1
|
Kilian R, Bonacci E, Donner R, Lammer J, Rizzo C, Crincoli E, De Ruvo V, Schmidinger G, Pedrotti E, Marchini G. Spotlight on Amniotic Membrane Extract Eye Drops: A Review of the Literature. Eye Contact Lens 2024:00140068-990000000-00242. [PMID: 39499048 DOI: 10.1097/icl.0000000000001136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 11/07/2024]
Abstract
OBJECTIVE To review the literature focusing on the effectiveness of amniotic membrane extract eye drops (AMEDs) in the treatment of ocular surface diseases. METHODS PubMed/MEDLINE, Scopus, and CENTRAL databases were searched until March 4, 2024. Overall, we identified 1,121 studies, 26 of which were selected for a full-text review. Twelve studies met the inclusion criteria and were analyzed for clinical improvements, time to resolution of corneal staining, adverse events, and preparation methods. Strength of clinical data was graded according to the Oxford Center for Evidence-Based Medicine. RESULTS Overall, AMED compounds were used in 296 eyes of 205 patients. Fifty-nine percent of eyes were treated for dry eye disease, 23% for an epithelial defect, and the rest (18%) for other corneal wound healing disorders. Three main types of eye drops preparation were described, that is, lyophilized, homogenized, and fresh AMED. Although the methods of outcome reporting were heterogeneous, all included studies showed various grades of improvement in both signs and symptoms. The overall incidence of ocular side effects was 2.3%. CONCLUSIONS Despite the suboptimal quality of evidence, overall, the available literature suggests that AMED is a valuable tool in the treatment of ocular surface disorders.
Collapse
Affiliation(s)
- Raphael Kilian
- Department of Translational Medicine (R.K., V.D.R.), University of Ferrara, Ferrara, Italy; Department of Ophthalmology (R.K., V.D.R.), Ospedali Privati Forlì "Villa Igea", Forlì, Italy; Department of Neurosciences, Biomedicine and Movement Sciences (E.B., C.R., E.P., G.M.), Ophthalmic Unit, University of Verona, Verona, Italy; Department of Ophthalmology and Optometry (R.D., J.L., G.S.), Medical University of Vienna, Vienna, Austria; and Ophthalmology Unit (E.C.), "Fondazione Policlinico Universitario a. Gemelli IRCCS", Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Li S, Sun H, Chen L, Fu Y. Targeting limbal epithelial stem cells: master conductors of corneal epithelial regeneration from the bench to multilevel theranostics. J Transl Med 2024; 22:794. [PMID: 39198892 PMCID: PMC11350997 DOI: 10.1186/s12967-024-05603-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
The cornea is the outermost layer of the eye and plays an essential role in our visual system. Limbal epithelial stem cells (LESCs), which are localized to a highly regulated limbal niche, are the master conductors of corneal epithelial regeneration. Damage to LESCs and their niche may result in limbal stem cell deficiency (LSCD), a disease confused ophthalmologists so many years and can lead to corneal conjunctivalization, neovascularization, and even blindness. How to restore the LESCs function is the hot topic for ocular scientists and clinicians around the world. This review introduced LESCs and the niche microenvironment, outlined various techniques for isolating and culturing LESCs used in LSCD research, presented common diseases that cause LSCD, and provided a comprehensive overview of both the diagnosis and multiple treatments for LSCD from basic research to clinical therapies, especially the emerging cell therapies based on various stem cell sources. In addition, we also innovatively concluded the latest strategies in recent years, including exogenous drugs, tissue engineering, nanotechnology, exosome and gene therapy, as well as the ongoing clinical trials for treating LSCD in recent five years. Finally, we highlighted challenges from bench to bedside in LSCD and discussed cutting-edge areas in LSCD therapeutic research. We hope that this review could pave the way for future research and translation on treating LSCD, a crucial step in the field of ocular health.
Collapse
Affiliation(s)
- Shiding Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Hao Sun
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Liangbo Chen
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 639 Zhizaoju Rd, Shanghai, 200011, China.
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, 639 Zhizaoju Rd, Shanghai, 200011, China.
| |
Collapse
|
3
|
Aghazadeh S, Peng Q, Dardmeh F, Hjortdal JØ, Zachar V, Alipour H. Immunophenotypical Characterization of Limbal Mesenchymal Stromal Cell Subsets during In Vitro Expansion. Int J Mol Sci 2024; 25:8684. [PMID: 39201371 PMCID: PMC11354999 DOI: 10.3390/ijms25168684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Limbal mesenchymal stromal cells (LMSCs) reside in the limbal niche, supporting corneal integrity and facilitating regeneration. While mesenchymal stem/stromal cells (MSCs) are used in regenerative therapies, there is limited knowledge about LMSC subpopulations and their characteristics. This study characterized human LMSC subpopulations through the flow cytometric assessment of fifteen cell surface markers, including MSC, wound healing, immune regulation, ASC, endothelial, and differentiation markers. Primary LMSCs were established from remnant human corneal transplant specimens and passaged eight times to observe changes during subculture. The results showed the consistent expression of typical MSC markers and distinct subpopulations with the passage-dependent expression of wound healing, immune regulation, and differentiation markers. High CD166 and CD248 expressions indicated a crucial role in ocular surface repair. CD29 expression suggested an immunoregulatory role. Comparable pigment-epithelial-derived factor (PEDF) expression supported anti-inflammatory and anti-angiogenic roles. Sustained CD201 expression indicated maintained differentiation capability, while VEGFR2 expression suggested potential endothelial differentiation. LMSCs showed higher VEGF expression than fibroblasts and endothelial cells, suggesting a potential contribution to ocular surface regeneration through the modulation of angiogenesis and inflammation. These findings highlight the heterogeneity and multipotent potential of LMSC subpopulations during in vitro expansion, informing the development of standardized protocols for regenerative therapies and improving treatments for ocular surface disorders.
Collapse
Affiliation(s)
- Sara Aghazadeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Qiuyue Peng
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Fereshteh Dardmeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | | | - Vladimir Zachar
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Hiva Alipour
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| |
Collapse
|
4
|
Boroumand S, Rahmani M, Sigaroodi F, Ganjoury C, Parandakh A, Bonakdar A, Khani MM, Soleimani M. The landscape of clinical trials in corneal regeneration: A systematic review of tissue engineering approaches in corneal disease. J Biomed Mater Res B Appl Biomater 2024; 112:e35449. [PMID: 39032135 DOI: 10.1002/jbm.b.35449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/27/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
The limited availability of a healthy donor cornea and the incidence of allograft failure led researchers to seek other corneal substitutes via tissue engineering. Exploring the trend of clinical trials of the cornea with the vision of tissue engineering provides an opportunity to reveal future potential corneal substitutes. The results of this clinical trial are beneficial for future study designs to overcome the limitations of current therapeutic approaches. In this study, registered clinical trials of bio-based approaches were reviewed for corneal regeneration on March 22, 2024. Among the 3955 registered trials for the cornea, 392 trials were included in this study, which categorized in three main bio-based scaffolds, stem cells, and bioactive macromolecules. In addition to the acellular cornea and human amniotic membrane, several bio-based materials have been introduced as corneal substrates such as collagen, fibrin, and agarose. However, some synthetic materials have been introduced in recent studies to improve the desired properties of bio-based scaffolds for corneal substitutes. Nevertheless, new insights into corneal regenerative medicine have recently emerged from cell sheets with autologous and allogeneic cell sources. In addition, the future perspective of corneal regeneration is described through a literature review of recent experimental models.
