues. It poses a challenge to utilize identical materials for the treatment of complex wastewater. Herein, in this research, multifunctional Ag NPs/guar gum hybrid hydrogels were fabricated using a facile in situ reduction and self-crosslinking method for efficient remediation of complex wastewater. The Ag NPs/guar gum hybrid hydrogel showed remarkable remodeling, adhesive, and self-healing characteristics, which was favorable for its versatile applications. The combination of Ag NPs with the guar gum skeleton endowed the hybrid hydrogel with exceptional catalytic activity for reducing aromatic compounds and dye pollutants, as well as remarkable antibacterial efficacy against pathogenic bacteria. In addition, the Ag NPs/guar gum hybrid hydrogel could be employed to coat a variety of substrates, including cotton fabrics and stainless steel meshes. The hydrogel coated cotton fabrics and meshes presented superhydrophilicity/underwater superoleophobicity, excellent antifouling capacity, and outstanding recyclability, which could be successfully applied for efficient separation of oil-water mixtures. The findings of this work provide a feasible and cost-effective approach for the remediation of intricate wastewater.
Collapse
Affiliation(s)
- Teng Chen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Xin Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Qiyuan Wang
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Ye Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Le Xu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Yihang Yang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Yunfan Qiao
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Yuchen Dai
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Jie Ke
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Hongri Wan
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China
| | - Shuai Zhou
- College of Science, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhaojian Gao
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou 221018, People's Republic of China.
| |
Collapse
|
4
|
Shan P, Wang K, Sun F, Li Y, Sun L, Li H, Peng L. Humidity-adjustable functional gelatin hydrogel/ethyl cellulose bilayer films for active food packaging application. Food Chem 2024; 439:138202. [PMID: 38128424 DOI: 10.1016/j.foodchem.2023.138202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/29/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
A sustainable functional bilayer film composed of gelatin hydrogel/ethyl cellulose was fabricated using a simple LBL casting method. The outer layer was hydrophobic ethyl cellulose (EC), while the inner layer was hydrophilic gelatin (GEL) hydrogel. Tannic acid (TA) served as a green cross-linker for GEL hydrogel preparation and as a reductant for AgNPs synthesis in-situ within the hydrogel network. Physicochemical and functional properties of the bilayer films containing different TA content were studied. When 3 wt% TA was added, the AgNPs@GT-3/EC bilayer film exhibited superior UV-light barrier, possessed desirable humidity-adjustable capability and oxygen barrier due to denser hydrogel network structure, and effectively inactivated foodborne pathogens S. aureus and E. coli with bacteriostatic rates of 99 %. The application results indicated that this bilayer film effectively maintained the postharvest quality of white button mushrooms and prolonged their shelf-life to 7 days under ambient storage, demonstrating its promising potential for fresh food packaging.
Collapse
Affiliation(s)
- Peng Shan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Kun Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Fangfei Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yongshi Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Liping Sun
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
5
|
Shah HS, Zaib S, Usman F, Sarfraz M, Faiz R, Rehman SA, Khan AA, Alanazi AM, Khan R, Nasrullah U, Nazir I. Synthesis, characterization, pharmacological and computational evaluation of hyaluronic acid modified chebulinic acid encapsulated chitosan nanocomposite for cancer therapy. Int J Biol Macromol 2024; 263:130160. [PMID: 38367777 DOI: 10.1016/j.ijbiomac.2024.130160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
The purpose of this study was to produce hyaluronic acid customized nanoparticles with chitosan for the delivery of chebulinic acid (CLA) to enhance its anticancer potential against breast cancer. A significant portion of CLA was encapsulated (89.72 ± 4.38 %) and loaded (43.15 ± 5.61 %) within hybrid nanoparticles. The colloidal hybrid nanoparticles demonstrated a polydispersity index (PDI) of about 0.379 ± 0.112, with zeta capacitance of 32.69 ± 5.12 (mV), and an average size of 115 ± 8 (nm). It was found that CLA-CT-HA-NPs had stronger anticancer effects on MCF-7 cells (IC50 = 8.18 ± 3.02 μM) than pure CLA (IC50 = 17.15 ± 5.11 μM). The initial cytotoxicity findings were supported by additional investigations based on comet assay and flow cytometry analysis. Tumor remission and survival were evaluated in five separate groups of mice. When juxtaposed with pure CLA (3.17 ± 0.419 %), CLA-CT-HA-NPs improved survival rates and reduced tumor burden by 3.76 ± 0.811(%). Furthermore, in-silico molecular docking investigations revealed that various biodegradable polymers had several levels of compatibility with CLA. The outcomes of this study might potentially served as an effective strategy for delivering drugs in the context of breast cancer therapy.
Collapse
Affiliation(s)
- Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 66000, Pakistan.
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates.
| | - Rabia Faiz
- Department of Zoology, University of Education, Bank Road Campus, Lahore, Pakistan.
| | - Saira Abdul Rehman
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; M Islam College of Pharmacy, 52230 Gujranwala, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Riffat Khan
- College of Pharmacy, University of Sargodha, 40100 Sargodha, Pakistan
| | - Usman Nasrullah
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany.
| | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore campus, 54000 Lahore, Pakistan.
