1
|
Brycht M, Poltorak L, Baluchová S, Sipa K, Borgul P, Rudnicki K, Skrzypek S. Electrochemistry as a Powerful Tool for Investigations of Antineoplastic Agents: A Comprehensive Review. Crit Rev Anal Chem 2024; 54:1017-1108. [PMID: 35968923 DOI: 10.1080/10408347.2022.2106117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Cancer is most frequently treated with antineoplastic agents (ANAs) that are hazardous to patients undergoing chemotherapy and the healthcare workers who handle ANAs in the course of their duties. All aspects related to hazardous oncological drugs illustrate that the monitoring of ANAs is essential to minimize the risks associated with these drugs. Among all analytical techniques used to test ANAs, electrochemistry holds an important position. This review, for the first time, comprehensively describes the progress done in electrochemistry of ANAs by means of a variety of bare or modified (bio)sensors over the last four decades (in the period of 1982-2021). Attention is paid not only to the development of electrochemical sensing protocols of ANAs in various biological, environmental, and pharmaceutical matrices but also to achievements of electrochemical techniques in the examination of the interactions of ANAs with deoxyribonucleic acid (DNA), carcinogenic cells, biomimetic membranes, peptides, and enzymes. Other aspects, including the enantiopurity studies, differentiation between single-stranded and double-stranded DNA without using any label or tag, studies on ANAs degradation, and their pharmacokinetics, by means of electrochemical techniques are also commented. Finally, concluding remarks that underline the existence of a significant niche for the basic electrochemical research that should be filled in the future are presented.
Collapse
Affiliation(s)
- Mariola Brycht
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Lukasz Poltorak
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Simona Baluchová
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czechia
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
| | - Karolina Sipa
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Paulina Borgul
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Konrad Rudnicki
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Sławomira Skrzypek
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Wang J, Xu X, Li Z, Qiu B. Simple and sensitive electrochemical sensing of amethopterin by using carbon nanobowl/cyclodextrin electrode. Heliyon 2024; 10:e31060. [PMID: 38832273 PMCID: PMC11145242 DOI: 10.1016/j.heliyon.2024.e31060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Resulted from the severe side effects, the development of inexpensive, simple and sensitive method for amethopterin (ATP, an antineoplastic drug) is very important but it still remains a challenge. In this work, low cost nanohybrid composed of carbon nanobowl (CNB) and β-cyclodextrins (β-CD) (CNB-CD) was prepared with a simple autopolymerization way and applied as electrode material to develop a novel electrochemical sensor of ATP. Scanning-/transmission-electron microscopy, Fourier transform infrared spectrum, photographic image and electrochemical technologies were utilized to characterize morphologies and structure of the as-prepared CNB and CNB-CD materials. On the basic of the coordination advantages from CNB (prominent electrical property and surface area) and β-CD (superior molecule-recognition and solubility capabilities), the CNB-CD nanohybrid modified electrode exhibits superior sensing performances toward ATP, and a low detection limit of 0.002 μM coupled with larger linearity of 0.005-12.0 μM are obtained. In addition, the as-prepared sensor offers desirable repeatability, stability, selectivity and practical application property, confirming that this proposal may have important applications in the determination of ATP.