Collapse
Affiliation(s)
- Safieh Boroumand
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faraz Sigaroodi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Camellia Ganjoury
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azim Parandakh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Bonakdar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Gurdal M, Korkmaz I, Barut Selver O. An important detail that is still not clear in amniotic membrane applications: How do we store the amniotic membrane best? Cell Tissue Bank 2024; 25:339-347. [PMID: 38191687 DOI: 10.1007/s10561-023-10121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024]
Abstract
The use of fresh amniotic membrane (AM) is not a viable option, as it has many disadvantages. Preserving the AM reduces the risk of cross-infection and maintains its effectiveness for a long time. In order to maximize the therapeutic effects of the AM, the basic need is to preserve its vitality and the bioactive molecules it contains. However, the effect of preservation procedures on cell viability and growth factors is a still matter of debate. Optimum preservation method is expected to be cost-effective, easily-accessible, and most importantly, to preserve the effectiveness of the tissue for the longest time. However, each preservation technique has its advantages and disadvantages over the other, and each one compromises the vitality and bioactive molecules of the tissue to some extent. Therefore, the best method of preservation is still controversial, and the question of 'how to preserve the AM best?' has not yet been definitively answered.
Collapse
Affiliation(s)
- Mehmet Gurdal
- Limbustem R&D Medical Products Ltd., Izmir, Turkey
- Ocular Surface Research Laboratory, Ege University, Izmir, Turkey
| | - Ilayda Korkmaz
- Department of Ophthalmology, Faculty of Medicine, Ege University, 35040, Bornova, Izmir, Turkey
| | - Ozlem Barut Selver
- Limbustem R&D Medical Products Ltd., Izmir, Turkey.
- Ocular Surface Research Laboratory, Ege University, Izmir, Turkey.
- Department of Ophthalmology, Faculty of Medicine, Ege University, 35040, Bornova, Izmir, Turkey.
| |
Collapse
|
6
|
Yates KM, Stilwell NK, Fontenot RL, Betbeze CM. In vitro antibacterial efficacy of autologous conditioned plasma and amniotic membrane eye drops. Vet Ophthalmol 2023; 26:548-554. [PMID: 37317517 DOI: 10.1111/vop.13120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/18/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To determine the in vitro antibacterial efficacy of equine and canine autologous conditioned plasma (ACP) and amniotic membrane extract eye drops (AMEED) against aerobic bacteria common to the corneal surface. PROCEDURES Canine (n = 4) and equine (n = 4) anticoagulated whole blood samples were sterilely collected, pooled for each species, and processed using the Arthrex ACP® Double-Syringe System. Platelet counts were performed on ACP and pooled blood. AMEED were obtained from a commercial source. An electronic medical records search (2013-2022) identified aerobic bacteria cultured from canine and equine corneal ulcers at Mississippi State University College of Veterinary Medicine (MSU-CVM). Ten commonly isolated bacteria for each species were collected from cultures submitted to the MSU-CVM Microbiology Diagnostic Service and frozen at -80°C. The Kirby-Bauer disk diffusion method was used to determine the sensitivities of these isolates to ACP and AMEED. Bacterial isolates were plated onto Mueller-Hinton +5% sheep blood agar and blank sterile discs saturated with 20 μL of ACP or AMEED were tested in duplicate. Imipenem discs served as positive controls and blank discs as negative controls. Zones of inhibition were measured at 18 h. RESULTS ACP platelet counts were 1.06 and 1.65 times higher than blood for equine and canine samples, respectively. Growth of a multi-drug resistant Enterococcus faecalis was partially inhibited by canine and equine ACP. AMEED did not inhibit growth of any examined bacteria. CONCLUSIONS Canine and equine ACP partially inhibited E. faecalis growth in vitro. Further studies using varying concentrations of ACP against bacterial isolates from corneal ulcers are warranted.
Collapse
Affiliation(s)
- Kelsey M Yates
- Department of Clinical Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Natalie K Stilwell
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Robin L Fontenot
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Caroline M Betbeze
- Department of Clinical Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
7
|
Hofmann N, Rennekampff HO, Salz AK, Börgel M. Preparation of human amniotic membrane for transplantation in different application areas. FRONTIERS IN TRANSPLANTATION 2023; 2:1152068. [PMID: 38993896 PMCID: PMC11235369 DOI: 10.3389/frtra.2023.1152068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/20/2023] [Indexed: 07/13/2024]
Abstract
The human amniotic membrane (hAM) is the inner layer of the placenta and plays protective and nutritional roles for the fetus during pregnancy. It contains multiple growth factors and proteins that mediate unique regenerative properties and enhance wound healing in tissue regeneration. Due to these characteristics hAM has been successfully utilized in ophthalmology for many decades. This material has also found application in a variety of additional therapeutic areas. Particularly noteworthy are the extraordinary effects in the healing of chronic wounds and in the treatment of burns. But hAM has also been used successfully in gynecology, oral medicine, and plastic surgery and as a scaffold for in vitro cell culture approaches. This review aims to summarize the different graft preparation, preservation and storage techniques that are used and to present advantages and disadvantages of these methods. It shows the characteristics of the hAM according to the processing and storage methods used. The paper provides an overview of the currently mainly used application areas and raises new application possibilities. In addition, further preparation types like extracts, homogenates, and the resulting treatment alternatives are described.
