1
|
Sam DK, Li H, Xu YT, Cao Y. Advances in porous carbon materials for a sustainable future: A review. Adv Colloid Interface Sci 2024; 333:103279. [PMID: 39208622 DOI: 10.1016/j.cis.2024.103279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Developing clean and renewable energy sources is key to a sustainable future. For human society to progress sustainably, environmentally friendly energy conversion and storage technologies are critical. The use of nanostructured advanced functional materials heavily influences the functionality of these systems. Porous carbons are multifunctional materials boasting considerable industrial utility. They possess many remarkable physiochemical and mechanical characteristics which have garnered interest in various fields. In this review, the application of porous carbon materials in electrocatalysis (HER, OER, ORR, NARR, and CO2RR) and rechargeable batteries (LIBs, LiS batteries, NIBs, and KIBs) for renewable energy conversion and storage are discussed. The suitability of porous carbon materials for these applications is discussed, and some recent works are reviewed. Finally, a few viewpoints on developing porous carbons in electrocatalysis and rechargeable batteries are given. This review aims to generate interest in current and upcoming researchers in porous carbon application for a sustainable future.
Collapse
Affiliation(s)
- Daniel Kobina Sam
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Heyu Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Tong Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; School of Advanced Energy, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Yan Cao
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| |
Collapse
|
2
|
Davidraj JM, Sathish CI, Benzigar MR, Li Z, Zhang X, Bahadur R, Ramadass K, Singh G, Yi J, Kumar P, Vinu A. Recent advances in food waste-derived nanoporous carbon for energy storage. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2357062. [PMID: 38835629 PMCID: PMC11149580 DOI: 10.1080/14686996.2024.2357062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Affordable and environmentally friendly electrochemically active raw energy storage materials are in high demand to switch to mass-scale renewable energy. One particularly promising avenue is the feasibility of utilizing food waste-derived nanoporous carbon. This material holds significance due to its widespread availability, affordability, ease of processing, and, notably, its cost-free nature. Over the years, various strategies have been developed to convert different food wastes into nanoporous carbon materials with enhanced electrochemical properties. The electrochemical performance of these materials is influenced by both intrinsic factors, such as the composition of elements derived from the original food sources and recipes, and extrinsic factors, including the conditions during pyrolysis and activation. While current efforts are dedicated to optimizing process parameters to achieve superior performance in electrochemical energy storage devices, it is timely to take stock of the current state of research in this emerging field. This review provides a comprehensive overview of recent developments in the fabrication and surface characterisation of porous carbons from different food wastes. A special focus is given on the applications of these food waste derived porous carbons for energy storage applications including batteries and supercapacitors.
Collapse
Affiliation(s)
- Jefrin M Davidraj
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, Australia
| | - Clastinrusselraj Indirathankam Sathish
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, Australia
| | - Mercy Rose Benzigar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, Australia
| | - Zhixuan Li
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, Australia
| | - Xiangwei Zhang
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, Australia
| | - Rohan Bahadur
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, Australia
| | - Kavitha Ramadass
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, Australia
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
3
|
Liu G, Ma L, Xi X, Nie Z. Efficient purification and high-quality regeneration of graphite from spent lithium-ion batteries by surfactant-assisted methanesulfonic acid. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:105-114. [PMID: 38387254 DOI: 10.1016/j.wasman.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/23/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
With the vigorous development of the new energy industry, the use of lithium-ion batteries (LIBs) is growing exponentially, and the recycling of spent LIBs has gradually become a research hotspot. Currently, recycling both cathode and anode materials of LIBs is important to environmental protection and resource recycling. This research reportsa method ofefficient purification and high-quality regeneration of graphite from spent LIBs by surfactant-assisted methanesulfonic acid (MSA). Under the optimal conditions (0.006 mol/L sodium dodecyl sulfonate, 0.25 mol/L MSA, 10 vol% hydrogen peroxide, liquid-solid ratio of 30:1 mL/g, 60 °C, 1.5 h), the purity of the regenerated graphite was 99.7 %, and the recovery efficiency was 98.0 %. The regenerated graphite showed the characteristics of small interplanar spacing, high degree of graphitization, a small number of surface defects, and excellent pore structure, which was closer to commercial graphite. Furthermore, the regenerated graphite electrode exhibited superior rate performance and cycling stability with a high specific capacity of 397.03 mAh/g after 50 cycles at 0.1C and a charge-discharge efficiency of 99.33 %. The recovery of anode graphite beneficial for resource utilization, environmental protection, and cost control throughout the entire production chain.