| |
Collapse
|
6
|
Lao Y, Xiao S, Liu H, Li D, Wei Q, Ye L, Li Z, Lu S. In situ reduction of Ag nanoparticles using okra polysaccharides for the preparation of flexible multifunctional sensors. Int J Biol Macromol 2024; 257:128735. [PMID: 38092111 DOI: 10.1016/j.ijbiomac.2023.128735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024]
Abstract
This paper reports the fabrication of flexible films loaded with Ag nanoparticles (Ag NPs) and annotated as POPA films from polyvinyl alcohol, okra polysaccharides, phytic acid, and AgNO3 via an in situ reduction and solution-casting method. The prepared films exhibit strain, temperature, and humidity sensing. As a flexible strain sensor, the POPA sensor has a wide strain sensing range (1-250 %), and fast response/recovery (0.22/0.28 s), while as a temperature sensor, it senses the human body temperature and exhibits excellent temperature sensitivity (TCR = -1.401 % °C-1) and good linearity (R2 = 0.994) in the temperature range of 30-55 °C. Additionally, in the relative humidity (RH) of range 35-95 %, the POPA humidity sensor outputs stable electrical signals during adsorption and desorption. Moreover, it exhibits low hysteresis values (3.19 % RH) and good linearity (R2 = 0.989) for the detection of breathing rates during different human body states. Consequently, the POPA sensor exhibits good stability, repeatability, and reversibility for strain, temperature, and humidity sensing. The designed multifunctional POPA sensor thus holds great potential for its application in flexible wearable devices and electronics.
Collapse
Affiliation(s)
- Yufei Lao
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Suijun Xiao
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Hongbo Liu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Dacheng Li
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Qiaoyan Wei
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Liangdong Ye
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Ziwei Li
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education/Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
7
|
Zaib S, Shah HS, Khan I, Jawad Z, Sarfraz M, Riaz H, Asjad HMM, Ishtiaq M, Ogaly HA, Othman G, Ahmed DAEM. Fabrication and evaluation of anticancer potential of diosgenin incorporated chitosan-silver nanoparticles; in vitro, in silico and in vivo studies. Int J Biol Macromol 2024; 254:127975. [PMID: 37944715 DOI: 10.1016/j.ijbiomac.2023.127975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The discovery of effective therapeutic approaches with minimum side effects and their tendency to completely eradicate the disease is the main challenge in the history of cancer treatment. Fenugreek (FGK) seeds are a rich source of phytochemicals, especially Diosgenin (DGN), which shows outstanding anticancer activities. In the present study, chitosan-silver nanoparticles (ChAgNPs) containing Diosgenin (DGN-ChAgNPs) were synthesized and evaluated for their anticancer activity against breast cancer cell line (MCF-7). For the physical characterization, the hydrodynamic diameter and zeta potential of DGN-ChAgNPs were determined to be 160.4 ± 12 nm and +37.19 ± 5.02 mV, respectively. Transmission electron microscopy (TEM) showed that nanoparticles shape was mostly round with smooth edges. Moreover, DGN was efficiently entrapped in nanoformulation with good entrapment efficacy (EE) of ~88 ± 4 %. The in vitro anti-proliferative activity of DGN-ChAgNPs was performed by sulforhodamine B (SRB) assay with promising inhibitory concentration of 6.902 ± 2.79 μg/mL. DAPI staining, comet assay and flow cytometry were performed to validate the anticancer potential of DGN-ChAgNPs both qualitatively and quantitatively. The percentage of survival rate and tumor reduction weight was evaluated in vivo in different groups of mice. Cisplatin was used as a standard anticancer drug. The DGN-ChAgNPs (12.5 mg/kg) treated group revealed higher percentage of survival rate and tumor reduction weight as compared to pure DGN treated group. These findings suggest that DGN-ChAgNPs could be developed as potential treatment therapy for breast cancer.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan.
| | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom.
| | - Zobia Jawad
- Ladywillingdon Hospital, King Edward Medical University, Lahore, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates
| | - Huma Riaz
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore 54590, Pakistan
| | - Hafiz Muhammad Mazhar Asjad
- Department of Pharmaceutical Sciences, Faculty of Biomedical Sciences and Engineering, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur, KPK, Pakistan
| | - Memoona Ishtiaq
- Leads College of Pharmacy, Lahore LEADS University, Lahore, Pakistan
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Gehan Othman
- Biology Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | | |
Collapse
|
8
|
Shah HS, Zaib S, Sarfraz M, Alhadhrami A, Ibrahim MM, Mushtaq A, Usman F, Ishtiaq M, Sajjad M, Asjad HMM, Gohar UF. Fabrication and Evaluation of Anticancer Potential of Eugenol Incorporated Chitosan-Silver Nanocomposites: In Vitro, In Vivo, and In Silico Studies. AAPS PharmSciTech 2023; 24:168. [PMID: 37552378 DOI: 10.1208/s12249-023-02631-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
The expanding global cancer burden necessitates a comprehensive strategy to promote possible therapeutic interventions. Nanomedicine is a cutting-edge approach for treating cancer with minimal adverse effects. In the present study, chitosan-silver nanoparticles (ChAgNPs) containing Eugenol (EGN) were synthesized and evaluated for their anticancer activity against breast cancer cells (MCF-7). The physical, pharmacological, and molecular docking studies were used to characterize these nanoparticles. EGN had been effectively entrapped into hybrid NPs (84 ± 7%). The EGN-ChAgNPs had a diameter of 128 ± 14 nm, a PDI of 0.472 ± 0.118, and a zeta potential of 30.58 ± 6.92 mV. Anticancer activity was measured in vitro using an SRB assay, and the findings revealed that EGN-ChAgNPs demonstrated stronger anticancer activity against MCF-7 cells (IC50 = 14.87 ± 5.34 µg/ml) than pure EGN (30.72 ± 4.91 µg/ml). To support initial cytotoxicity findings, advanced procedures such as cell cycle analysis and genotoxicity were performed. Tumor weight reduction and survival rate were determined using different groups of mice. Both survival rates and tumor weight reduction were higher in the EGN-ChAgNPs (12.5 mg/kg) treated group than in the pure EGN treated group. Based on protein-ligand interactions, it might be proposed that eugenol had a favorable interaction with Aurora Kinase A. It was observed that C9 had the highest HYDE score of any sample, measuring at -6.8 kJ/mol. These results, in conjunction with physical and pharmacological evaluations, implies that EGN-ChAgNPs may be a suitable drug delivery method for treating breast cancer in a safe and efficient way.