Collapse
Affiliation(s)
- Nicola Hofmann
- German Society for Tissue Transplantation (DGFG) gGmbH, Hannover, Germany
| | - Hans-Oliver Rennekampff
- Klinik für Plastische Chirurgie, Hand- und Verbrennungschirurgie, Rhein-Maas Klinikum GmbH, Würselen, Germany
| | | | - Martin Börgel
- German Society for Tissue Transplantation (DGFG) gGmbH, Hannover, Germany
| |
Collapse
|
8
|
Bonacci E, Kilian R, Rizzo C, De Gregorio A, Bosello F, Fasolo A, Ponzin D, Marchini G, Pedrotti E. Microscopic corneal epithelial changes and clinical outcomes in simple limbal epithelial transplantation surgery after treatment with amniotic membrane eye drops (AMED): A case report. Am J Ophthalmol Case Rep 2023; 29:101763. [PMID: 36483519 PMCID: PMC9723931 DOI: 10.1016/j.ajoc.2022.101763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/15/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose To describe the microscopic epithelial changes and the clinical outcomes of a patient treated with amniotic membrane eye drops (AMED) because of a persistent epithelial defect (PED) and a partial limbal stem cell deficiency (LSCD) after simple limbal epithelial transplantation (SLET) and deep anterior lamellar keratoplasty (DALK). Observations A 72-year-old patient, who had previously undergone SLET and DALK due to a total LSCD, presented with a PED related to a partial LSCD, and was treated with AMED for one month. We evaluated the patient's visual acuity, the Oxford grading scale, the Wong-Baker Pain Rating Scale, and in vivo confocal microscopy, both at baseline and 3 months after the end of treatment. Visual acuity improved from 0.5 to 0.4 LogMAR, the Oxford grading scale changed from grade III to grade I and the Wong-Baker Pain Rating Scale from grade 4 to grade 1. The corneal surface, which initially showed conjunctival characteristics over approximately 50% of the whole area, consisted mainly (75%) of mature corneal epithelium 3 months after the end of treatment. Conclusions and importance While improving symptoms and clinical characteristics, AMED was also able to restore the normal corneal epithelium's morphology in a case of partial LSCD after SLET and DALK.
Collapse
Affiliation(s)
- Erika Bonacci
- Ophthalmic Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Raphael Kilian
- Ophthalmic Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Clara Rizzo
- Ophthalmic Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | | | - Francesca Bosello
- Ophthalmic Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Adriano Fasolo
- Ophthalmic Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
- The Veneto Eye Bank Foundation, Venice, Italy
| | | | - Giorgio Marchini
- Ophthalmic Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Emilio Pedrotti
- Ophthalmic Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Afzal E, Pakzad M, Nouri M, Moghadasali R, Zarrabi M. Human umbilical cord serum as an alternative to fetal bovine serum for in vitro expansion of umbilical cord mesenchymal stromal cells. Cell Tissue Bank 2023; 24:59-66. [PMID: 35635634 DOI: 10.1007/s10561-022-10011-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/22/2022] [Indexed: 11/29/2022]
Abstract
In the use of bovine fetal serum (FBS) there is concern about the possibility of disease transmission from animal to human. Therefore, it seems necessary to create culture conditions free of animal serum, especially in cell therapy. The aim of this study was to evaluate the feasibility of replacing human umbilical cord serum (hUCS) with FBS for in vitro expansion of umbilical cord mesenchymal stromal/stem cells (UC-MSCs). Here, UC-MSCs were cultured for five days in media supplemented either by hUCS or commercial FBS (Gibco and HyClone) to compare their viability, proliferation, morphology, Immunophenotype and differentiation potential. Our data shows that use of 5% and/or 10% hUCS, resulted in a tenfold increase in the number of MSCs; While in the presence of commercial FBS, this figure reached a maximum of five times. Notably, the rate of cell proliferation in the group containing 2% hUCS was the same as the groups containing 10% commercial FBS. Furthermore, there was no significant difference between groups in terms of viability, surface markers, and multilineage differentiation potential. These results demonstrated that hUCS can efficiently replace FBS for the routine culture of MSCs and can be used ideally in manufacturing process of UC-MSCs in cell therapy industry.
Collapse
Affiliation(s)
- Elaheh Afzal
- Research and Development Department, Royan Stem Cell Technology Company, Cord Blood Bank, Tehran, Iran
| | - Mohammad Pakzad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Nouri
- Research and Development Department, Royan Stem Cell Technology Company, Cord Blood Bank, Tehran, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Morteza Zarrabi
- Research and Development Department, Royan Stem Cell Technology Company, Cord Blood Bank, Tehran, Iran. .,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 19395-4644, Iran.
| |
Collapse
|
10
|
A Novel Technique of Amniotic Membrane Preparation Mimicking Limbal Epithelial Crypts Enhances the Number of Progenitor Cells upon Expansion. Cells 2023; 12:cells12050738. [PMID: 36899873 PMCID: PMC10001367 DOI: 10.3390/cells12050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
We aimed to investigate whether a novel technique of human amniotic membrane (HAM) preparation that mimics the crypts in the limbus enhances the number of progenitor cells cultured ex vivo. The HAMs were sutured on polyester membrane (1) standardly, to obtain a flat HAM surface, or (2) loosely, achieving the radial folding to mimic crypts in the limbus. Immunohistochemistry was used to demonstrate a higher number of cells positive for progenitor markers p63α (37.56 ± 3.34% vs. 62.53 ± 3.32%, p = 0.01) and SOX9 (35.53 ± 0.96% vs. 43.23 ± 2.32%, p = 0.04), proliferation marker Ki-67 (8.43 ± 0.38 % vs. 22.38 ± 1.95 %, p = 0.002) in the crypt-like HAMs vs. flat HAMs, while no difference was found for the quiescence marker CEBPD (22.99 ± 2.96% vs. 30.49 ± 3.33 %, p = 0.17). Most of the cells stained negative for the corneal epithelial differentiation marker KRT3/12, and some were positive for N-cadherin in the crypt-like structures, but there was no difference in staining for E-cadherin and CX43 in crypt-like HAMs vs. flat HAMs. This novel HAM preparation method enhanced the number of progenitor cells expanded in the crypt-like HAM compared to cultures on the conventional flat HAM.
Collapse
|
11
|
Hirabayashi MT, Barnett BP. Solving STODS-Surgical Temporary Ocular Discomfort Syndrome. Diagnostics (Basel) 2023; 13:diagnostics13050837. [PMID: 36899981 PMCID: PMC10000827 DOI: 10.3390/diagnostics13050837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 02/24/2023] Open
Abstract
The term STODS (Surgical Temporary Ocular Discomfort Syndrome) has been coined to describe the ocular surface perturbations induced by surgery. As one of the most important refractive elements of the eye, Guided Ocular Surface and Lid Disease (GOLD) optimization is fundamental to success in achieving refractive outcomes and mitigating STODS. Effective GOLD optimization and the prevention/treatment of STODS requires an understanding of the molecular, cellular, and anatomic factors that influence ocular surface microenvironment and the associated perturbations induced by surgical intervention. By reviewing the current understanding of STODS etiologies, we will attempt to outline a rationale for a tailored GOLD optimization depending on the ocular surgical insult. With a bench-to-bedside approach, we will highlight clinical examples of effective GOLD perioperative optimization that can mitigate STODS' deleterious effect on preoperative imaging and postoperative healing.