Collapse
Affiliation(s)
- Guangyun Liu
- Collaborative Innovation Center of Capital Resource-Recycling Material Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Liwen Ma
- Collaborative Innovation Center of Capital Resource-Recycling Material Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China; National Engineering Laboratory for Industrial Big-data Application Technology, Beijing University of Technology, Beijing 100124, China.
| | - Xiaoli Xi
- Collaborative Innovation Center of Capital Resource-Recycling Material Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| | - Zuoren Nie
- Collaborative Innovation Center of Capital Resource-Recycling Material Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China; National Engineering Laboratory for Industrial Big-data Application Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Jia G, Yu Y, Wang X, Jia C, Hu Z, Yu S, Xiang H, Zhu M. Highly conductive and porous lignin-derived carbon fibers. MATERIALS HORIZONS 2023; 10:5847-5858. [PMID: 37849349 DOI: 10.1039/d3mh01027a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Bio-based carbon fibers derived from lignin have gained significant attention due to their diverse and renewable sources, ease of extraction, and low cost. However, the current limitations of low specific surface area and insufficient electrical conductivity hinder the widespread application of lignin-derived carbon fibers (LCFs). In this work, highly conductive and porous LCFs are developed through melt-blowing, pretreatment, and carbonization processes. The effects of the carbonization temperature and heating rate on the structures and properties of the LCFs are systematically investigated. The resultant LCFs exhibit high electrical conductivity (71 400 S m-1) and a large specific surface area (923 m2 g-1). The assembled lithium-ion battery based on the LCF anodes demonstrates a long cycle life of >800 cycles and a high specific capacity of 466 mA h g-1. The findings of this study hold practical significance for promoting the utilization of lignin in the fields of energy storage, adsorption, and beyond.
Collapse
Affiliation(s)
- Guosheng Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yan Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xuefen Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
5
|
Mohamed A, Dong S, Elhefnawey M, Dong G, Gao Y, Zhu K, Cao D. A comparison of the electrochemical performance of graphitized coal prepared by high-temperature heating and flash Joule heating as an anode material for lithium and potassium ion batteries. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
6
|
Li R, Kamali AR. Molten salt assisted conversion of corn lignocellulosic waste into carbon nanostructures with enhanced Li-ion storage performance. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2022.118222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Investigation of the rheological response of a bio-liquefied formaldehyde resin-based precursor for electrospinning. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Liu Y, Yang H, Zheng H, Jia M, Huang A. Structural Characteristics and Electrochemical Performance of N,P-Codoped Porous Carbon as a Lithium-Ion Battery Anode Electrode. ACS OMEGA 2022; 7:34109-34116. [PMID: 36188315 PMCID: PMC9520685 DOI: 10.1021/acsomega.2c03400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Biomass-derived heteroatom-doped carbons have been considered to be excellent lithium ion battery (LIB) anode materials. Herein, ultrathin g-C3N4 nanosheets anchored on N,P-codoped biomass-derived carbon (N,P@C) were successfully fabricated by carbonization in an argon atmosphere. The structural characteristics of the resultant N,P@C were elucidated by SEM, TEM, FTIR, XRD, XPS, Raman, and BET surface area measurements. The results show that N,P@C has a high specific surface area (S BET = 675.4 cm3/g), a mesoporous-dominant pore (average pore size of 6.898 nm), and a high level of defects (I D/I G = 1.02). The hierarchical porous structural properties are responsible for the efficient electrochemical performance of N,P@C as an anode material, which exhibits an outstanding reversible specific capacity of 1264.3 mAh/g at 100 mA/g, an elegant rate capability of 261 mAh/g at 10 A, and a satisfactory cycling stability of 1463.8 mAh/g at 1 A after 500 cycles. Because of the special structure and synergistic contributions from N and P heteroatoms, the resultant N,P@C endows LIBs with electrochemical performance superior to those of most of carbon-based anode materials derived from biomass in the literature. The findings in this present work pave a novel avenue toward lignin volarization to produce anode material for use in high-performance LIBs.
