1
|
Abbas A, Lai DYF, Peng P, She D. Lignin-Based Functional Materials in Agricultural Application: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39998417 DOI: 10.1021/acs.jafc.4c11601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The demand for biodegradable, sustainable, and eco-friendly alternatives is growing in crop production and protection, which forces an urgent need for society to shift toward more sustainable agricultural development. In recent years, the development and research of lignin-based functional materials have gained increasing attention and impetus, and their use has become more widespread in sustainable agriculture. This review covers the latest research on the potential applications of lignin-based functional materials in plant protectants, sensors for pollutant detection, toxic element removal in soil and water, enzyme immobilization, plant growth regulators/biostimulants, hydrogels, and mulching films. Finally, future challenges and perspectives of lignin-based functional materials are discussed to provide a new strategy for the promotion of sustainable agriculture.
Collapse
Affiliation(s)
- Aown Abbas
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Derrick Y F Lai
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Pai Peng
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Diao She
- College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
Li Y, Liu C, Wei H, Yu Z, Deng C, Liu Y, Gai X, Xiao H. Dual-functional lignocellulosic mulch as agricultural plastic alternative for sustained-release of photosensitive pesticide and immobilizing heavy metal ions. Int J Biol Macromol 2024; 273:132945. [PMID: 38851614 DOI: 10.1016/j.ijbiomac.2024.132945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
The extensive utilization of non-biodegradable plastic agricultural mulch in the past few decades has resulted in severe environmental pollution and a decline in soil fertility. The present study involves the fabrication of environmentally friendly paper-based mulch with dual functionality, incorporating agrochemicals and heavy metal ligands, through a sustainable papermaking/coating technique. The functional paper-based mulch consists of a cellulose fiber web incorporated with Emamectin Benzoate (EB)@ Aminated sodium lignosulfonate (ASL). The spherical microcapsules loaded with the pesticide EB exhibited an optimal core-shell structure for enhanced protection and controlled release of the photosensitizer EB (Sustained release >75 % in 50 h). Meanwhile, the ASL, enriched with metal chelating groups (-COOH, -OH, and -NH2, etc.), served as a stabilizing agent for heavy metal ions, enhancing soil remediation efficiency. The performance of paper-based mulch was enhanced by the application of a hydrophobic layer composed of natural chitosan/carnauba wax, resulting in exceptional characteristics such as superior tensile strength, hydrophobicity, heat insulation, moisture retention, as well as compostability and biodegradability (biodegradation >80 % after 70 days). This study developed a revolutionary lignocellulosic eco-friendly mulch that enables controlled agrochemical release and soil heavy metal remediation, leading to a superior substitute to conventional and non-biodegradable plastic mulch used in agriculture.
Collapse
Affiliation(s)
- Yu Li
- International Innovation Center for Forest Chemicals and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Chao Liu
- International Innovation Center for Forest Chemicals and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, China.
| | - Haiying Wei
- International Innovation Center for Forest Chemicals and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaochuan Yu
- International Innovation Center for Forest Chemicals and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Chao Deng
- International Innovation Center for Forest Chemicals and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Liu
- International Innovation Center for Forest Chemicals and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoqian Gai
- International Innovation Center for Forest Chemicals and Materials, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B5A3, Canada
| |
Collapse
|
3
|
He C, Mou H, Hou W, Chen W, Ao T. Drought-resistant and water-retaining tobermorite/starch composite hydrogel for the remediation of cadmium-contaminated soil. Int J Biol Macromol 2024; 255:127534. [PMID: 37866565 DOI: 10.1016/j.ijbiomac.2023.127534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
The objective of this work is utilizing fly ash to synthesize tobermorite (TOB) with a higher specific surface area and layered structure, and incorporating it into the starch/acrylic acid network to boost the drought resistance, water retention and heavy metal adsorption properties. The water absorption and water retention performance and cadmium adsorption characteristics of tobermorite/leftover rice-based composite hydrogel (TOB@LR-CH) were evaluated by water absorption swelling test, soil evaporation test and batch adsorption experiment. By adjusting the addition of TOB and other synthesized conditions, the swelling property (from 114.80 g/g to 322.64 g/g), water retention (71.80 %, 144 h) and Cd2+ adsorption characteristics (up to 591.36 mg/g) were significantly enhanced. Adding a moderate amount of TOB (2 wt%) provided the most uniform tobermorite dispersion during synthesis, and TOB2@LR-CH exhibited the most stable three-dimensional network and highest proportion of effective TOB. The adsorption behavior of cadmium on TOB2@LR-CH was more consistent with the pseudo-second-order kinetics and Langmuir isotherm models. Additionally, the regeneration test results displayed that the adsorption removal rate of cadmium by TOB2@LR-CH adsorbent remained stable after 5 cycles. This study demonstrates that TOB@LR-CH has good water absorption and water retention potential in arid and semi-arid soils, and also has potential application prospects in remediating Cd(II)-contaminated soil.