Collapse
Affiliation(s)
- Matthew T. Hirabayashi
- Department of Ophthalmology, University of Missouri School of Medicine, 1 Hospital Dr, Columbia, MO 65212, USA
| | - Brad P. Barnett
- California LASIK & Eye, 1111 Exposition Blvd. Bldg. 200, Ste. 2000, Sacramento, CA 95815, USA
- Correspondence:
| |
Collapse
|
12
|
Talachi N, Afzal E, Nouri M, Abroun S, Zarrabi M, Jahandar H. Protective effect of human amniotic membrane extract against hydrogen peroxide-induced oxidative damage in human dermal fibroblasts. Int J Cosmet Sci 2023; 45:73-82. [PMID: 36129819 DOI: 10.1111/ics.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/19/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE One of the main approaches to preventing skin ageing is to protect fibroblast cells from oxidative stress. The promoting effect of the human amniotic membrane extract (hAME) on re-epithelization, proliferation and migration of cells in wound healing has been already well studied. This experimental study aimed to investigate the antioxidant activity of hAME against hydrogen peroxide (H2 O2 )-induced dermal fibroblast damage. METHODS Here, to establish the ageing model, human foreskin fibroblasts (HFFs) were exposed to 200 μM H2 O2 for 2 h. HFFs were treated with 0.1 mg/ml AME for 24 or 48 h before or/and after H2 O2 exposure. A total of 48 h following the H2 O2 treatment, we measured cell proliferation, viability, senescence-associated β-galactosidase (SA-β-Gal), antioxidants and preinflammatory cytokine (IL-6) levels, as well as the expression of senescence-associated genes (P53 and P21). RESULTS The obtained results indicated that under oxidative stress, AME significantly increased cellular viability and not only promoted the cell proliferation rate but also attenuated apoptotic induction condition (p < 0.001). AME also significantly reversed the SA-β-Gal levels induced by H2 O2 (p < 0.001). Additionally, both pre- and post-treatment regimen by AME down-regulated the expression of senescence marker genes (p < 0.001). Moreover, AME declined different oxidative stress biomarkers such as superoxide dismutase and catalase and increased the glutathione amount. CONCLUSION Altogether, our results indicated that AME had a remarkable antioxidant and antiageing activity as pre- and post-treatment regimen, pointing to this compound as a potential natural-based cosmeceutical agent to prevent and treat skin ageing conditions.
Collapse
Affiliation(s)
- Negin Talachi
- Faculty of Pharmaceutical Sciences, Department of Pharmacognosy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Department of Research and Development, Royan Stem Cell Technology Company, Tehran, Iran
| | - Elaheh Afzal
- Department of Research and Development, Royan Stem Cell Technology Company, Tehran, Iran
| | - Masoumeh Nouri
- Department of Research and Development, Royan Stem Cell Technology Company, Tehran, Iran
| | - Saeid Abroun
- Faculty of Medical Sciences, Department of Hematology, Tarbiat Modares University, Tehran, Iran
| | - Morteza Zarrabi
- Department of Research and Development, Royan Stem Cell Technology Company, Tehran, Iran.,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hoda Jahandar
- Faculty of Pharmaceutical Sciences, Department of Pharmacognosy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Soleimani M, Cheraqpour K, Koganti R, Baharnoori SM, Djalilian AR. Concise Review: Bioengineering of Limbal Stem Cell Niche. Bioengineering (Basel) 2023; 10:111. [PMID: 36671683 PMCID: PMC9855097 DOI: 10.3390/bioengineering10010111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The corneal epithelium is composed of nonkeratinized stratified squamous cells and has a significant turnover rate. Limbal integrity is vital to maintain the clarity and avascularity of the cornea as well as regeneration of the corneal epithelium. Limbal epithelial stem cells (LESCs) are located in the basal epithelial layer of the limbus and preserve this homeostasis. Proper functioning of LESCs is dependent on a specific microenvironment, known as the limbal stem cell niche (LSCN). This structure is made up of various cells, an extracellular matrix (ECM), and signaling molecules. Different etiologies may damage the LSCN, leading to limbal stem cell deficiency (LSCD), which is characterized by conjunctivalization of the cornea. In this review, we first summarize the basics of the LSCN and then focus on current and emerging bioengineering strategies for LSCN restoration to combat LSCD.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
14
|
Mini-Conjunctival Limbal Autograft (Mini-CLAU) Using Platelet-Rich Plasma Eye Drops (E-PRP): A Case Series. Cornea 2022:00003226-990000000-00145. [PMID: 36730781 DOI: 10.1097/ico.0000000000003156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/14/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE The purpose of this study was to introduce a new method of limbal stem cell transplantation using autologous platelet-rich plasma (E-PRP) eye drops for unilateral total limbal stem cell deficiency. METHODS Patients with total unilateral limbal stem cell deficiency due to chemical burn underwent mini-conjunctival limbal autograft using autologous E-PRP drops. One small limbal block, measuring 2 × 2 mm, was harvested from the patients' contralateral healthy eye and transplanted to the diseased eye. All patients received E-PRP drops until achieving complete corneal epithelialization. Subsequent corneal transplantation was performed in eyes with significant stromal opacification. Corneal buttons obtained during corneal transplantation underwent immunohistochemistry for the evaluation of limbal stem cell markers (ABCG2 and P63). Visual acuity, epithelial healing, corneal clarity, and regression of corneal conjunctivalization/vascularization were evaluated after surgery. RESULTS Ten patients with acid (n = 7) or alkali (n = 3) burn were included. The mean follow-up period was 21.7 ± 5.8 months (range, 12-32 months). Corneas were completely reepithelialized within 14.9 ± 3.5 days (range, 11-21 days). Corneal conjunctivalization/vascularization dramatically regressed 1 to 2 months after surgery in all cases, and corneal clarity considerably improved in 7 patients. In the 3 eyes with significant stromal opacification, subsequent optical penetrating keratoplasty was performed. The ocular surface was stable throughout the follow-up period in all eyes. BSCVA improved to 0.60 ± 0.0.32 and 0.46 ± 0.0.25 logMAR in eyes with and without corneal transplantation, respectively, at the final follow-up visit. ABCG2 and P63 markers were detected on corneal buttons after keratoplasty. CONCLUSIONS Based on our clinical and laboratory findings, mini-conjunctival limbal autograft using E-PRP can be considered as a promising alternative to ocular surface reconstruction.
Collapse
|
15
|
Placental Tissues as Biomaterials in Regenerative Medicine. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6751456. [PMID: 35496035 PMCID: PMC9050314 DOI: 10.1155/2022/6751456] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/19/2022] [Indexed: 12/02/2022]
Abstract
Placental tissues encompass all the tissues which support fetal development, including the placenta, placental membrane, umbilical cord, and amniotic fluid. Since the 1990s there has been renewed interest in the use of these tissues as a raw material for regenerative medicine applications. Placental tissues have been extensively studied for their potential contribution to tissue repair applications. Studies have attributed their efficacy in augmenting the healing process to the extracellular matrix scaffolds rich in collagens, glycosaminoglycans, and proteoglycans, as well as the presence of cytokines within the tissues that have been shown to stimulate re-epithelialization, promote angiogenesis, and aid in the reduction of inflammation and scarring. The compositions and properties of all birth tissues give them the potential to be valuable biomaterials for the development of new regenerative therapies. Herein, the development and compositions of each of these tissues are reviewed, with focus on the structural and signaling components that are relevant to medical applications. This review also explores current configurations and recent innovations in the use of placental tissues as biomaterials in regenerative medicine.