Collapse
Affiliation(s)
- Yun Liu
- Beijing
Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haihua Yang
- Beijing
Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hongyu Zheng
- Beijing
Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengqiu Jia
- Beijing
Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ao Huang
- Beijing
Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Abdolrazzaghian E, Zhu J, Kim J, Yanilmaz M. MoS2-Decorated Graphene@porous Carbon Nanofiber Anodes via Centrifugal Spinning. NANOMATERIALS 2022; 12:nano12142505. [PMID: 35889732 PMCID: PMC9323995 DOI: 10.3390/nano12142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022]
Abstract
Sodium-ion batteries (SIBs) are promising alternatives to lithium-ion batteries as green energy storage devices because of their similar working principles and the abundance of low-cost sodium resources. Nanostructured carbon materials are attracting great interest as high-performance anodes for SIBs. Herein, a simple and fast technique to prepare carbon nanofibers (CNFs) is presented, and the effects of carbonization conditions on the morphology and electrochemical properties of CNF anodes in Li- and Na-ion batteries are investigated. Porous CNFs containing graphene were fabricated via centrifugal spinning, and MoS2 were decorated on graphene-included porous CNFs via hydrothermal synthesis. The effect of MoS2 on the morphology and the electrode performance was examined in detail. The results showed that the combination of centrifugal spinning, hydrothermal synthesis, and heat treatment is an efficient way to fabricate high-performance electrodes for rechargeable batteries. Furthermore, CNFs fabricated at a carbonization temperature of 800 °C delivered the highest capacity, and the addition of MoS2 improved the reversible capacity up to 860 mAh/g and 455 mAh/g for Li- and Na-ion batteries, respectively. A specific capacity of over 380 mAh/g was observed even at a high current density of 1 A/g. Centrifugal spinning and hydrothermal synthesis allowed for the fabrication of high-performance electrodes for sodium ion batteries.
Collapse
Affiliation(s)
- Elham Abdolrazzaghian
- Department of Nano Science and Nano Engineering, Istanbul Technical University, Istanbul 34469, Turkey;
| | - Jiadeng Zhu
- Oak Ridge National Laboratory, Chemical Sciences Division, Oak Ridge, TN 37831, USA;
| | - Juran Kim
- Advanced Textile R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea
- Correspondence: (J.K.); (M.Y.)
| | - Meltem Yanilmaz
- Department of Nano Science and Nano Engineering, Istanbul Technical University, Istanbul 34469, Turkey;
- Department of Textile Engineering, Istanbul Technical University, Istanbul 34437, Turkey
- Correspondence: (J.K.); (M.Y.)
| |
Collapse
|
10
|
Liu D, Li H, Li K, Zhen M. Adsorption, diffusion and electrocatalytic triple effect from ultrathin-walled TiO2(B) nanotubes for lithium–sulfur batteries. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Luna-Lama F, Morales J, Caballero A. Biomass Porous Carbons Derived from Banana Peel Waste as Sustainable Anodes for Lithium-Ion Batteries. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5995. [PMID: 34683587 PMCID: PMC8538914 DOI: 10.3390/ma14205995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/25/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022]
Abstract
Disordered carbons derived from banana peel waste (BPW) were successfully obtained by employing a simple one-step activation/carbonization method. Different instrumental techniques were used to characterize the structural, morphological, and textural properties of the materials, including X-ray diffraction, thermogravimetric analysis, porosimetry and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The chemical activation with different porogens (zinc chloride, potassium hydroxide and phosphoric acid) could be used to develop functional carbonaceous structures with high specific surface areas and significant quantities of pores. The BPW@H3PO4 carbon exhibited a high specific surface area (815 m2 g-1), chemical stability and good conductivity for use as an anode in lithium-ion batteries. After 200 cycles, this carbon delivered a reversible capacity of 272 mAh g-1 at 0.2 C, showing a notable retention capacity and good cycling performance even at high current densities, demonstrating its effectiveness and sustainability as an anode material for high-energy applications in Li-ion batteries.