Collapse
Affiliation(s)
- Jian Wang
- Pharmaceutical Chemistry Department, School of Pharmacy, Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, PR China
| | - Xiuzhi Xu
- Pharmaceutical Chemistry Department, School of Pharmacy, Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, PR China
| | - Zhulai Li
- Pharmaceutical Chemistry Department, School of Pharmacy, Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, PR China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology (Fuzhou University), Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, Eel Farming and Processing, Fuzhou, Fujian, 350108, PR China
| |
Collapse
|
3
|
Wang Y, Li S, Gao Y, Du B, Vafaei S, Li M, Wu H, Tong X, Chen Y. Synthesis of poly (L-cysteine)/g-C 3N 4 modified glassy carbon electrodes for electrochemical detection of methotrexate as a medicine for treatment of breast cancer in pharmaceutical fluid samples. CHEMOSPHERE 2023; 331:138769. [PMID: 37100252 DOI: 10.1016/j.chemosphere.2023.138769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Analyzing the levels of anticancer medications in biological samples and body fluids reveals important details on the course and effects of chemotherapy. p (L-Cys)/graphitic-carbon nitride (g-C3N4)/GCE, a modified glassy carbon electrode, was created for the current study's electrochemical detection of methotrexate (MTX), a drug used to treat breast cancer, in pharmaceutical fluid samples. l-Cysteine was electro-polymerized on the surface of the g-C3N4/GCE after the g-C3N4 was first modified to prepare the p (L-Cys)/g-C3N4/GCE. Analyses of morphology and structure showed that well-crystalline p (L-Cys) on g-C3N4/GCE was successfully electropolymerized. Studying the electrochemical characteristics of p (L-Cys)/g-C3N4/GCE using CV and DPV techniques revealed a synergistic impact between g-C3N4 and l-cysteine that improved the stability and selectivity of the electrochemical oxidation of MTX while enhancing the electrochemical signal. Results showed that 7.5-780 μM was the linear range, and that 0.11841 μA/μM and 6 nM, respectively, were the sensitivity and limit of detection. The applicability of the suggested sensors was assessed using real pharmaceutical preparations, and the results showed that p (L-Cys)/g-C3N4/GCE had a high degree of precision. Five breast cancer patients who volunteered and provided prepared blood serum samples between the ages of 35 and 50 were used to examine the validity and accuracy of the proposed sensor in the current work for the determination of MTX. The results showed good recovery values (greater than 97.20%), appropriate accuracy (RSD less than 5.11%), and good agreement between the ELISA and DPV analysis results. These findings showed that p (L-Cys)/g-C3N4/GCE can be applied as a trustworthy MTX sensor for MTX level monitoring in blood samples and pharmaceutical samples.
Collapse
Affiliation(s)
- Yanzhong Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Shuangshuang Li
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Hangzhou, Zhejiang, 310014, China
| | - Yuzhen Gao
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, Zhejiang, 310016, China
| | - Bo Du
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advance Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Manning Li
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Hangzhou, Zhejiang, 310014, China
| | - Han Wu
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Hangzhou, Zhejiang, 310014, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Hangzhou, Zhejiang, 310014, China; Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Hangzhou, Zhejiang, 310014, China.
| | - Yirui Chen
- Cancer Center, Department of Hematology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, 58 Shangtang Road, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
4
|
Antherjanam S, Saraswathyamma B, Murugesan Senthil Kumar S. Simultaneous electrochemical determination of the tumour biomarkers homovanillic acid and vanillylmandelic acid using a modified pencil graphite electrode. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Keerthika Devi R, Ganesan M, Chen TW, Chen SM, Akilarasan M, Shaju A, Rwei SP, Yu J, Yu YY. In-situ formation of niobium oxide – niobium carbide – reduced graphene oxide ternary nanocomposite as an electrochemical sensor for sensitive detection of anticancer drug methotrexate. J Colloid Interface Sci 2023; 643:600-612. [PMID: 37003869 DOI: 10.1016/j.jcis.2023.03.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
Engineering the nanostructure of an electrocatalyst is crucial in developing a high-performance electrochemical sensor. This work exhibits the hydrothermal followed by annealing synthesis of niobium oxide/niobium carbide/reduced graphene oxide (NbO/NbC/rGO) ternary nanocomposite. The oval-shaped NbO/NbC nanoparticles cover the surface of rGO evenly, and the rGO nanosheets are interlinked to produce a micro-flower-like architecture. The NbO/NbC/rGO nanocomposite-modified electrode is presented here for the first time for the rapid and sensitive electrochemical detection of the anticancer drug methotrexate (MTX). Down-sized NbO/NbC nanoparticles and rGO's high surface area provide many active sites with a rapid electron transfer rate, making them ideal for MTX detection. In comparison to previously reported MTX sensors, the developed drug sensor exhibits a lower oxidation potential and a higher peak current responsiveness. The constructed sensors worked analytically well under optimal conditions, as shown by a low detection limit of 1.6 nM, a broad linear range of 0.1-850 µM, and significant recovery findings (∼98 %, (n = 3)) in real samples analysis. Thus, NbO/NbC/rGO nanocomposite material for high-performance electrochemical applications seems promising.