Collapse
|
16
|
Rastegar Adib F, Bagheri F, Sharifi AM. Osteochondral regeneration in rabbit using xenograft decellularized ECM in combination with different biological products; platelet-rich fibrin, amniotic membrane extract, and mesenchymal stromal cells. J Biomed Mater Res B Appl Biomater 2022; 110:2089-2099. [PMID: 35383398 DOI: 10.1002/jbm.b.35063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/11/2022]
Abstract
This study aimed to investigate the regenerative effect of decellularized osteochondral ECM xenograft in combination with various biological products in an osteochondral (OC) defect. OC tissue from the sheep femur were obtained and decellularized. The decellularized ECM (dECM) was combined with either platelet-rich fibrin (PRF), amniotic membrane extract (AME), or rabbit bone marrow-derived mesenchymal stromal cells (rBMSCs). The hybrid dECM-biological products were then utilized for the treatment of rabbit OC critical size defects. The regenerative potential of different groups was compared using; MRI, macroscopic assessment, histopathology, and histomorphometry. All characterizations analysis verified successful decellularization. Three months post-surgery, macroscopic findings indicated that dECM was better compared to controls. Also, dECM in combination with AME, PRF, and rBMSCs showed enhanced OC regeneration compared to only dECM (AME: +100%, PRF: +61%, rBMSCs: +28%). In particular, the dECM+AME group results in the best integration of new cartilage into surrounding cartilage tissue. The histomorphometric evaluations demonstrated enhancement in new cartilage formation and bone tissue (86.5 ± 5.9% and 90 ± 7.7%, respectively) for the dECM+AME group compared to other groups. Furthermore, histological results for the dECM+AME elucidated a mature hyaline cartilage tissue that covered the new and symmetrically formed subchondral bone, exhibiting a significantly higher regenerative effect compared to all other treated groups. This finding was also confirmed with MRI images. The current study revealed that in addition to the benefits of dECM alone, its combination with AME indicated to have a superior regenerative effect on OC regeneration. Overall, dECM+AME may be considered a suitable construct for treating knee OC injuries.
Collapse
Affiliation(s)
- Fatemeh Rastegar Adib
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Ali Mohammad Sharifi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Tissue Engineering Group, (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Elhusseiny AM, Soleimani M, Eleiwa TK, ElSheikh RH, Frank CR, Naderan M, Yazdanpanah G, Rosenblatt MI, Djalilian AR. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:259-268. [PMID: 35303110 PMCID: PMC8968724 DOI: 10.1093/stcltm/szab028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
The corneal epithelium serves to protect the underlying cornea from the external environment and is essential for corneal transparency and optimal visual function. Regeneration of this epithelium is dependent on a population of stem cells residing in the basal layer of the limbus, the junction between the cornea and the sclera. The limbus provides the limbal epithelial stem cells (LESCs) with an optimal microenvironment, the limbal niche, which strictly regulates their proliferation and differentiation. Disturbances to the LESCs and/or their niche can lead to the pathologic condition known as limbal stem cell deficiency (LSCD) whereby the corneal epithelium is not generated effectively. This has deleterious effects on the corneal and visual function, due to impaired healing and secondary corneal opacification. In this concise review, we summarize the characteristics of LESCs and their niche, and present the current and future perspectives in the management of LSCD with an emphasis on restoring the function of the limbal niche.
Collapse
Affiliation(s)
- Abdelrahman M Elhusseiny
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Taher K Eleiwa
- Department of Ophthalmology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Reem H ElSheikh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Charles R Frank
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Morteza Naderan
- Department of Ophthalmology, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Corresponding author: Ali R. Djalilian, Cornea Service, Stem Cell Therapy and Corneal Tissue Engineering Laboratory, Illinois Eye and Ear Infirmary, 1855 W. Taylor Street, M/C 648, Chicago, IL 60612, USA.
| |
Collapse
|
18
|
Amin S, Jalilian E, Katz E, Frank C, Yazdanpanah G, Guaiquil VH, Rosenblatt MI, Djalilian AR. The Limbal Niche and Regenerative Strategies. Vision (Basel) 2021; 5:vision5040043. [PMID: 34698278 PMCID: PMC8544688 DOI: 10.3390/vision5040043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
The protective function and transparency provided by the corneal epithelium are dependent on and maintained by the regenerative capacity of limbal epithelial stem cells (LESCs). These LESCs are supported by the limbal niche, a specialized microenvironment consisting of cellular and non-cellular components. Disruption of the limbal niche, primarily from injuries or inflammatory processes, can negatively impact the regenerative ability of LESCs. Limbal stem cell deficiency (LSCD) directly hampers the regenerative ability of the corneal epithelium and allows the conjunctival epithelium to invade the cornea, which results in severe visual impairment. Treatment involves restoring the LESC population and functionality; however, few clinically practiced therapies currently exist. This review outlines the current understanding of the limbal niche, its pathology and the emerging approaches targeted at restoring the limbal niche. Most emerging approaches are in developmental phases but show promise for treating LSCD and accelerating corneal regeneration. Specifically, we examine cell-based therapies, bio-active extracellular matrices and soluble factor therapies in considerable depth.
Collapse
Affiliation(s)
- Sohil Amin
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Eitan Katz
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Charlie Frank
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
- Richard and Loan Hill Department of Bioengineering, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA; (S.A.); (E.J.); (E.K.); (C.F.); (G.Y.); (V.H.G.); (M.I.R.)
- Correspondence:
| |
Collapse
|
19
|
Samoila O, Samoila L. Stem Cells in the Path of Light, from Corneal to Retinal Reconstruction. Biomedicines 2021; 9:biomedicines9080873. [PMID: 34440077 PMCID: PMC8389604 DOI: 10.3390/biomedicines9080873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
The future of eye reconstruction invariably includes stem cells transplantation. Corneal limbus, corneal stroma, trabeculum, retinal cells, optic nerve, and all structures that are irreversibly damaged and have no means to be repaired or replaced, through conventional treatment or surgery, represent targets for stem cell reconstruction. This review tries to answer the question if there is any clinical validation for stem therapies, so far, starting from the cornea and, on the path of light, arriving to the retina. The investigation covers the last 10 years of publications. From 2385 published sources, we found 56 clinical studies matching inclusion criteria, 39 involving cornea, and 17 involving retina. So far, corneal epithelial reconstruction seems well validated clinically. Enough clinical data are collected to allow some form of standardization for the stem cell transplant procedures. Cultivated limbal epithelial stem cells (CLET), simple limbal epithelial transplant (SLET), and oral mucosa transplantation are implemented worldwide. In comparison, far less patients are investigated in retinal stem reconstructions, with lower anatomical and clinical success, so far. Intravitreal, subretinal, and suprachoroidal approach for retinal stem therapies face specific challenges.