Collapse
Affiliation(s)
- Caiqing He
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Haiyan Mou
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu 610065, China.
| | - Wenjing Hou
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Wang X, Wang J, Jiang L, Jiang Y. Adsorption of Pb 2+ and Cu 2+ in wastewater by lignosulfonate adsorbent prepared from corn straw. Int J Biol Macromol 2023; 247:125820. [PMID: 37451377 DOI: 10.1016/j.ijbiomac.2023.125820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/18/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The heavy metal ions contained in industrial wastewater are a great threat to human health. Exploring a adsorbent which have low-cost, green environmental friendly, high adsorption capacity, good recycle is key to solve heavy metal ions pollution. Lignin sulfonate was obtained by treating corn stover, and then modified lignin sulfonate was obtained by hydrothermal method. The porous structure makes heavy metal ions occupy more internal adsorption sites. Modified lignosulfonate adsorbent efficiency removes heavy metals in wastewater especially Cu2+ and Pb2+. The adsorption capacity of Cu2+ on modified lignosulfonate is 450.3 mg g-1, Pb2+ is 475.4 mg g-1. In addition, for 40 mg L-1 Cu2+ and Pb2+ using 0.4 g L-1, the adsorption equilibrium is only reached within 60 min. Meanwhile, the removal ratio of Pb is 83 %, Cd is 72 %, Cu is 87 %, Zn is 36 %, Mn is 25 %, Cr is 95 %, and Fe is 99 % in wastewater using 0.4 g L-1 adsorbent in 2 h. This research develops a practical adsorbent to remove heavy metals from actual wastewater.
Collapse
Affiliation(s)
- Xiang Wang
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100 Chongqing, China.
| | - Jiwei Wang
- Chongqing Wanzhou Sanfeng Environmental Protection Power Generation Co., LTD, Wanzhou, 404100 Chongqing, China
| | - Landong Jiang
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100 Chongqing, China
| | - Yibo Jiang
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Wanzhou, 404100 Chongqing, China
| |
Collapse
|
5
|
Ruwoldt J, Blindheim FH, Chinga-Carrasco G. Functional surfaces, films, and coatings with lignin - a critical review. RSC Adv 2023; 13:12529-12553. [PMID: 37101953 PMCID: PMC10123495 DOI: 10.1039/d2ra08179b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/03/2023] [Indexed: 04/28/2023] Open
Abstract
Lignin is the most abundant polyaromatic biopolymer. Due to its rich and versatile chemistry, many applications have been proposed, which include the formulation of functional coatings and films. In addition to replacing fossil-based polymers, the lignin biopolymer can be part of new material solutions. Functionalities may be added, such as UV-blocking, oxygen scavenging, antimicrobial, and barrier properties, which draw on lignin's intrinsic and unique features. As a result, various applications have been proposed, including polymer coatings, adsorbents, paper-sizing additives, wood veneers, food packaging, biomaterials, fertilizers, corrosion inhibitors, and antifouling membranes. Today, technical lignin is produced in large volumes in the pulp and paper industry, whereas even more diverse products are prospected to be available from future biorefineries. Developing new applications for lignin is hence paramount - both from a technological and economic point of view. This review article is therefore summarizing and discussing the current research-state of functional surfaces, films, and coatings with lignin, where emphasis is put on the formulation and application of such solutions.