Collapse
Affiliation(s)
| | | | - Alvaro Caballero
- Departamento Química Inorgánica e Ingeniería Química, Instituto Universitario de Química Fina y Nanoquímica (IUNAN), Facultad de Ciencias, Universidad de Córdoba, 14071 Córdoba, Spain; (F.L.-L.); (J.M.)
| |
Collapse
|
12
|
Suhdi S, Wang SC. The Production of Carbon Nanofiber on Rubber Fruit Shell-Derived Activated Carbon by Chemical Activation and Hydrothermal Process with Low Temperature. NANOMATERIALS 2021; 11:nano11082038. [PMID: 34443869 PMCID: PMC8399015 DOI: 10.3390/nano11082038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
Recently, the conversion of biomass into carbon nanofibers has been extensively studied. In this study, carbon nanofibers (CNFs) were prepared from rubber fruit shell (RFS) by chemical activation with H3PO4, followed by a simple hydrothermal process at low temperature and without a vacuum and gas catalyst. XRD and Raman studies show that the structure formed is an amorphous graphite formation. From the thermal analysis, it is shown that CNFs have a high thermal stability. Furthermore, an SEM/TEM analysis showed that CNFs’ morphology varied in size and thickness. The obtained results reveal that by converting RFS into an amorphous carbon through chemical activation and hydrothermal processes, RFS is considered a potential biomass source material to produce carbon nanofibers.
Collapse
|
13
|
de Gonzaga LAC, Martins MCF, Correa AC, Facchinatto WM, da Silva CMP, Colnago LA, Mattoso LHC. Production of carbon nanofibers from PAN and lignin by solution blow spinning. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02568-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Iradukunda Y, Wang G, Li X, Shi G, Albashir AIM, Dusengemungu L, Hu Y, Luo F, Yi K, Niu X, Wu Z. Multifunctional flexible porous liquefied bio-carbon nanofibers prepared from the combination of mangosteen (Garcinia mangostana) peels and monohydroxybenzene for supercapacitors applications. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Moulefera I, Trabelsi M, Mamun A, Sabantina L. Electrospun Carbon Nanofibers from Biomass and Biomass Blends-Current Trends. Polymers (Basel) 2021; 13:1071. [PMID: 33805323 PMCID: PMC8036826 DOI: 10.3390/polym13071071] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, ecological issues have led to the search for new green materials from biomass as precursors for producing carbon materials (CNFs). Such green materials are more attractive than traditional petroleum-based materials, which are environmentally harmful and non-biodegradable. Biomass could be ideal precursors for nanofibers since they stem from renewable sources and are low-cost. Recently, many authors have focused intensively on nanofibers' production from biomass using microwave-assisted pyrolysis, hydrothermal treatment, ultrasonication method, but only a few on electrospinning methods. Moreover, still few studies deal with the production of electrospun carbon nanofibers from biomass. This review focuses on the new developments and trends of electrospun carbon nanofibers from biomass and aims to fill this research gap. The review is focusing on recollecting the most recent investigations about the preparation of carbon nanofiber from biomass and biopolymers as precursors using electrospinning as the manufacturing method, and the most important applications, such as energy storage that include fuel cells, electrochemical batteries and supercapacitors, as well as wastewater treatment, CO2 capture, and medicine.
Collapse
Affiliation(s)
| | - Marah Trabelsi
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (M.T.); (A.M.)
- Ecole Nationale d’Ingénieurs de Sfax (ENIS), Department of Materials Engineering, Sfax 3038, Tunisia
| | - Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (M.T.); (A.M.)
| | - Lilia Sabantina
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (M.T.); (A.M.)
| |
Collapse
|
16
|
Yu Z, Zhao Z, Peng T. Coralloid carbon material based on biomass as a promising anode material for lithium and sodium storage. NEW J CHEM 2021. [DOI: 10.1039/d0nj01769h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Coral-like porous carbon materials obtained by in situ template etching of biomass are used for lithium and sodium storage.