Collapse
Affiliation(s)
- Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain, 64141, United Arab Emirates
| | - A Alhadhrami
- Department of Chemistry, College of Science, Taif University, P.O. Box 11090, Taif, 21944, Saudi Arabia
| | - Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11090, Taif, 21944, Saudi Arabia
| | - Aamir Mushtaq
- Department of Pharmaceutical Sciences, Government College University, Lahore, Pakistan
| | - Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 66000, Pakistan
| | - Memoona Ishtiaq
- Leads College of Pharmacy, Lahore LEADS University, Lahore, Pakistan
| | - Muhammad Sajjad
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Hafiz Muhammad Mazhar Asjad
- Department of Pharmaceutical Sciences, Faculty of Biomedical Sciences and Engineering, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology, Mang, Khanpur Road, Haripur-KPK, Pakistan
| | - Umar Farooq Gohar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| |
Collapse
|
9
|
Shi W, Wang Z, Song H, Chang Y, Hou W, Li Y, Han G. High-Sensitivity and Extreme Environment-Resistant Sensors Based on PEDOT:PSS@PVA Hydrogel Fibers for Physiological Monitoring. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35114-35125. [PMID: 35862578 DOI: 10.1021/acsami.2c09556] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rapid development of flexible electronic devices has caused a boom in researching flexible sensors based on hydrogels, but most of the flexible sensors can only work at room temperature, and they are difficult to adapt to extremely cold or dry environments. Here, the flexible hydrogel fibers (PEDOT:PSS@PVA) with excellent resistance to extreme environments have been prepared by adding glycerin (GL) to the mixture of poly(vinyl alcohol) (PVA) and poly 3,4-dioxyethylene thiophene:polystyrene sulfonic acid (PEDOT:PSS) because GL molecules can form dynamic hydrogen bonds with an elastic matrix of PVA molecules. It is found that the prepared sensor exhibits very good flexibility and mechanical strength, and the ultimate tensile strength can reach up to 13.76 MPa when the elongation at break is 519.9%. Furthermore, the hydrogel fibers possess excellent water retention performance and low-temperature resistance. After being placed in the atmospheric environment for 1 year, the sensor still shows good flexibility. At a low temperature of -60 °C, the sensor can stably endure 1000 repeated stretches and shrinks (10% elongation). In addition to the response to a large strain, this fiber sensor can also detect extremely small strains as low as 0.01%. It is proved that complex human movements such as knuckle bending, vocalization, pulse, and others can be monitored perfectly by this fiber sensor. The above results mean that the PEDOT:PSS@PVA fiber sensor has great application prospects in physiological monitoring.
Collapse
|
10
|
Nguyen NT, Vo TLH. Fabrication of Silver Nanoparticles Using Cordyline fruticosa L. Leave Extract Endowing Silk Fibroin Modified Viscose Fabric with Durable Antibacterial Property. Polymers (Basel) 2022; 14:polym14122409. [PMID: 35745988 PMCID: PMC9230683 DOI: 10.3390/polym14122409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 01/28/2023] Open
Abstract
The current work presented a green synthetic route for the fabrication of silver nanoparticles obtained from aqueous solutions of silver nitrate using Cordyline fruticosa L. leaf extract (Col) as a reducing and capping agent for the first time. The bio-synthesized silver nanoparticles (AgCol) were investigated using UV-visible spectroscopy (UV-vis), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermal gravimetric analysis (TGA). The obtained data demonstrated that AgCol in spherical shape with an average size of 28.5 nm were highly crystalline and well capped by phytocompounds from the Col extract. Moreover, the bio-synthesized AgCol also exhibited the effective antibacterial activities against six pathogenic bacteria, including Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa), Salmonella enterica (S. enterica), Staphylococcus aureus (S. aureus), Bacillus cereus (B. cereus) and Enterococcus faecalis (E. faecalis). The AgCol were applied as an antibacterial finishing agent for viscose fabric using a pad-dry curing technique. The AgCol-treated viscose fabrics exhibited a good synergistic antimicrobial activity against E. coli and S. aureus bacteria. Furthermore, the silk fibroin regenerated from Bombyx mori cocoon waste was utilized as an ecofriendly binder for the immobilization of AgCol on the viscose fabric. Thus, the antimicrobial efficacy of the AgCol and fibroin modified viscose fabric still reached 99.99% against the tested bacteria, even after 30 washing cycles. The colorimetric property, morphology, elemental composition, and distribution of AgCol on the treated fabrics were investigated using several analysis tools, including colorimetry, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic absorption spectroscopy (AAS), Kjeldahl, and FTIR. Because of the excellent antimicrobial efficiency and laundering durability, as well as the green synthesis method, the AgCol and fibroin modified viscose fabric could be utilized as an antibacterial material in sportswear and medical textile applications.