Collapse
Affiliation(s)
- Jost Ruwoldt
- RISE PFI AS Høgskoleringen 6B Trondheim 7491 Norway
| | | | | |
Collapse
|
6
|
An Eco-Friendly Polymer Composite Fertilizer for Soil Fixation, Slope Stability, and Erosion Control. Polymers (Basel) 2022; 14:polym14071461. [PMID: 35406334 PMCID: PMC9002818 DOI: 10.3390/polym14071461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 02/04/2023] Open
Abstract
In the Loess Plateau region, the poor structure and properties of loess slopes will cause many types of geological disasters such as landslides, mudflow, land collapse, soil erosion, and ground cracking. In this paper, an eco-friendly polymer composite fertilizer (PCF) based on corn straw wastes (CS) and geopolymer synthesized from loess was studied. The characterization by FT-IR of the PCF confirmed that graft copolymer is formed, while morphological analysis by scanning electron microscopy and energy dispersive spectroscopy showed that geopolymer and urea were embedded in the polymer porous network. The effects of PCF contents on the compressive strength of loess were investigated. The PCF was characterized in terms of surface curing test, temperature and freeze-thaw aging property, water and wind erosion resistance, and remediation soil acidity and alkalinity property, which indicates that PCF can improve loess slope fixation and stability by physical and chemical effects. Moreover, the loess slope planting experiment showed that PCF can significantly increase the germination rate of vegetation from 31% to 68% and promote the survival rate of slope vegetation from 45.2% to 67.7% to enhance biological protection for loess slopes. The PCF meets the demands of building and roadbed slope protection and water-soil conservation in arid and semi-arid regions, which opens a new application field for multifunctional polymer composite fertilizers with low cost and environmental remediation.
Collapse
|
7
|
Water-Preserving and Salt-Resistant Slow-Release Fertilizers of Polyacrylic Acid-Potassium Humate Coated Ammonium Dihydrogen Phosphate. Polymers (Basel) 2021; 13:polym13172844. [PMID: 34502885 PMCID: PMC8434580 DOI: 10.3390/polym13172844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022] Open
Abstract
Polyacrylic acid (PAA) has high water absorbency but poor salt resistance. Humic acid (HA) extracted from lignite was introduced into the cross-linked copolymer systems of AA to improve the water absorbency and salt-tolerance. A polyacrylic acid-potassium humate (PAA-KHA) coated ammonium dihydrogen phosphate (ADP) fertilizer with water-preserving, salt-resistant and slow-release properties was prepared. The main properties of HA extracted from lignite oxidized by H2O2 were studied. Furthermore, the synthesis process, water absorbency of PAA-KHA in deionized water and in NaCl solution, morphologies of PAA-KHA, and the slow-release performance of the fertilizer (ADP@PAA-KHA) were investigated. The results showed PAA-KHA had a layered interpenetrating network, which can provide sufficient storage space for water and nutrients. The salty water absorbency of PAA-KHA increased by about 3 times compared to PAA. Both the PO43− and NH4+ cumulative release of ADP@PAA-KHA with a coating rate of 10% in deionized water, were less than 20% within 24 h, and were 55.71% and 28.04% after the 15th day, respectively. The weight change of ADP@PAA-KHA before and after absorbing water was about 53 times in deionized water and about 4 times in 1 wt% of NaCl salty water. The results show that ADP@PAA-KHA has excellent properties of water retention, salt resistance and slow-release. This will efficiently improve the utilization of fertilizer and reduce the irrigation water consumption at the same time.
Collapse
|
8
|
Zhang K, Sun P, Khan A, Zhang Y. Photochemistry of biochar during ageing process: Reactive oxygen species generation and benzoic acid degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 710:136294. [PMID: 33385810 DOI: 10.1016/j.scitotenv.2019.136294] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/15/2019] [Accepted: 12/21/2019] [Indexed: 05/10/2023]
Abstract
In this study, the photogeneration of OH and 1O2 and the degradation mechanism of organic pollutants in biochar suspension under the simulated solar light irradiations were investigated. Biochar derived from rice husk with 550 °C of charring temperature (R550) was selected to degrade benzoic acid. It was found that 10 g/L of R550 could degrade 78.7% of benzoic acid within 360 min at pH 3, and the degradation efficiency was promoted to 95.2% as ultraviolet (UV) presented. By checking the production of p-hydroxybenzoic acid, UV accelerated the production of OH, which was confirmed by the enhanced degradation efficiency of 59.2% caused by the evaluated OH as UV appeared. The furfuryl alcohol loss in the R550 suspension under light irradiations testified to the production of 1O2, which contributed to 9.3% of benzoic acid degradation. Oxidization treatment using gradient concentrations of H2O2 was employed to enhance the ageing process of biochar. As the ageing processed, the biochar possessed a declined performance towards OH production from O2 activation and the radical degradation of organic pollutants. As a contrast, the evaluated content of 1O2 and enhanced non-radical degradation of organic pollutants was reached as UV presented. The further study indicated that phenolic hydroxyl groups on biochar facilitated the production of OH via the electron transfer, and quinone like structures (C=O) on biochar boosted the generation of 1O2 via the energy transfer. Moreover, upon eliminating the BA degradation, persistent free radicals were formed on biochar, which was enhanced owing to the presence of UV.