Collapse
Affiliation(s)
- Ziqiang Yu
- Yantai Vocational College
- Department of Automotive and Shipping Engineering
- Yantai City
- China
| | | | - Tingyue Peng
- State Key Laboratory of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum (East China)
- Qingdao 266580
- P. R. China
| |
Collapse
|
17
|
Xu K, Du G, Zhong T, Chen D, Lin X, Zheng Z, Wang S. Green sustainable, facile nitrogen self-doped porous carbon derived from chitosan/cellulose nanocrystal biocomposites as a potential anode material for lithium-ion batteries. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Zhao W, Wen J, Zhao Y, Wang Z, Shi Y, Zhao Y. Hierarchically Porous Carbon Derived from Biomass Reed Flowers as Highly Stable Li-Ion Battery Anode. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E346. [PMID: 32085435 PMCID: PMC7075112 DOI: 10.3390/nano10020346] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 01/14/2023]
Abstract
As lithium-ion battery (LIB) anode materials, porous carbons with high specific surface area are highly required because they can well accommodate huge volume expansion/contraction during cycling. In this work, hierarchically porous carbon (HPC) with high specific surface area (~1714.83 m2 g-1) is synthesized from biomass reed flowers. The material presents good cycling stability as an LIB anode, delivering an excellent reversible capacity of 581.2 mAh g-1 after cycling for 100 cycles at a current density of 100 mA g-1, and still remains a reversible capacity of 298.5 mAh g-1 after cycling for 1000 cycles even at 1000 mA g-1. The good electrochemical performance can be ascribed to the high specific surface area of the HPC network, which provides rich and fast paths for electron and ion transfer and provides large contact area and mutual interactions between the electrolyte and active materials. The work proposes a new route for the preparation of low cost carbon-based anodes and may promote the development of other porous carbon materials derived from various biomass carbon sources.
Collapse
Affiliation(s)
- Weimin Zhao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China (J.W.); (Y.Z.)
| | - Jingjing Wen
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China (J.W.); (Y.Z.)
| | - Yanming Zhao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China (J.W.); (Y.Z.)
| | - Zhifeng Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China (J.W.); (Y.Z.)
- Key Laboratory for New Type of Functional Materials in Hebei Province, Hebei University of Technology, Tianjin 300130, China
| | - Yaru Shi
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yan Zhao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China (J.W.); (Y.Z.)
| |
Collapse
|
19
|
Motoc S, Manea F, Orha C, Pop A. Enhanced Electrochemical Response of Diclofenac at a Fullerene⁻Carbon Nanofiber Paste Electrode. SENSORS 2019; 19:s19061332. [PMID: 30884875 PMCID: PMC6471276 DOI: 10.3390/s19061332] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 01/04/2023]
Abstract
The requirements of the Water Framework Directive to monitor diclofenac (DCF) concentration in surface water impose the need to find advanced fast and simple analysis methods. Direct voltammetric/amperometric methods could represent efficient and practical solutions. Fullerene–carbon nanofibers in paraffin oil as a paste electrode (F–CNF) was easily obtained by simple mixing and tested for DCF detection using voltammetric and amperometric techniques. The lowest limit of detection of 0.9 nM was achieved by applying square-wave voltammetry operated under step potential (SP) of 2 mV, modulation amplitude (MA) of 10 mV, and frequency of 25 Hz, and the best sensitivity was achieved by four-level multiple pulsed amperometry (MPA) that allowed in situ reactivation of the F–CNF electrode. The selection of the method must take into account the environmental quality standard (EQS), imposed through the “watchlist” of the Water Framework Directive as 0.1 µg·L−1 DCF. A good improvement of the electroanalytical parameters for DCF detection on the F–CNF electrode was achieved by applying the preconcentration step for 30 min before the detection step, which assured about 30 times better sensitivity, recommending its application for the monitoring of trace levels of DCF. The electrochemical behavior of F–CNF as a pseudomicroelectrode array makes it suitable for practical application in the in situ and real-time monitoring of DCF concentrations in water.
Collapse
Affiliation(s)
- Sorina Motoc
- "Coriolan Dragulescu" Institute of Chemistry, Romanian Academy, Mihai Viteazul 24, Timisoara 300223, Romania.
| | - Florica Manea
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, P-ta Victoriei no.2, Timisoara 300006, Romania.
| | - Corina Orha
- National Condensed Matter Department, Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, 1 P. Andronescu Street, Timisoara 300254, Romania.
| | - Aniela Pop
- Department of Applied Chemistry and Engineering of Inorganic Compounds and Environment, Politehnica University of Timisoara, P-ta Victoriei no.2, Timisoara 300006, Romania.
| |
Collapse
|