Collapse
Affiliation(s)
- Ramadhass Keerthika Devi
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Muthusankar Ganesan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Muthumariappan Akilarasan
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Anlin Shaju
- International College of Semiconductor Technology (ICST), National Yang Ming Chiao Tung University, Taiwan
| | - Syang-Peng Rwei
- Research and Development Center for Smart Textile Technology, National Taipei University of Technology, Taipei 106, Taiwan; Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taiwan
| | - Jaysan Yu
- Well Fore Special Wire Corporation, 10, Tzu-Chiang 7rd., Chung-Li Industrial Park, Taoyuan, Taiwan
| | - Yen-Yao Yu
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| |
Collapse
|
6
|
Aftab K, Naseem T, Hussain S, Haq S, Waseem M. Synthesis and characterization of Ag 2O, CoFe 2O 4, GO, and their ternary composite for antibacterial activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:4079-4093. [PMID: 35962168 DOI: 10.1007/s11356-022-22516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Currently, nanomaterials with exceptional antibacterial activity have become an emerging domain in research. The optimization of nanomaterials against infection causing agents is the next step in dealing with the present-day problem of antibiotics. In this research work, Ag2O, CoFe2O4, and Ag2O/CoFe2O4/rGO are prepared by chemical methods. Ag2O was prepared by co-precipitation method, while solvothermal technique was utilized for the synthesis of CoFe2O4. The ternary nanocomposite was synthesized by a simple in situ reduction using a two-step approach. The structural and morphological properties were studied by UV-Vis spectroscopy, X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (SEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR). From the X-ray diffraction analysis, the crystallite size is found to be 14 nm, 5 nm, and 6 nm for Ag2O, CoFe2O4, and Ag2O/CoFe2O4/rGO respectively. The synthesized nanomaterials were investigated for antibacterial activities against gram-positive strain Staphylococcus aureus (S. aureus) and gram-negative strain Escherichia coli (E. coli) using Agar well diffusion method. Ag2O and CoFe2O4 showed zones of inhibition (ZOI) of 13 mm and 11 mm against gram positive bacteria while 12 mm against gram negative bacteria respectively, while ternary nanocomposite showed 14 mm and 13 mm of ZOI. The antibacterial activity of nanomaterials showed a gradual increment with an increase in the concentration of the materials. Ag2O, CoFe2O4, and Ag2O/CoFe2O4/rGO showed minimum inhibitory concentration (MIC) values of 4.5, 6.5, and 4.5 μg/mL for S. aureus and 6.5, 7.2, and 4.8 μg/mL for E. coli respectively. Minimum bactericidal concentrations were found to be same as the MIC values. Additionally, a time-kill curve analysis was performed and for ternary nanocomposite; the killing response was most effective as the complete killing was achieved at 3 h of incubation at 3-MIC (9.75 μg/mL). These results demonstrate that all the nanomaterials, as a kind of antibacterial material, have a great potential for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Komal Aftab
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Islamabad, Pakistan
| | - Taiba Naseem
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Shahzad Hussain
- Department of Physics, COMSATS University Islamabad, Islamabad Campus, Islamabad, Pakistan
| | - Sirajul Haq
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Muhammad Waseem
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Islamabad, Pakistan.
| |
Collapse
|
7
|
Magerusan L, Pogacean F, Rada S, Pruneanu S. Sulphur-doped graphene based sensor for rapid and efficient gallic acid detection from food related samples. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Sensing performances of spinel ferrites MFe2O4 (M = Mg, Ni, Co, Mn, Cu and Zn) based electrochemical sensors: A review. Anal Chim Acta 2022; 1233:340362. [DOI: 10.1016/j.aca.2022.340362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022]
|
9
|
Mostafazadeh R, Ghaffarinejad A, Tajabadi F. A caffeic acid electrochemical sensor amplified with GNR/CoFe 2O 4@NiO and 1-Ethyl-3-methylimidazolium acetate; a new perspective for food analysis. Food Chem Toxicol 2022; 167:113312. [PMID: 35863483 DOI: 10.1016/j.fct.2022.113312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/02/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
Determining Caffeic acid is important as an antioxidant compound in food. In this study, caffeic acid (CA) was measured using a carbon paste electrode modified with GNR/CoFe2O4@NiO and 1-Ethyl-3-methylimidazolium acetate (EMIM Ac) as ion liquid. A simple sensor showed a higher current than a bare carbon paste; thus, it can be said that the modified electrode has a higher sensitivity for detecting CA. The linear range of this sensor and its detection limit was equal to 0.01-100.0 μM and 0.01 μM, respectively. Moreover, the developed electrode indicated outstanding selectivity in the presence of several interferences, high sensitivity, reproducibility, and long-term stability. The percentage recovery of CA obtained with the developed sensor affirmed its reliability for CA determination in real samples. The modified sensor's accuracy was confirmed to identify this analyte according to the results.