Collapse
Affiliation(s)
- Ngoc-Thang Nguyen
- Department of Textile Material and Chemical Processing, School of Textile-Leather and Fashion, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 11615, Vietnam
- Correspondence: ; Tel.: +84-904309930
| | - Thi-Lan-Huong Vo
- Department of Fibre and Textile Technology, Hanoi Industrial Textile Garment University, Hanoi 12411, Vietnam;
| |
Collapse
|
11
|
Eco-Friendly Synthesized PVA/Chitosan/Oxalic Acid Nanocomposite Hydrogels Embedding Silver Nanoparticles as Antibacterial Materials. Gels 2022; 8:gels8050268. [PMID: 35621566 PMCID: PMC9141215 DOI: 10.3390/gels8050268] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
PVA/chitosan (PVA/CS) composite hydrogels incorporating silver nanoparticles (AgNPs) were prepared by double-cross-linked procedures: freeze−thawing and electrostatic interactions. Oxalic acid (OA) was used both for solubilization and ionic cross-linking of CS. AgNPs covered by CS (CS-AgNPs) with an average diameter of 9 nm and 18% silver were obtained in the presence of CS, acting as reducing agent and particle stabilizer. The increase of the number of freeze−thaw cycles, as well as of the PVA:CS and OA:CS ratios, resulted in an increase of the gel fraction and elastic modulus. Practically, the elastic modulus of the hydrogels increased from 3.5 kPa in the absence of OA to 11.6 kPa at a 1:1 OA:CS weight ratio, proving that OA was involved in physical cross-linking. The physicochemical properties were not altered by the addition of CS-AgNPs in low concentration; however, concentrations higher than 3% resulted in low gel fraction and elastic modulus. The amount of silver released from the composite hydrogels is very low (<0.4%), showing that AgNPs were well trapped within the polymeric matrix. The composite hydrogels displayed antimicrobial activity against S. aureus, K. pneumoniae or P. gingivalis. The low cytotoxicity and the antibacterial efficacy of hydrogels recommend them for wound and periodontitis treatment.
Collapse
|
12
|
Synthesis of silver nanoparticles from Turbinaria ornata and its antibacterial activity against water contaminating bacteria. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02033-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Pham BTT, Duong THT, Nguyen TT, Van Nguyen D, Trinh CD, Bach LG. Development of polyvinyl (alcohol)/D-glucose/agar/silver nanoparticles nanocomposite film as potential food packaging material. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02761-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Suflet DM, Popescu I, Pelin IM, Ichim DL, Daraba OM, Constantin M, Fundueanu G. Dual Cross-Linked Chitosan/PVA Hydrogels Containing Silver Nanoparticles with Antimicrobial Properties. Pharmaceutics 2021; 13:1461. [PMID: 34575536 PMCID: PMC8465188 DOI: 10.3390/pharmaceutics13091461] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023] Open
Abstract
Stable chitosan/PVA-based hydrogels were obtained by combining covalent and physical cross-linking methods. As covalent cross-linkers, epoxy agents with different chain lengths were used, while freeze-thaw cycles were applied for additional physical cross-linking. The chemical structure of the hydrogel was examined by FTIR spectroscopy whereas the morphology was analyzed by SEM, showing well-defined pores with dimensions of around 50 μm in diameter. It was proved that gel fraction and the network morphology were deeply influenced by the synthesis conditions. Chitosan/PVA hydrogel showed a relative high swelling rate, reaching equilibrium in the first hour. The values obtained for the elastic modulus were relatively low (3-30 kPa); as a result, these hydrogels are soft and very flexible, and are ideal candidates for medical applications as wound or oral dressings. In addition, the natural antimicrobial activity of chitosan was enhanced by in situ generation of silver nanoparticles (AgNPs) under UV irradiation. The total amount of Ag from hydrogel was determined by elemental analyses and its crystalline state was confirmed by XRD. The CS/PVA hydrogels entrapped with AgNPs exhibited high inhibitory activity against S. aureus and K. pneumonia. The vitality tests confirmed the lack of cytotoxicity of CS/PVA hydrogels without and with AgNPs.
Collapse
Affiliation(s)
- Dana M. Suflet
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (G.F.)
| | - Irina Popescu
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (G.F.)
| | - Irina M. Pelin
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (G.F.)
| | - Daniela L. Ichim
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700511 Iasi, Romania; (D.L.I.); (O.M.D.)
| | - Oana M. Daraba
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700511 Iasi, Romania; (D.L.I.); (O.M.D.)
| | - Marieta Constantin
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (G.F.)
| | - Gheorghe Fundueanu
- Petru Poni Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania; (I.P.); (I.M.P.); (G.F.)
| |
Collapse
|
15
|
Noipitak P, Inphonlek S, Nillawong M, Sunintaboon P, Amornsakchai T. Chitosan/alginate composite porous hydrogels reinforced with PHEMA/PEI core–shell particles and pineapple-leaf cellulose fibers: their physico-mechanical properties and ability to incorporate AgNP. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02476-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Dresvyanina EN, Kodolova-Chukhontseva VV, Bystrov SG, Dobrovolskaya IP, Vaganov GV, Smirnova NV, Kolbe KA, Kamalov AM, Ivan'kova EM, Morganti P, Yudin VE. Influence of surface morphology of chitosan films modified by chitin nanofibrils on their biological properties. Carbohydr Polym 2021; 262:117917. [PMID: 33838798 DOI: 10.1016/j.carbpol.2021.117917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/12/2021] [Accepted: 03/04/2021] [Indexed: 12/30/2022]
Abstract
The paper is devoted to the study of influence of chitin nanofibrils on the structure, surface morphology, mechanical properties, and electrical conductivity of chitosan-based composite films intended for use in biomedical technologies. It was demonstrated that the optimal concentration of chitin nanofibrils in the composite film is 5 wt.%. For the films of this composition, we observed orientation of structural elements on film surface, enhanced mechanical properties as well as an increase in both specific conductivity and proliferative activity of skin fibroblasts on film surface. These results are related to the appearance of oriented structure in nanocomposites and to self-organization of chitosan macromolecules on the surface of chitin nanofibrils. It was revealed that increase in surface energy and surface hydrophilicity did not facilitate effective adhesion, viability and proliferative activity of cells during cultivation on the surface of composite films.