Collapse
Affiliation(s)
- Ovidiu Samoila
- Ophthalmology Department, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400006 Cluj-Napoca, Romania
- Correspondence:
| | | |
Collapse
|
20
|
Murray HE, Zafar A, Qureshi KM, Paget MB, Bailey CJ, Downing R. The potential role of multifunctional human amniotic epithelial cells in pancreatic islet transplantation. J Tissue Eng Regen Med 2021; 15:599-611. [PMID: 34216434 DOI: 10.1002/term.3214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/23/2021] [Indexed: 11/08/2022]
Abstract
Pancreatic islet cell transplantation has proven efficacy as a treatment for type 1 diabetes mellitus, chiefly in individuals who are refractory to conventional insulin replacement therapy. At present its clinical use is restricted, firstly by the limited access to suitable donor organs but also due to factors associated with the current clinical transplant procedure which inadvertently impair the long-term functionality of the islet graft. Of note, the physical, biochemical, inflammatory, and immunological stresses to which islets are subjected, either during pretransplant processing or following implantation are detrimental to their sustained viability, necessitating repeated islet infusions to attain adequate glucose control. Progressive decline in functional beta (β)-cell mass leads to graft failure and the eventual re-instatement of exogenous insulin treatment. Strategies which protect and/or preserve optimal islet function in the peri-transplant period would improve clinical outcomes. Human amniotic epithelial cells (HAEC) exhibit both pluripotency and immune-privilege and are ideally suited for use in replacement and regenerative therapies. The HAEC secretome exhibits trophic, anti-inflammatory, and immunomodulatory properties of relevance to islet graft survival. Facilitated by β-cell supportive 3D cell culture systems, HAEC may be integrated with islets bringing them into close spatial arrangement where they may exert paracrine influences that support β-cell function, reduce hypoxia-induced islet injury, and alter islet alloreactivity. The present review details the potential of multifunctional HAEC in the context of islet transplantation, with a focus on the innate capabilities that may counter adverse events associated with the current clinical transplant protocol to achieve long-term islet graft function.
Collapse
Affiliation(s)
- Hilary E Murray
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Ali Zafar
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK.,Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Khalid M Qureshi
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK.,Bradford Royal Infirmary, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Michelle B Paget
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Clifford J Bailey
- Diabetes Research, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Richard Downing
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| |
Collapse
|
21
|
Abstract
Purpose: To review the surgical management options in ocular chemical burn, including newer advances.Methods: Online literature search of published articles over last 5 years on surgical management of ocular chemical burn and newer advances were performed on December 30, 2020.Results: Following literature search and screening using adequate filters, 67 review articles on surgical management of ocular chemical burns were retrieved. The review talks about the surgical management options starting from Debridement in acute stage to various visual rehabilitative procedures in the chronic stage. The review also highlights the evolving surgical advances in this field.Conclusion: It is imperative to choose adequate surgical tool wherever applicable; current review discusses the role of each surgical option at different clinical stages in detail.
Collapse
Affiliation(s)
- Priyanshi Awasthi
- Department of Ophthalmology, All India Institute of Medical Sciences, Patna, India
| | - Prabhakar Singh
- Department of Ophthalmology, All India Institute of Medical Sciences, Patna, India
| | - Amit Raj
- Department of Ophthalmology, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
22
|
Amniotic membrane extract eye drops for ocular surface diseases: use and clinical outcome in real-world practice. Int Ophthalmol 2021; 41:2973-2979. [PMID: 33864578 DOI: 10.1007/s10792-021-01856-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/08/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE To study the indications and clinical outcomes, in a real-word setting, of amniotic membrane extract eye drops (AMEED) use for ocular surface disease (OSD). METHODS A retrospective study of patients treated with topical AMEED between January 2018 and January 2020 was conducted. Patients were classified in two groups according to specific OSD-dry eye disease (DED) and wound healing delay (WHD) groups. Demographics, comorbidities, treatment duration and clinical outcomes were analysed. RESULTS A total of 50 eyes of 36 patients with or without previous treatments were included. Patients in the DED group presented more systemic comorbidities (83 vs 22%; p < 0.001) and spent more mean time under AMEED treatment (10 vs 7.2 months average) than the WHD group (p = 0.0104). In four patients, long-term treatment (more than 24 months) was reported. Global similar symptomatic improvement was reported for both groups (DED 88.9% vs WHD 100%; p = 0.486), with the WHD group especially consisting in general relief (78%) and the DED group reporting more pain improvement (44%) (p = 0.011). Regarding patients with autologous serum as a previous treatment, no statistical differences were found in subjective or objective improvement. An overall success was achieved in 94.4% of the cases and no adverse events were found. CONCLUSION AMEED administration is a promising mean to treat OSD such as dry eye, persistent epithelial defect and corneal ulcers. Although AMEED may be effective in the treatment of severe DED and persistent epithelial defect or corneal ulcers, conclusions are limited owing to the absence of controlled clinical trials.
Collapse
|
23
|
Capistrano da Silva E, Gibson DJ, Jeong S, Zimmerman KL, Smith-Fleming KM, Martins BDC. Determining MMP-2 and MMP-9 reductive activities of bovine and equine amniotic membranes homogenates using fluorescence resonance energy transfer. Vet Ophthalmol 2021; 24:279-287. [PMID: 33834598 DOI: 10.1111/vop.12888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/26/2021] [Accepted: 03/28/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs)-2 and -9 are present in corneal ulcers, and an imbalance between MMPs and tissue inhibitors of metalloproteinases (TIMPs) leads to further corneal degradation. Amniotic membrane homogenate (AMH) has proteolytic properties beneficial for corneal healing, but it is unknown whether AMH possesses TIMPs or effectively inhibits MMP-2 and MMP-9 activity. OBJECTIVE To determine if bovine and equine AMH reduce in vitro MMP-2 and MMP-9 activities associated with the presence of TIMPs. PROCEDURES Undiluted and diluted twofold series (0-fold to 16-fold dilutions) of equine amniotic membrane homogenates (EAMH, n = 8) and bovine amniotic membrane homogenates (BAMH, n = 8) were subjected to fluorescence resonance energy transfer, and the fluorescence emitted was recorded over time. Average fluorescence was calculated versus recombinant concentration. Enzyme-linked immunosorbent assays for TIMPs 1-4 were applied to quantify TIMPs in the samples. RESULTS AMH from both species were able to inhibit MMP-2 and MMP-9 activities in vitro, and the inhibition efficacy decreased gradually with dilution. BAMH was significantly more effective than EAMH at inhibiting MMP-2 and MMP-9 in vitro. TIMPs -2 and -3 were present in EAMH and BAMH. TIMP-1 was detected only in BAMH, and TIMP-4 was not detected in any samples. CONCLUSION Both EAMH and BAMH directly inhibited MMP-2 and MMP-9 in vitro without dilution, and BAMH showed better inhibition of MMP-2 and MMP-9 before and after dilution compared to EAMH.