Collapse
Affiliation(s)
- Reza Mostafazadeh
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran; Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj PO Box, 31787-316, Iran
| | - Ali Ghaffarinejad
- Research Laboratory of Real Samples Analysis, Faculty of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran; Electroanalytical Chemistry Research Center, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran.
| | - Fariba Tajabadi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj PO Box, 31787-316, Iran
| |
Collapse
|
10
|
Chen Q, Su X, Liu X, Wang J, Song R, He D, Chaemchuen S, Verpoort F. Bimetallic-doped Zeolitic imidazole framework-derived Cobalt-Nitrogen-Carbon supported on reduced graphene oxide enabling efficient microwave absorption. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Lin X, Zhang L, Tu M, Yin X, Cai L, Huang Y. Simple, low-cost and sensitive electrochemical sensing of antineoplastic drug amethopterin based on a nanocarbon black modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:526-531. [PMID: 35040833 DOI: 10.1039/d1ay01237a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Various methods have been proposed currently to detect amethopterin (ATP, a widely used anticancer drug that is also called methotrexate); however, a simple and low-cost electrochemical method coupled with high sensitivity is scarce. In this study, by using low-cost and readily available nanocarbon black (NCB), which has excellent conductivity and stable dispersion in water as well as large surface area, as electrode materials to modify a glassy carbon electrode (GCE), a simple, inexpensive and highly-sensitive electrochemical sensor was constructed based on NCB/GCE. The electrochemical behaviors of ATP at both NCB/GCE and GCE were studied; the results show that the peak current of ATP at NCB/GCE is extremely higher than that at the bare GCE. For sensing ATP with high sensitivity, various control conditions including accumulation time, pH values of the phosphate buffer solution and NCB amount were optimized. The quantitative testing results show that NCB/GCE presents excellent sensing performances with a wide linearity range from 0.01 to 10.0 μM and low limit of detection (4.0 nM) towards ATP. Moreover, the investigation in the reproducibility and stability as well as selectivity of NCB/GCE demonstrated that the related results are also satisfactory. It is thus simple and effective method for ATP analysis and has important applications.
Collapse
Affiliation(s)
- Xiaoqing Lin
- Provincial Clinical College, Fujian Medical University, Fuzhou 350001, China.
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Liangming Zhang
- Provincial Clinical College, Fujian Medical University, Fuzhou 350001, China.
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Mingshu Tu
- Provincial Clinical College, Fujian Medical University, Fuzhou 350001, China.
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Xiaoqing Yin
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou 350001, China
- Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou 350001, China
| | - Liqing Cai
- Provincial Clinical College, Fujian Medical University, Fuzhou 350001, China.
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Yi Huang
- Provincial Clinical College, Fujian Medical University, Fuzhou 350001, China.
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou 350001, China
- Central Laboratory, Fujian Provincial Hospital, Fuzhou 350001, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou 350001, China
| |
Collapse
|
12
|
Xhakaza NM, Chokkareddy R, Redhi GG. An Efficient Sensor for the Detection of Zidovudine Based on 1‐Ethyl‐3‐methylimidazolium 1,1,2,2‐tetrafluoroethanesulfonate/ZnO Nanoparticle/MWCNT Glassy Carbon Electrodes**. ChemistrySelect 2021. [DOI: 10.1002/slct.202102531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Rajasekhar Chokkareddy
- Department of Chemistry Durban University of Technology Durban South Africa- 4001
- Department of Chemistry Aditya College of Engineering & Technology Surampalem 533437 Andhra Pradesh India
| | - Gan G Redhi
- Department of Chemistry Durban University of Technology Durban South Africa- 4001
| |
Collapse
|
13
|
Khand AA, Lakho SA, Tahira A, Ubaidullah M, Alothman AA, Aljadoa K, Nafady A, Ibupoto ZH. Facile Electrochemical Determination of Methotrexate (MTX) Using Glassy Carbon Electrode-Modified with Electronically Disordered NiO Nanostructures. NANOMATERIALS 2021; 11:nano11051266. [PMID: 34065856 PMCID: PMC8150394 DOI: 10.3390/nano11051266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023]
Abstract
Recently, the oxidative behavior of methotrexate (MTX) anticancer drug is highly demanded, due to its side effects on healthy cells, despite being a very challenging task. In this study, we have prepared porous NiO material using sodium sulfate as an electronic disorder reagent by hydrothermal method and found it highly sensitive and selective for the oxidation of MTX. The synthesized NiO nanostructures were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) techniques. These physical characterizations delineated the porous morphology and cubic crystalline phase of NiO. Different electrochemical approaches have been utilized to determine the MTX concentrations in 0.04 M Britton-Robinson buffer (BRB) at pH 2 using glassy carbon electrode (GCE)-modified with electronically disordered NiO nanostructures. The linear range for MTX using cyclic voltammetry (CV) was found to be from 5 to 30 nM, and the limit of detection (LOD) and limit of quantification (LOQ) were 1.46 nM and 4.86 nM, respectively, whereas the linear range obtained via linear sweep voltammetry (LSV) was estimated as 15-90 nM with LOD and LOQ of 0.819 nM and 2.713 nM, respectively. Additionally, amperometric studies revealed a linear range from 10 to70 nM with LOD and LOQ of 0.1 nM and 1.3 nM, respectively. Importantly, MTX was successfully monitored in pharmaceutical products using the standard recovery method. Thus, the proposed approach for the synthesis of active metal oxide materials could be sued for the determination of other anticancer drugs in real samples and other biomedical applications.