Collapse
Affiliation(s)
- E N Dresvyanina
- Peter the Great Saint Petersburg Polytechnic University, Polytekhnicheskaya str., 29, Saint Petersburg, 195251, Russia; Saint Petersburg State University of Industrial Technologies and Design, B. Morskaya str., 18, Saint Petersburg, 191186, Russia.
| | - V V Kodolova-Chukhontseva
- Peter the Great Saint Petersburg Polytechnic University, Polytekhnicheskaya str., 29, Saint Petersburg, 195251, Russia
| | - S G Bystrov
- Udmurt Federal Research Center UB RAS, Tatiana Baramzina str., 34, Izhevsk, 426067, Russia
| | - I P Dobrovolskaya
- Peter the Great Saint Petersburg Polytechnic University, Polytekhnicheskaya str., 29, Saint Petersburg, 195251, Russia; Institution of Russian Academy of Sciences, Institute of Macromolecular Compounds RAS, Bolshoy pr. VO, 31, Saint Petersburg, 199004, Russia
| | - G V Vaganov
- Peter the Great Saint Petersburg Polytechnic University, Polytekhnicheskaya str., 29, Saint Petersburg, 195251, Russia; Institution of Russian Academy of Sciences, Institute of Macromolecular Compounds RAS, Bolshoy pr. VO, 31, Saint Petersburg, 199004, Russia
| | - N V Smirnova
- Peter the Great Saint Petersburg Polytechnic University, Polytekhnicheskaya str., 29, Saint Petersburg, 195251, Russia; Institution of Russian Academy of Sciences, Institute of Macromolecular Compounds RAS, Bolshoy pr. VO, 31, Saint Petersburg, 199004, Russia
| | - K A Kolbe
- Peter the Great Saint Petersburg Polytechnic University, Polytekhnicheskaya str., 29, Saint Petersburg, 195251, Russia; Institution of Russian Academy of Sciences, Institute of Macromolecular Compounds RAS, Bolshoy pr. VO, 31, Saint Petersburg, 199004, Russia
| | - A M Kamalov
- Peter the Great Saint Petersburg Polytechnic University, Polytekhnicheskaya str., 29, Saint Petersburg, 195251, Russia
| | - E M Ivan'kova
- Peter the Great Saint Petersburg Polytechnic University, Polytekhnicheskaya str., 29, Saint Petersburg, 195251, Russia; Institution of Russian Academy of Sciences, Institute of Macromolecular Compounds RAS, Bolshoy pr. VO, 31, Saint Petersburg, 199004, Russia
| | - P Morganti
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138, Naples, Italy
| | - V E Yudin
- Peter the Great Saint Petersburg Polytechnic University, Polytekhnicheskaya str., 29, Saint Petersburg, 195251, Russia
| |
Collapse
|
17
|
Chalitangkoon J, Wongkittisin M, Monvisade P. Silver loaded hydroxyethylacryl chitosan/sodium alginate hydrogel films for controlled drug release wound dressings. Int J Biol Macromol 2020; 159:194-203. [DOI: 10.1016/j.ijbiomac.2020.05.061] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 11/28/2022]
|
18
|
Mitura S, Sionkowska A, Jaiswal A. Biopolymers for hydrogels in cosmetics: review. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:50. [PMID: 32451785 PMCID: PMC7248025 DOI: 10.1007/s10856-020-06390-w] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 05/12/2020] [Indexed: 06/02/2023]
Abstract
Hydrogels are cross-linked networks of macromolecular compounds characterized by high water absorption capacity. Such materials find a wide range of biomedical applications. Several polymeric hydrogels can also be used in cosmetics. Herein, the structure, properties and selected applications of hydrogels in cosmetics are discussed in general. Detailed examples from scientific literature are also shown. In this review paper, most common biopolymers used in cosmetics are presented in detail together with issues related to skin treatment and hair conditioning. Hydrogels based on collagen, chitosan, hyaluronic acid, and other polysaccharides have been characterized. New trends in the preparation of hydrogels based on biopolymer blends as well as bigels have been shown. Moreover, biopolymer hydrogels employment in encapsulation has been mentioned.
Collapse
Affiliation(s)
- Stanisław Mitura
- President Stanisław Wojciechowski State University of Applied Sciences in Kalisz, Medical Faculty, Nowy Świat 4 st., 62-800, Kalisz, Poland
- Technical University of Liberec, Faculty of Mechanical Engineering, Department of Material Science, Liberec, Czech Republic
| | - Alina Sionkowska
- Nicolaus Copernicus University in Torun, Faculty of Chemistry, Department of Chemistry of Biomaterials and Cosmetics, Gagarin 7 street, 87-100, Torun, Poland.
| | - Amit Jaiswal
- Centre for Biomaterials Cellular and Molecular Theranostics (CBCMT) VIT, Vellore, India
| |
Collapse
|
19
|
Kumar A, Behl T, Chadha S. Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects. Int J Biol Macromol 2020; 149:1262-1274. [PMID: 32044364 DOI: 10.1016/j.ijbiomac.2020.02.048] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 11/18/2022]
Abstract
Limitation of antibacterial activity, low water vapour, oxygen permeation and mechanical strength are the disadvantages of existing wound dressings. The present research is focused on synthesis of Polyvinyl alcohol (PVA) and Chitosan (CH) hydrogels using freeze thaw process. The formation of AgNPs and PVA/CH hydrogels was confirmed by UV spectroscopy, particle size, morphology, spectral analysis, swelling studies, and in-vitro drug release studies. The particle size of AgNPs was found to be in the range of 20-35 nm with an intense peak at 430 nm. The results of spectral peaks showed that PVA/CH blend maintains characteristics peak of -OH and -NH in the spectrum with higher intensity. The morphology and tensile strength of hydrogels showed a wrinkled surface with an increase in force and extension values from 0.49 to 11.15 N and 45 to 129 mm, respectively. A controlled release of 84.3% (28 h) of Ocimum sanctum extract was noticed from hydrogel discs which scavenges 69.2% of free radicals as compared to raw extract 82.5% (16 h) which scavenges 63.1% of free radicals, respectively. The results of zone of inhibition (ZOI) against gram +ve and gram -ve bacteria was found to be 9.3 mm and 6.3 mm, respectively.