Collapse
Affiliation(s)
- Erotides Capistrano da Silva
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Daniel J Gibson
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sunyoung Jeong
- Department of Obstetrics and Gynecology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kelli L Zimmerman
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Kathryn M Smith-Fleming
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Bianca da C Martins
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA.,Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
24
|
Dadkhah Tehrani F, Firouzeh A, Shabani I, Shabani A. A Review on Modifications of Amniotic Membrane for Biomedical Applications. Front Bioeng Biotechnol 2021; 8:606982. [PMID: 33520961 PMCID: PMC7839407 DOI: 10.3389/fbioe.2020.606982] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022] Open
Abstract
The amniotic membrane (AM) is the innermost layer of the fetal placenta, which surrounds and protects the fetus. Its unique structure, in addition to its physical and biological properties, makes it a useful substance in many applications related to regenerative medicine. The use of this fantastic substance with a century-old history has produced remarkable results in vivo, in vitro, and even in clinical studies. While the intact or preserved AM is widely used for these purposes, the addition of further modifications to AM can be considered as a relatively new subject in its applications. These modifications are applied to improve AM properties, ease of handling, and durability. Here, we will discuss the cases in which AM has undergone additional modifications besides the required processes for sterilization and preservation. In this article, we have categorized these modifications and discussed their applications and results.
Collapse
Affiliation(s)
- Fatemeh Dadkhah Tehrani
- Cell Engineering and Bio-microsystems Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
| | - Arezoo Firouzeh
- Cell Engineering and Bio-microsystems Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
| | - Iman Shabani
- Cell Engineering and Bio-microsystems Laboratory, Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran, Iran
| | - Azadeh Shabani
- Preventative Gynecology Research Center, Department of Gynecology and Obstetrics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Lyons VN, Townsend WM, Moore GE, Liang S. Commercial amniotic membrane extract for treatment of corneal ulcers in adult horses. Equine Vet J 2020; 53:1268-1276. [PMID: 33320369 DOI: 10.1111/evj.13399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/02/2020] [Accepted: 12/10/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Amniotic membrane extract enhances the rate of epithelialisation after corneal ulceration in several species but has not been studied in the equine cornea. OBJECTIVES To evaluate the effect of amniotic membrane extract on re-epithelialisation of equine corneal ulcers compared with ulcers treated with antibiotic, antifungal and mydriatic medical therapy alone, and to evaluate equine corneal healing after experimentally induced superficial ulceration. STUDY DESIGN Masked, randomised, controlled experimental trial. METHODS Superficial, 8 mm corneal ulcers were created bilaterally in each horse. One eye was treated with amniotic membrane extract and the opposite was control. Both eyes were treated with medical therapy. Treatment eyes received amniotic membrane extract, and control eyes received the amniotic membrane extract vehicle. Ulcers were stained with fluorescein and photographed in 12-hour increments until completely healed. Ulcer surface area was determined by analysing photographs with ImageJ. A mixed linear model was used to compare ulcer surface area and hours until healing between treatment groups. A regression model was also used to calculate corneal re-epithelialisation rate over time. RESULTS Regardless of therapy, healing occurred in two phases: an initial rapid phase of 0.88 mm2 /hr (95% CI: 0.81-0.94 mm2 /hr) for approximately 48-54 hours followed by a second, slow phase of 0.07 mm2 /hr (95% CI: 0.04-0.09 mm2 /hr). Most eyes healed within 135.5 ± 48.5 hours. Treatment (amniotic membrane extract vs. control) was not significantly associated with size of ulcers over time (P = .984). Discomfort was minimal to absent in all horses. MAIN LIMITATIONS Results achieved experimental studies may differ from outcomes in the clinical setting. CONCLUSIONS There was no significant difference in healing rate with addition of amniotic membrane extract to medical therapy for equine superficial corneal ulcers. A biphasic corneal healing process was observed, with an initial rapid phase followed by a slow phase. Further study will be needed to determine whether amniotic membrane extract will be helpful for infected or malacic equine corneal ulcers.
Collapse
Affiliation(s)
- Victoria N Lyons
- Department of Veterinary Clinical Sciences, Purdue University, Indiana, USA
| | - Wendy M Townsend
- Department of Veterinary Clinical Sciences, Purdue University, Indiana, USA
| | - George E Moore
- Department of Comparative Pathobiology, Purdue University, Indiana, USA
| | - Siqi Liang
- Department of Statistics, College of Science, Purdue University, Indiana, USA
| |
Collapse
|
26
|
Reddy LVK, Murugan D, Mullick M, Begum Moghal ET, Sen D. Recent Approaches for Angiogenesis in Search of Successful Tissue Engineering and Regeneration. Curr Stem Cell Res Ther 2020; 15:111-134. [PMID: 31682212 DOI: 10.2174/1574888x14666191104151928] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023]
Abstract
Angiogenesis plays a central role in human physiology from reproduction and fetal development to wound healing and tissue repair/regeneration. Clinically relevant therapies are needed for promoting angiogenesis in order to supply oxygen and nutrients after transplantation, thus relieving the symptoms of ischemia. Increase in angiogenesis can lead to the restoration of damaged tissues, thereby leading the way for successful tissue regeneration. Tissue regeneration is a broad field that has shown the convergence of various interdisciplinary fields, wherein living cells in conjugation with biomaterials have been tried and tested on to the human body. Although there is a prevalence of various approaches that hypothesize enhanced tissue regeneration via angiogenesis, none of them have been successful in gaining clinical relevance. Hence, the current review summarizes the recent cell-based and cell free (exosomes, extracellular vesicles, micro-RNAs) therapies, gene and biomaterial-based approaches that have been used for angiogenesis-mediated tissue regeneration and have been applied in treating disease models like ischemic heart, brain stroke, bone defects and corneal defects. This review also puts forward a concise report of the pre-clinical and clinical studies that have been performed so far; thereby presenting the credible impact of the development of biomaterials and their 3D concepts in the field of tissue engineering and regeneration, which would lead to the probable ways for heralding the successful future of angiogenesis-mediated approaches in the greater perspective of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lekkala Vinod Kumar Reddy
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Durai Murugan
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Madhubanti Mullick
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Erfath Thanjeem Begum Moghal
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Dwaipayan Sen
- Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India.,University of Georgia, Athens, GA, United States
| |
Collapse
|
27
|
Qiu C, Ge Z, Cui W, Yu L, Li J. Human Amniotic Epithelial Stem Cells: A Promising Seed Cell for Clinical Applications. Int J Mol Sci 2020; 21:ijms21207730. [PMID: 33086620 PMCID: PMC7594030 DOI: 10.3390/ijms21207730] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Perinatal stem cells have been regarded as an attractive and available cell source for medical research and clinical trials in recent years. Multiple stem cell types have been identified in the human placenta. Recent advances in knowledge on placental stem cells have revealed that human amniotic epithelial stem cells (hAESCs) have obvious advantages and can be used as a novel potential cell source for cellular therapy and clinical application. hAESCs are known to possess stem-cell-like plasticity, immune-privilege, and paracrine properties. In addition, non-tumorigenicity and a lack of ethical concerns are two major advantages compared with embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). All of the characteristics mentioned above and other additional advantages, including easy accessibility and a non-invasive application procedure, make hAESCs a potential ideal cell type for use in both research and regenerative medicine in the near future. This review article summarizes current knowledge on the characteristics, therapeutic potential, clinical advances and future challenges of hAESCs in detail.