Collapse
Affiliation(s)
- Aftab A. Khand
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Department of Physiology, University of Sindh, Jamshoro 76080, Sindh, Pakistan
- Correspondence: (A.A.K.); (S.A.L.); (Z.H.I.)
| | - Saeed A. Lakho
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Sindh, Pakistan
- Correspondence: (A.A.K.); (S.A.L.); (Z.H.I.)
| | - Aneela Tahira
- Dr. M.A Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Sindh, Pakistan;
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.U.); (A.A.A.); (K.A.); (A.N.)
| | - Asma A. Alothman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.U.); (A.A.A.); (K.A.); (A.N.)
| | - Khoulwod Aljadoa
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.U.); (A.A.A.); (K.A.); (A.N.)
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (M.U.); (A.A.A.); (K.A.); (A.N.)
| | - Zafar H. Ibupoto
- Dr. M.A Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Sindh, Pakistan;
- Correspondence: (A.A.K.); (S.A.L.); (Z.H.I.)
| |
Collapse
|
14
|
Akramipour R, Fattahi N, Golpayegani MR. Sensitive determination of methotrexate in plasma of children with acute leukemia using double-solvent supramolecular systemas a novel extractant for dispersive liquid-liquid microextraction. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1171:122628. [PMID: 33740692 DOI: 10.1016/j.jchromb.2021.122628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/05/2023]
Abstract
Methotrexate, as a folate antagonist, is one of the first anti-neoplasm drugs offered and is still used as an effective drug in the treatment of various malignancies. Methotrexate has a narrow treatment index and is associated with numerous side effects.In thisresearch, for the first time a double-solvent supramolecular system (DSS) was developed as an extractant without disperser solvent for dispersive liquid-liquid microextraction (DLLME). DSS - DLLME was applied to the extraction of methotrexate in plasma of children with acute leukemiaprior to itsdetermination by high-performance liquid chromatography-ultraviolet detection (HPLC - UV). In the present method, two long normal chain alcohols are mixed in a particular ratio, and then it is injected into the sample solution, which is on the magnetic stirrer. In this case, the mixture of the two alcohol changes to new supramolecular aggregate. This new supermolecule is used as an extractant, which has a higher extraction power than any of its components alone. Under the optimum conditions, the calibration graph was linear in the rage of 0.1-150 µg L-1 with detection limit of 0.03 µg L-1. Relative standard deviations (RSDs) including intra-day and inter-day of method based on7 replicate determinations of 100.0 µg L-1of methotrexate were 2.6% and 4.8%,respectively. The results proved that DSS - DLLME is a sensitive, very simple, inexpensive, environmental friendly, rapid and efficient method for the preconcentration of trace amount of drugs in biological samples.