Collapse
Affiliation(s)
- Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Swati Chadha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
20
|
Du H, Shi S, Liu W, Teng H, Piao M. Processing and modification of hydrogel and its application in emerging contaminant adsorption and in catalyst immobilization: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12967-12994. [PMID: 32124301 DOI: 10.1007/s11356-020-08096-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Due to the wonderful property of hydrogels, they can provide a platform for a wide range of applications. Recently, there is a growing research interest in the development of potential hydrogel adsorbents in wastewater treatment due to their adsorption ability toward aqueous pollutants. It is important to prepare such a hydrogel that possesses appropriate robustness, adsorption capacity, and adsorption efficiency to meet the need of water treatment. In order to improve the property of hydrogels, much effort has been made by researchers to modify hydrogels, among which incorporating inorganic components into the polymeric networks is the most common method, which can reduce the product cost and simplify the preparation procedure. Not only can hydrogel be applied as adsorbent, but it also can be used as matrix for catalyst immobilization. In this review, the key advancement on the preparation and modification of hydrogels is discussed, with special emphasis on the introduction of inorganic materials into polymeric networks and consequential changes in the properties of mechanical strength, swelling, and adsorption. Besides, hydrogels used as adsorbents for removal of dyes and inorganic pollutants have been widely explored, but their use for adsorbing emerging contaminants from aqueous solution has not received much attention. Thus, this review is mainly focused on hydrogels' application in removing emerging contaminants by adsorption. Furthermore, hydrogels can be also applied in immobilizing catalysts, such as enzyme and photocatalyst, to remove pollutants completely and avoid secondary pollution, so their progress as catalyst matrix is overviewed.
Collapse
Affiliation(s)
- Hongxue Du
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China
| | - Shuyun Shi
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China
| | - Wei Liu
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China
| | - Honghui Teng
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China
| | - Mingyue Piao
- Key Laboratory of Environmental Materials and Pollution Control, the Education Department of Jilin Province, Jilin Normal University, Siping, China.
- College of Environmental Science and Engineering, Jilin Normal University, 1301 Haifeng Road, Siping, 136000, China.
| |
Collapse
|
21
|
Silver nanoparticles adsorption by the synthetic and natural adsorbent materials: an exclusive review. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s41204-019-0065-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Nešović K, Janković A, Radetić T, Vukašinović-Sekulić M, Kojić V, Živković L, Perić-Grujić A, Rhee KY, Mišković-Stanković V. Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles – In vitro study. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109257] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Quadrado RF, Gohlke G, Oliboni RS, Smaniotto A, Fajardo AR. Hybrid hydrogels containing one-step biosynthesized silver nanoparticles: Preparation, characterization and catalytic application. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Kocak G. Preparation and catalytic properties of modified PGMA‐based pH‐responsive hydrogel films as a novel template for
in situ
synthesis of Au, Ag, and Au:Ag nanoparticles. J Appl Polym Sci 2019. [DOI: 10.1002/app.48360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gökhan Kocak
- Department of ChemistryAdiyaman University Adiyaman 02040 Turkey
| |
Collapse
|
25
|
Nezami S, Sadeghi M. pH-sensitive free AgNPs composite and nanocomposite beads based on starch as drug delivery systems. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02801-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
In Vivo Study of the Antibacterial Chitosan/Polyvinyl Alcohol Loaded with Silver Nanoparticle Hydrogel for Wound Healing Applications. INT J POLYM SCI 2019. [DOI: 10.1155/2019/7382717] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Silver nanoparticles have attracted great interests widely in medicine due to its great characteristics of antibacterial activity. In this research, the antibacterial activity and biocompatibility of a topical gel synthesized from polyvinyl alcohol, chitosan, and silver nanoparticles were studied. Hydrogels with different concentrations of silver nanoparticles (15 ppm, 30 ppm, and 60 ppm) were evaluated to compare their antibacterial activity, nanoparticles’ sizes, and in vivo behaviors. The resulted silver nanoparticles in the hydrogel were characterized by TEM showing the nanoparticles’ sizes less than 22 nm. The in vitro results prove that the antibacterial effects of all of the samples are satisfied. However, the in vivo results demonstrate the significant difference among different hydrogels in wound healing, where hydrogel with 30 ppm shows the best healing rate.
Collapse
|
27
|
Abstract
When chemical disinfection is performed before or after desalination, a number of harmful compounds are formed. Thus, efforts have been directed toward developing alternative methods for water disinfection. In this study, seven nanoparticles (NPs) were evaluated for disinfecting water produced from reverse osmosis and multi-stage flash desalination plants. The tested NPs were silver, copper, silver-copper, zinc oxide, magnesium oxide, silicon dioxide, and carbon nanotubes. The antimicrobial activity of the NPs was investigated by batch studies in desalinated water samples spiked with E. coli, Enterobacter, Salmonella, and Enterococci. The Chick-Watson model was fitted to the inactivation data to evaluate the kinetic constant for each combination of NPs, water type, and indicator bacteria. The results indicated that silver and silver-copper NPs have the highest disinfection efficiency among the tested NPs. Among the bacteria, Enterobacter (strain TPC129) appears to be the most inactivated, while Enterococci (strain NCTC775) seems to be the least influenced by the NPs. Variations in the chemical characteristics of the tested water samples appeared to cause noticeable differences in the antibacterial efficacies of copper and magnesium oxide NPs, but not in those of the other NPs.