Collapse
Affiliation(s)
- Kaikai Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Peng Sun
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Institute of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, PR China
| | - Aimal Khan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yanrong Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
9
|
Zulqurnain Haider M, Hussain S, Muhammad Adnan Ramzani P, Iqbal M, Iqbal M, Shahzad T, Fatima M, Ali Khan S, Khan I, Shahid M, Ibrahim M, Tanzeem Ull Haq HS, Mahmood F. Bentonite and Biochar Mitigate Pb Toxicity in Pisum sativum by Reducing Plant Oxidative Stress and Pb Translocation. PLANTS (BASEL, SWITZERLAND) 2019. [PMID: 31817397 DOI: 10.3390/plants812057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Lead (Pb)-polluted soils pose a serious threat to human health, particularly by transmitting this heavy metal to the food chain via the crops grown on them. The application of novel amendments in Pb-polluted soils can significantly reduce this problem. In this research, we report the effects of various organic and inorganic amendments i.e., bentonite (BN), biochar (BR), lignin (LN), magnesium potassium phosphate cement (CM) and iron hydroxyl phosphate (FeHP), on the Pb bioavailability in Pb-polluted soil, upon Pb distribution in shoots, roots, grain, the translocation factor (TF) and the bioconcentration factor (BCF) of Pb in pea (Pisum sativum L.) grain. Furthermore, effects of the said amendments on the plant parameters, as well as grain biochemistry and nutritional quality, were also assessed. Lead pollution significantly elevated Pb concentrations in roots, shoots and grain, as well as the grain TF and BCF of Pb, while reducing the nutritional quality and biochemistry of grain, plant height, relative water content (RWC), chlorophyll contents (chl a and chl b) and the dry weight (DW) of shoot, root and grain. The lowest Pb distribution in shoots, roots and grain were found with BN, FeHP and CM, compared to our control. Likewise, the BN, FeHP and CM significantly lowered the TF and BCF values of Pb in the order FeHP > CM > BN. Similarly, the highest increase in plant height, shoot, root and grain DW, RWC, chl a and chl b contents, grain biochemistry and the micronutrient concentrations, were recorded with BR amendment. Biochar also reduced grain polyphenols as well as plant oxidative stress. Given that the BR and BN amendments gave the best results, we propose to explore their potential synergistic effect to reduce Pb toxicity by using them together in future research.
Collapse
Affiliation(s)
| | - Sabir Hussain
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | | | - Mutahar Iqbal
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Iqbal
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Tanvir Shahzad
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Maryam Fatima
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Shahbaz Ali Khan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Imran Khan
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Ibrahim
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Hafiz Syed Tanzeem Ull Haq
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Faisal Mahmood
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| |
Collapse
|
10
|
Zulqurnain Haider M, Hussain S, Muhammad Adnan Ramzani P, Iqbal M, Iqbal M, Shahzad T, Fatima M, Ali Khan S, Khan I, Shahid M, Ibrahim M, Tanzeem Ull Haq HS, Mahmood F. Bentonite and Biochar Mitigate Pb Toxicity in Pisum sativum by Reducing Plant Oxidative Stress and Pb Translocation. PLANTS (BASEL, SWITZERLAND) 2019; 8:E571. [PMID: 31817397 PMCID: PMC6963978 DOI: 10.3390/plants8120571] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/18/2023]
Abstract
Lead (Pb)-polluted soils pose a serious threat to human health, particularly by transmitting this heavy metal to the food chain via the crops grown on them. The application of novel amendments in Pb-polluted soils can significantly reduce this problem. In this research, we report the effects of various organic and inorganic amendments i.e., bentonite (BN), biochar (BR), lignin (LN), magnesium potassium phosphate cement (CM) and iron hydroxyl phosphate (FeHP), on the Pb bioavailability in Pb-polluted soil, upon Pb distribution in shoots, roots, grain, the translocation factor (TF) and the bioconcentration factor (BCF) of Pb in pea (Pisum sativum L.) grain. Furthermore, effects of the said amendments on the plant parameters, as well as grain biochemistry and nutritional quality, were also assessed. Lead pollution significantly elevated Pb concentrations in roots, shoots and grain, as well as the grain TF and BCF of Pb, while reducing the nutritional quality and biochemistry of grain, plant height, relative water content (RWC), chlorophyll contents (chl a and chl b) and the dry weight (DW) of shoot, root and grain. The lowest Pb distribution in shoots, roots and grain were found with BN, FeHP and CM, compared to our control. Likewise, the BN, FeHP and CM significantly lowered the TF and BCF values of Pb in the order FeHP > CM > BN. Similarly, the highest increase in plant height, shoot, root and grain DW, RWC, chl a and chl b contents, grain biochemistry and the micronutrient concentrations, were recorded with BR amendment. Biochar also reduced grain polyphenols as well as plant oxidative stress. Given that the BR and BN amendments gave the best results, we propose to explore their potential synergistic effect to reduce Pb toxicity by using them together in future research.