Collapse
Affiliation(s)
- Reza Akramipour
- School of Medical, Kermanshah University of Medical Sciences, Kermanshah, Iran; Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nazir Fattahi
- Research Center for Environmental Determinants of Health (RCEDH), Health Inestitue, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mohammad Reza Golpayegani
- School of Medical, Kermanshah University of Medical Sciences, Kermanshah, Iran; Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
15
|
Safaei M, Shishehbore MR. A review on analytical methods with special reference to electroanalytical methods for the determination of some anticancer drugs in pharmaceutical and biological samples. Talanta 2021; 229:122247. [PMID: 33838767 DOI: 10.1016/j.talanta.2021.122247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
It is widely accepted that cancer, the second leading cause of death, is a morbidity with big impacts on the global health. In the last few years, chemo-therapeutic treatment continually induces alone most lengthy consequents, which is extremely harmful for the physiological and psychological health of the patients. In the present research, we discuss the recent techniques for employed for extraction, and quantitative determination of such compounds in pharmaceutical, and biological specimens. In the frame of this information, this review aims to provide basic principles of chromatography, spectroscopy, and electroanalytical methods for the analysis of anticancer drugs published in the last three years. The review also describes the recent developments regarding enhancing the limit of detection (LOD), the linear dynamic range, and so forth. The results show that the LOD for the chromatographic techniques with the UV detector was obtained equaled over the range 2.0 ng mL-1-0.2 μg mL-1, whereas the LOD values for analysis by chromatographic technique with the mass spectrometry (MS) detector was found between 10.0 pg mL-1-0.002 μg mL-1. The biological fluids could be directly injected to capillary electrophoresis (CE) in cases where the medicine concentration is at the contents greater than mg L-1 or g L-1. Additionally, electrochemical detection of the anticancer drugs has been mainly conducted by the voltammetry techniques with diverse modified electrodes, and lower LODs were estimated between 3.0 ng mL-1-0.3 μg mL-1. It is safe to say that the analyses of anticancer drugs can be achieved by employing a plethora of techniques such as electroanalytical, spectroscopy, and chromatography techniques.
Collapse
Affiliation(s)
- Mohadeseh Safaei
- Department of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran
| | | |
Collapse
|
16
|
Hengameh Zabolestani, Sarhadi H, Beitollahi H. Electrochemical Sensor Based on Modified Screen Printed Electrode for Vitamin B6 Detection. SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY 2021. [DOI: 10.3103/s1068375521020149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Li J, Chen D, Zhang T, Chen G. Highly sensitive electrochemical determination of methotrexate based on a N-doped hollow nanocarbon sphere modified electrode. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:117-123. [PMID: 33319215 DOI: 10.1039/d0ay01996h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As an antineoplastic drug, methotrexate (MTX) is widely applied in cancer therapies; however it has potentially toxic activity, and thus the qualitative and quantitative determination of MTX is of great significance. In this paper, by using dopamine synchronously as a carbon and N source, N-doped hollow nanocarbon sphere (NHNC) hybrids were prepared via a simple self-polymerization method and used to construct a new electrochemical sensor for MTX. The prepared NHNC exhibits a uniform hollow nanostructure with high conductivity and electrocatalytic properties as well as large adsorption capacity and surface area, which are the key factors for improving the sensor sensitivity of MTX. For achieving highly sensitive determination of MTX, various conditions were optimized, and the final results show that the NHNC modified electrode has excellent sensing responses for MTX, and it has a wide linear range from 0.05 to 14.0 μM coupled with a low detection limit of 0.01 μM. Finally, studies on the reproducibility, stability and selectivity of the NHNC modified electrode show that the corresponding results are satisfactory.
Collapse
Affiliation(s)
- Jiafeng Li
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, P. R. China.
| | | | | | | |
Collapse
|
18
|
Süngü Mısırlıoğlu B, Çakır Ö, Calik H, Cakir-Koc R. Assessment of structural and cytotoxic properties of cobalt ferrite nanoparticles for biomedical applications. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1862216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Banu Süngü Mısırlıoğlu
- Department of Physics, Faculty of Arts & Science, Yildiz Technical University, Istanbul, Turkey
| | - Öznur Çakır
- Department of Physics, Faculty of Arts & Science, Yildiz Technical University, Istanbul, Turkey
| | - Hilal Calik
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| | - Rabia Cakir-Koc
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
19
|
Moraes RR, Farias EADO, Carvalho CL, Cantanhêde W, Eiras C. Development of cashew gum-based bionanocomposite as a platform for electrochemical trials. Int J Biol Macromol 2020; 153:118-127. [DOI: 10.1016/j.ijbiomac.2020.02.312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022]
|
20
|
Salandari-Jolge N, Ensafi AA, Rezaei B. A novel three-dimensional network of CuCr 2O 4/CuO nanofibers for voltammetric determination of anticancer drug methotrexate. Anal Bioanal Chem 2020; 412:2443-2453. [PMID: 32025770 DOI: 10.1007/s00216-020-02461-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 01/06/2023]
Abstract
Considering the importance of measuring anticancer drugs, a carbon paste electrode (CPE) modified with CuCr2O4/CuO nanofibers in the presence of hydrophobic ionic liquid (IL) was fabricated for methotrexate (MTX) sensing. CuCr2O4/CuO nanofibers were prepared by electrospinning method. Then, the morphology and structure of the nanofibers were studied by scanning electron microscopy, thermal analysis, X-ray diffraction, energy-dispersive X-ray, map analysis, and FT-IR spectroscopy. The electrochemical behavior of MTX at CuCr2O4/CuO/IL/CPE surface was studied using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. After optimization of the experimental parameters, the prepared sensor showed a low detection limit of 25 nM MTX, based on signal-to-noise (S/N = 3), and it can determine in a wide range of 0.1-300 μM in Britton-Robinson buffer solution at pH 2.5. The modified electrode was used to determine MTX concentration in blood and urine samples with good recoveries of 94.1-104.3. This sensor has several advantages such as low cost, easy preparation, high-performance speed and high sensitivity, selectivity, stability, and repeatability. Graphical abstract Scheme of preparation of CuCr2O4/CuO nanofibers by electrospinning method and design of a carbon past electrode using prepared nanofibers (CuCr2O4/CuO/IL/CPE). This electrode was used for methotrexate determination in plasma and urine samples using differential pulse voltammetry.