Collapse
|
28
|
Rolim WR, Pieretti JC, Renó DLS, Lima BA, Nascimento MHM, Ambrosio FN, Lombello CB, Brocchi M, de Souza ACS, Seabra AB. Antimicrobial Activity and Cytotoxicity to Tumor Cells of Nitric Oxide Donor and Silver Nanoparticles Containing PVA/PEG Films for Topical Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6589-6604. [PMID: 30653288 DOI: 10.1021/acsami.8b19021] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Because of their antibacterial activity, silver nanoparticles (AgNPs) have been explored in biomedical applications. Similarly, nitric oxide (NO) is an important endogenous free radical with an antimicrobial effect and toxicity toward cancer cells that plays pivotal roles in several processes. In this work, biogenic AgNPs were prepared using green tea extract and the principles of green chemistry, and the NO donor S-nitrosoglutathione (GSNO) was prepared by the nitrosation of glutathione. To enhance the potentialities of GSNO and AgNPs in biomedical applications, the NO donor and metallic nanoparticles were individually or simultaneously incorporated into polymeric solid films of poly(vinyl alcohol) (PVA) and poly(ethylene glycol) (PEG). The resulting solid nanocomposites were characterized by several techniques, and the diffusion profiles of GSNO and AgNPs were investigated. The results demonstrated the formation of homogeneous PVA/PEG solid films containing GSNO and nanoscale AgNPs that are distributed in the polymeric matrix. PVA/PEG films containing AgNPs demonstrated a potent antibacterial effect against Gram-positive and Gram-negative bacterial strains. GSNO-containing PVA/PEG films demonstrated toxicity toward human cervical carcinoma and human prostate cancer cell lines. Interestingly, the incorporation of AgNPs in PVA/PEG/GSNO films had a superior effect on the decrease of cell viability of both cancer cell lines, compared with cells treated with films containing GSNO or AgNPs individually. To our best knowledge, this is the first report to describe the preparation of PVA/PEG solid films containing GSNO and/or biogenically synthesized AgNPs. These polymeric films might find important biomedical applications as a solid material with antimicrobial and antitumorigenic properties.
Collapse
Affiliation(s)
| | | | | | - Bruna A Lima
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology , University of Campinas (UNICAMP) , Campinas , São Paulo 13083-862 , Brazil
| | | | | | | | - Marcelo Brocchi
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology , University of Campinas (UNICAMP) , Campinas , São Paulo 13083-862 , Brazil
| | | | | |
Collapse
|
29
|
Morphological Characterization of Hydrogels. POLYMERS AND POLYMERIC COMPOSITES: A REFERENCE SERIES 2019. [DOI: 10.1007/978-3-319-77830-3_28] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Van Tran V, Park D, Lee YC. Hydrogel applications for adsorption of contaminants in water and wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:24569-24599. [PMID: 30008169 DOI: 10.1007/s11356-018-2605-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/18/2018] [Indexed: 05/10/2023]
Abstract
During the last decade, hydrogels have been used as potential adsorbents for removal of contaminants from aqueous solution. To improve the adsorption efficiency, there are numerous different particles that can be chosen to encapsulate into hydrogels and each particle has their respective advantages. Depending on the type of pollutants and approaching method, the particles will be used to prepare hydrogels. The hydrogels commonly applied in water/wastewater treatment was mainly classified into three classes according to their shape included hydrogel beads, hydrogel films, and hydrogel nanocomposites. In review of many recently research papers, we take a closer look at hydrogels and their applications for removal of contaminants, such as heavy metal ion, dyes, and radionuclides from water/wastewater in order to elucidate the reactions between contaminants and particles and potential for recycling and regeneration of the post-treatment hydrogels. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Vinh Van Tran
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Seongnam-si, 13120, Gyeonggi-do, Republic of Korea
| | - Duckshin Park
- Korea Railroad Research Institute (KRRI), 176 Cheoldobakmulkwan-ro, Uiwang-si, 16105, Gyeonggi-do, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnamdaero, Seongnam-si, 13120, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
31
|
Dil NN, Sadeghi M. Free radical synthesis of nanosilver/gelatin-poly (acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu(II) metal ions. JOURNAL OF HAZARDOUS MATERIALS 2018; 351:38-53. [PMID: 29510326 DOI: 10.1016/j.jhazmat.2018.02.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/29/2017] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
The present work involves the synthesis of porous gelatin/AcA (PGE-AcA) hydrogel and novel porous gelatin-silver/AcA (NPGESNC-AcA) nanocomposite hydrogel, and their ability as effective biosorbents for the removal of Cu2+ ions from contaminated water. The formation of the samples was confirmed by UV-Vis, TEM, SEM, EDX, DLS, AFM, XRD, TGA/DTG and FTIR techniques. The adsorption studies results showed that maximum monolayer adsorption capacity of copper ions for PGE-AcA was achieved about 130.50 mg g-1 in pH 6.0 for 50 min, and adsorption capacity for the NPGESNC-AcA was nearly 147.10 mg g-1 in pH 5.5 for 40 min by atomic absorption spectroscopy technique. The Cu2+ ions loaded on the PGE-AcA and NPGESNC-AcA could be recovered by HCl above 65.8% and 78.7% after five consecutive cycles of adsorption/desorption, respectively. The results showed that the both of biosorbents loaded by Cu2+ ions could be easily regenerated and reusable. On the other hand, the results of adsorption kinetics and equilibrium isotherms were indicated high correlation coefficient (closer to a unit) for the pseudo-second-order and excellent fitted the adsorption data with the Langmuir isotherm model. Furthermore, the antimicrobial efficiency of the synthesized samples were tested on the Staphylococcus aureus and the Escherichia coli.