Collapse
Affiliation(s)
| | - Sabir Hussain
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan; (S.H.); (M.I.); (M.I.); (T.S.); (M.F.); (S.A.K.); (M.I.); (H.S.T.U.H.)
| | - Pia Muhammad Adnan Ramzani
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Mutahar Iqbal
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan; (S.H.); (M.I.); (M.I.); (T.S.); (M.F.); (S.A.K.); (M.I.); (H.S.T.U.H.)
| | - Muhammad Iqbal
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan; (S.H.); (M.I.); (M.I.); (T.S.); (M.F.); (S.A.K.); (M.I.); (H.S.T.U.H.)
| | - Tanvir Shahzad
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan; (S.H.); (M.I.); (M.I.); (T.S.); (M.F.); (S.A.K.); (M.I.); (H.S.T.U.H.)
| | - Maryam Fatima
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan; (S.H.); (M.I.); (M.I.); (T.S.); (M.F.); (S.A.K.); (M.I.); (H.S.T.U.H.)
| | - Shahbaz Ali Khan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan; (S.H.); (M.I.); (M.I.); (T.S.); (M.F.); (S.A.K.); (M.I.); (H.S.T.U.H.)
| | - Imran Khan
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Ibrahim
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan; (S.H.); (M.I.); (M.I.); (T.S.); (M.F.); (S.A.K.); (M.I.); (H.S.T.U.H.)
| | - Hafiz Syed Tanzeem Ull Haq
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan; (S.H.); (M.I.); (M.I.); (T.S.); (M.F.); (S.A.K.); (M.I.); (H.S.T.U.H.)
| | - Faisal Mahmood
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan; (S.H.); (M.I.); (M.I.); (T.S.); (M.F.); (S.A.K.); (M.I.); (H.S.T.U.H.)
| |
Collapse
|
11
|
Li T, Lü S, Yan J, Bai X, Gao C, Liu M. An Environment-Friendly Fertilizer Prepared by Layer-by-Layer Self-Assembly for pH-Responsive Nutrient Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10941-10950. [PMID: 30802026 DOI: 10.1021/acsami.9b01425] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Layer-by-layer (LBL) self-assembly based on natural polysaccharides is drawing significant attention in various applications. However, its application in fertilizers is limited. In this study, LBL electrostatic self-assembly technology was employed to prepare an environment-responsive fertilizer with natural polyelectrolyte layers of chitosan and lignosulfonate deposited on polydopamine-coated ammonium zinc phosphate. The morphology of the fertilizer was evaluated by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The composition and self-assembly process of the fertilizer were characterized by elemental analysis, Fourier transform infrared spectroscopy, UV-vis absorption spectroscopy, zeta potential analysis, thermal analysis, X-ray photoelectron spectroscopy, and inductively coupled plasma atomic emission spectroscopy. Excellent pH-responsive behavior was observed by the nutrient release results. In an alkaline medium at room temperature, the nutrient release rate can be clearly accelerated compared with that in acidic and neutral media. Moreover, pot experiments showed that the fertilizer can effectively promote plant growth. The pH-responsive environment-friendly fertilizer can control nutrient release and avoid excessive release of nutrients, showing promising applications in modern green and sustainable agriculture and horticulture.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Jia Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Xiao Bai
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273100 , People's Republic of China
| | - Chunmei Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| |
Collapse
|
12
|
Li T, Lü S, Ji Y, Qi T, Liu M. A biodegradable Fe-fertilizer with high mechanical property and sustainable release for potential agriculture and horticulture applications. NEW J CHEM 2018. [DOI: 10.1039/c8nj04381g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A low-cost and biodegradable Fe-fertilizer bead with sustained release behaviors and excellent mechanical strength for potential agriculture applications.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Yanzheng Ji
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Taomei Qi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Mingzhu Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University
- Lanzhou 730000
- People's Republic of China
| |
Collapse
|