Collapse
Affiliation(s)
- N Salandari-Jolge
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Behzad Rezaei
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
21
|
Karami F, Ranjbar S, Ghasemi Y, Negahdaripour M. Analytical methodologies for determination of methotrexate and its metabolites in pharmaceutical, biological and environmental samples. J Pharm Anal 2019; 9:373-391. [PMID: 31890337 PMCID: PMC6931080 DOI: 10.1016/j.jpha.2019.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/05/2019] [Accepted: 06/19/2019] [Indexed: 02/08/2023] Open
Abstract
Methotrexate (MTX) is a folate antagonist drug used for several diseases, such as cancers, various malignancies, rheumatoid arthritis (RA) and inflammatory bowel disease. Due to its structural features, including the presence of two carboxylic acid groups and its low native fluorescence, there are some challenges to develop analytical methods for its determination. MTX is metabolized to 7-hydroxymethotrexate (7-OH-MTX), 2,4-diamino-N10-methylpteroic acid (DAMPA), and the active MTX polyglutamates (MTXPGs) in the liver, intestine, and red blood cells (RBCs), respectively. Additionally, the drug has a narrow therapeutic range; hence, its therapeutic drug monitoring (TDM) is necessary to regulate the pharmacokinetics of the drug and to decrease the risk of toxicity. Due to environmental toxicity of MTX; its sensitive, fast and low cost determination in workplace environments is of great interest. A large number of methodologies including high performance liquid chromatography equipped with UV-visible, fluorescence, or electrochemical detection, liquid chromatography-mass spectroscopy, capillary electrophoresis, UV-visible spectrophotometry, and electrochemical methods have been developed for the quantitation of MTX and its metabolites in pharmaceutical, biological, and environmental samples. This paper will attempt to review several published methodologies and the instrumental conditions, which have been applied to measure MTX and its metabolites within the last decade.
Collapse
Affiliation(s)
- Forough Karami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Central Research Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Chemistry Department, Yasouj University, Yasouj, Iran
| | - Sara Ranjbar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Ozcelikay G, Karadurmus L, Kaya SI, Bakirhan NK, Ozkan SA. A Review: New Trends in Electrode Systems for Sensitive Drug and Biomolecule Analysis. Crit Rev Anal Chem 2019; 50:212-225. [PMID: 31107105 DOI: 10.1080/10408347.2019.1615406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Drug and biomolecule analysis with high precision, fast response, not expensive, and user-friendly methods have been very important for developing technology and clinical applications. Electrochemical methods are highly capable for assaying the concentration of electroactive drug or biomolecule and supply excellent knowledge concerning its physical and chemical properties such as electron transfer rates, diffusion coefficients, electron transfer number, and oxidation potential. Electrochemical methods have been widely applied because of their accuracy, sensitivity, cheapness, and can applied on-site determinations of various substances. The progress on electronics has allowed developing reliable, more sensitive and less expensive instrumentations, which have significant contribution in the area of drug development, drug and biomolecule analysis. The developing new sensors for electrochemical analysis of these compounds have growing interest in recent years. Screen-printed based electrodes have a great interest in electrochemical analysis of various drugs and biomolecules due to their easy manufacturing procedure of the electrode allow the transfer of electrochemical laboratory experiments for disposable on-site analysis of some compounds. Paper based electrodes are also fabricated by new technology. They can be preferred due to their easy, cheap, portable, disposable, and offering high sensitivity properties for many application field such as environmental monitoring, food quality control, clinical diagnosis, drug, and biomolecules analysis. In this review, the recent electrochemical drug and biomolecule (DNA, RNA, µRNA, Biomarkers, etc.) studies will be presented that involve new trend disposable electrodes.