Collapse
Affiliation(s)
- Narjes Nemati Dil
- Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran
| | - Mohammad Sadeghi
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran.
| |
Collapse
|
32
|
Mahmoud GA, Ali AEH, Raafat AI, Badawy NA, Elshahawy MF. Development of (acrylic acid/ polyethylene glycol)-zinc oxide mucoadhesive nanocomposites for buccal administration of propranolol HCl. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Wang D, Lu Q, Wei M, Guo E. Ultrasmall Ag nanocrystals supported on chitosan/PVA nanofiber mats with bifunctional properties. J Appl Polym Sci 2018. [DOI: 10.1002/app.46504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dong Wang
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Material Science and Engineering; Qilu University of Technology (Shandong Academy of Sciences); Jinan 250353 People's Republic of China
| | - Qifang Lu
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Material Science and Engineering; Qilu University of Technology (Shandong Academy of Sciences); Jinan 250353 People's Republic of China
| | - Mingzhi Wei
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Material Science and Engineering; Qilu University of Technology (Shandong Academy of Sciences); Jinan 250353 People's Republic of China
| | - Enyan Guo
- Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics, School of Material Science and Engineering; Qilu University of Technology (Shandong Academy of Sciences); Jinan 250353 People's Republic of China
| |
Collapse
|
34
|
Raafat AI, Mahmoud GA, Ali AEH, Badawy NA, Elshahawy MF. In vitro evaluation of mucoadhesive and self-disinfection efficiency of (acrylic acid/polyethylene glycol)-silver nanocomposites for buccal drug delivery. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517710665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A mucoadhesive drug delivery system can improve the effectiveness of a drug, allowing targeting and localization at a specific site. According to this assumption, γ-irradiation as eco-friendly technique was employed to synthesize (acrylic acid/polyethylene glycol) copolymer hydrogel of different compositions. Silver nanoparticles were prepared within (acrylic acid/polyethylene glycol) hydrogel network by means of in situ reduction of silver nitrate using sodium borohydride as a reducing agent. Swelling characteristics in distilled water and simulated saliva solution were studied as a function of copolymer composition and preparation irradiation dose. (Acrylic acid/polyethylene glycol) hydrogels and their developed Agº nanocomposites have been characterized using scanning electron microscope, thermogravimetric analysis, transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. Mucoadhesive strength as well as self-disinfection efficiency expressed as antibacterial activity against different bacterial strains was evaluated. Propranolol HCl as model drug was used to evaluate the potential efficiency of the obtained (acrylic acid/polyethylene glycol)-Agº nanocomposites as mucoadhesive drug carrier. The obtained results showed that the (acrylic acid/polyethylene glycol)-Agº nanocomposites show a promising self-disinfection property, and the propranolol HCl–loaded composites were able to deliver the loaded drug in a sustainable manner that lasts for about 600 min.
Collapse
Affiliation(s)
- Amany I Raafat
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Ghada A Mahmoud
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Amr El-Hag Ali
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Nagwa A Badawy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mai F Elshahawy
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
35
|
Hu D, Qiang T, Wang L. Quaternized chitosan/polyvinyl alcohol/sodium carboxymethylcellulose blend film for potential wound dressing application. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.wndm.2016.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
36
|
Bilgin Simsek E, Saloglu D, Ozcan N, Novak I, Berek D. Carbon fiber embedded chitosan/PVA composites for decontamination of endocrine disruptor bisphenol-A from water. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Rafique A, Mahmood Zia K, Zuber M, Tabasum S, Rehman S. Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review. Int J Biol Macromol 2016; 87:141-54. [DOI: 10.1016/j.ijbiomac.2016.02.035] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 01/27/2023]
|
38
|
Hu D, Wang L. Preparation and characterization of antibacterial films based on polyvinyl alcohol/quaternized cellulose. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Jiao T, Guo H, Zhang Q, Peng Q, Tang Y, Yan X, Li B. Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment. Sci Rep 2015; 5:11873. [PMID: 26183266 PMCID: PMC4505314 DOI: 10.1038/srep11873] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/08/2015] [Indexed: 12/22/2022] Open
Abstract
New reduced graphene oxide-based silver nanoparticle-containing composite hydrogels were successfully prepared in situ through the simultaneous reduction of GO and noble metal precursors within the GO gel matrix. The as-formed hydrogels are composed of a network structure of cross-linked nanosheets. The reported method is based on the in situ co-reduction of GO and silver acetate within the hydrogel matrix to form RGO-based composite gel. The stabilization of silver nanoparticles was also achieved simultaneously within the gel composite system. The as-formed silver nanoparticles were found to be homogeneously and uniformly dispersed on the surface of the RGO nanosheets within the composite gel. More importantly, this RGO-based silver nanoparticle-containing composite hydrogel matrix acts as a potential catalyst for removing organic dye pollutants from an aqueous environment. Interestingly, the as-prepared catalytic composite matrix structure can be conveniently separated from an aqueous environment after the reaction, suggesting the potentially large-scale applications of the reduced graphene oxide-based nanoparticle-containing composite hydrogels for organic dye removal and wastewater treatment.
Collapse
Affiliation(s)
- Tifeng Jiao
- 1] State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China [2] Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China [3] National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China [4] Department of Chemistry and Biochemistry, Science of Advanced Materials Doctoral Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Haiying Guo
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Qingrui Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Qiuming Peng
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Yongfu Tang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Xuehai Yan
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Bingbing Li
- Department of Chemistry and Biochemistry, Science of Advanced Materials Doctoral Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|