Collapse
Affiliation(s)
- Goksu Ozcelikay
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Analytical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Turkey
| | - S Irem Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Nurgul K Bakirhan
- Department of Chemistry, Arts & Sciences Faculty, Hitit University, Corum, Turkey
| | - Sibel A Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
23
|
A selective and sensitive detection of residual hazardous textile dyes in wastewaters using voltammetric sensor. Microchem J 2019. [DOI: 10.1016/j.microc.2019.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
El‐Said WA, Abdel‐Rahman MA, Sayed EM, Abdel‐Wahab AA. Electrochemical Monitoring of Methotrexate Anticancer Drug in Human Blood Serum by Using
in situ
Solvothermal Synthesized Fe
3
O
4
/ITO Electrode. ELECTROANAL 2019. [DOI: 10.1002/elan.201800798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Waleed A. El‐Said
- Department of Chemistry, Faculty of ScienceAssiut University Assiut 71516 Egypt
| | | | - Eman M. Sayed
- Department of Chemistry, Faculty of ScienceAssiut University Assiut 71516 Egypt
| | | |
Collapse
|
25
|
Cysteine capped copper/molybdenum bimetallic nanoclusters for fluorometric determination of methotrexate via the inner filter effect. Mikrochim Acta 2019; 186:130. [DOI: 10.1007/s00604-019-3230-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
|
26
|
García M, Honores J, Celis F, Fuenzalida F, Arce R, Aguirre MJ, Aracena A. Imidazolium-based ionic liquids as stabilizers for electrode modification with water-soluble porphyrin. NEW J CHEM 2019. [DOI: 10.1039/c8nj05455j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imidazolium-based ionic liquids were used as stabilizing agents for a cationic porphyrin in order to obtain novel modified electrodes.
Collapse
Affiliation(s)
- Macarena García
- Universidad de Playa Ancha de Ciencias de la Educación
- Facultad de Ciencias Naturales y Exactas
- Departamento de Química, Leopoldo Carvallo 270
- Valparaíso
- Chile
| | - Jessica Honores
- Pontificia Universidad Católica de Chile
- Facultad de Química
- Departamento de Electroquímica
- Avenida Vicuña Mackenna #4860
- Macul
| | - Freddy Celis
- Universidad de Playa Ancha de Ciencias de la Educación
- Facultad de Ciencias Naturales y Exactas
- Departamento de Química, Leopoldo Carvallo 270
- Valparaíso
- Chile
| | - Francesca Fuenzalida
- Universidad de las Américas
- Instituto de Ciencias Naturales
- Manuel Montt 948
- Santiago
- Chile
| | - Roxana Arce
- Departamento Ciencias Biológicas y Químicas
- Facultad de Medicina y Ciencia
- Universidad San Sebastián
- Lota 2465
- Providencia
| | - María J. Aguirre
- Universidad de Santiago de Chile
- Facultad de Química y Biología
- Departamento de Química de los Materiales
- Laboratorio de Polímeros Conductores
- Santiago
| | - Andrés Aracena
- Universidad de las Américas
- Instituto de Ciencias Naturales
- Manuel Montt 948
- Santiago
- Chile
| |
Collapse
|
27
|
Nasr-Esfahani P, Ensafi AA, Rezaei B. MWCNTs/Ionic Liquid/Graphene Quantum Dots Nanocomposite Coated with Nickel-Cobalt Bimetallic Catalyst as a Highly Selective Non-enzymatic Sensor for Determination of Glucose. ELECTROANAL 2018. [DOI: 10.1002/elan.201800572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Parisa Nasr-Esfahani
- Department of Chemistry; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Ali A. Ensafi
- Department of Chemistry; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Behzad Rezaei
- Department of Chemistry; Isfahan University of Technology; Isfahan 84156-83111 Iran
| |
Collapse
|
28
|
Development of a simple electrochemical sensor for the simultaneous detection of anticancer drugs. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|