Collapse
Affiliation(s)
- Chen Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
| | - Zhen Ge
- Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, China;
| | - Wenyu Cui
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
- Correspondence: (L.Y.); (J.L.)
| | - Jinying Li
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
- Correspondence: (L.Y.); (J.L.)
| |
Collapse
|
28
|
Klama-Baryła A, Rojczyk E, Kitala D, Łabuś W, Smętek W, Wilemska-Kucharzewska K, Kucharzewski M. Preparation of placental tissue transplants and their application in skin wound healing and chosen skin bullous diseases - Stevens-Johnson syndrome and toxic epidermal necrolysis treatment. Int Wound J 2020; 17:491-507. [PMID: 31943788 DOI: 10.1111/iwj.13305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Unique properties of amniotic membrane make it a promising source for tissue engineering and a clinically useful alternative for patients suffering from chronic wounds including, for example, ulcers, burns, ocular surface damages and wounds occurring in the course of bullous diseases like stevens-johnson syndrome and toxic epidermal necrolysis. Its use has many advantages over standard wound care, as it contains pluripotent cells, nutrients, anti-fibrotic and anti-inflammatory cytokines, growth factors and extracellular matrix (ECM) proteins. Placental tissues can be prepared as a medical component, an advanced therapy medicinal product or a tissue graft. In addition to basic preparation procedures such as washing, rinsing, cutting, drying and sterilisation, there are many optional steps such as perforation, crosslinking and decellularisation. Finally, transplants should be properly stored-in cryopreserved or dehydrated form. In recent years, many studies including basic science and clinical trials have proven the potential to expand the use of amniotic membrane and amnion-derived cells to the fields of orthopaedics, dentistry, surgery, urology, vascular tissue engineering and even oncology. In this review, we discuss the role of placental tissues in skin wound healing and in the treatment of various diseases, with particular emphasis on bullous diseases. We also describe some patented procedures for placental tissue grafts preparation.
Collapse
Affiliation(s)
- Agnieszka Klama-Baryła
- The Burn Centre of Stanisław Sakiel in Siemianowice Śląskie, Siemianowice Śląskie, Poland
| | - Ewa Rojczyk
- Department of Descriptive and Topographic Anatomy, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Diana Kitala
- The Burn Centre of Stanisław Sakiel in Siemianowice Śląskie, Siemianowice Śląskie, Poland
| | - Wojciech Łabuś
- The Burn Centre of Stanisław Sakiel in Siemianowice Śląskie, Siemianowice Śląskie, Poland
| | - Wojciech Smętek
- The Burn Centre of Stanisław Sakiel in Siemianowice Śląskie, Siemianowice Śląskie, Poland
| | | | - Marek Kucharzewski
- Department of Descriptive and Topographic Anatomy, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| |
Collapse
|
29
|
Moshirfar M, Murri MS, Shah TJ, Skanchy DF, Tuckfield JQ, Ronquillo YC, Birdsong OC, Hofstedt D, Hoopes PC. A Review of Corneal Endotheliitis and Endotheliopathy: Differential Diagnosis, Evaluation, and Treatment. Ophthalmol Ther 2019; 8:195-213. [PMID: 30859513 PMCID: PMC6514041 DOI: 10.1007/s40123-019-0169-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
The corneal endothelium plays an integral role in regulating corneal hydration and clarity. Endotheliitis, defined as inflammation of the corneal endothelium, may disrupt endothelial function and cause subsequent visual changes. Corneal endotheliitis is characterized by corneal edema, the presence of keratic precipitates, anterior chamber inflammation, and occasionally limbal injection, neovascularization, and co-existing or superimposed uveitis. The disorder is classified into four subgroups: linear, sectoral, disciform, and diffuse. Its etiology is extensive and, although commonly viral, may be medication-related, procedural, fungal, zoological, environmental, or systemic. Not all cases of endothelial dysfunction leading to corneal edema are inflammatory in nature. Therefore, it is imperative that practitioners consider a broad differential for patients presenting with possible endotheliitis, as well as familiarize themselves with appropriate diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Majid Moshirfar
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Utah Lions Eye Bank, Murray, UT, USA.
- HDR Research Center, Hoopes Vision, Draper, UT, USA.
| | - Michael S Murri
- John A. Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Tirth J Shah
- Department of Ophthalmology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa, IA, USA
| | - David F Skanchy
- McGovern Medical School, The University of Texas Health Science Center, Houston, TX, USA
- W.K. Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James Q Tuckfield
- Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| | | | | | - Daniel Hofstedt
- Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, USA
| | | |
Collapse
|
30
|
Yazdanpanah G, Jabbehdari S, Djalilian AR. Emerging Approaches for Ocular Surface Regeneration. CURRENT OPHTHALMOLOGY REPORTS 2019; 7:1-10. [PMID: 31275736 DOI: 10.1007/s40135-019-00193-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of review In this manuscript, the recent advancements and novel approaches for regeneration of the ocular surface are summarized. Recent findings Following severe injuries, persistent inflammation can alter the rehabilitative capability of the ocular surface environment. Limbal stem cell deficiency (LSCD) is one of the most characterized ocular surface disorders mediated by deficiency and/or dysfunction of the limbal epithelial stem cells (LESCs) located in the limbal niche. Currently, the most advanced approach for revitalizing the ocular surface and limbal niche is based on transplantation of limbal tissues harboring LESCs. Emerging approaches have focused on restoring the ocular surface microenvironment using (1) cell-based therapies including cells with capabilities to support the LESCs and modulate the inflammation, e.g., mesenchymal stem cells (MSCs), (2) bio-active extracellular matrices from decellularized tissues, and/or purified/synthetic molecules to regenerate the microenvironment structure, and (3) soluble cytokine/growth factor cocktails to revive the signaling pathways. Summary Ocular surface/limbal environment revitalization provide promising approaches for regeneration of the ocular surface.
Collapse
Affiliation(s)
- Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Sayena Jabbehdari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
31
|
Strategies for reconstructing the limbal stem cell niche. Ocul Surf 2019; 17:230-240. [PMID: 30633966 DOI: 10.1016/j.jtos.2019.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/21/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022]
Abstract
The epithelial cell layer that covers the surface of the cornea provides a protective barrier while maintaining corneal transparency. The rapid and effective turnover of these epithelial cells depends, in part, on the limbal epithelial stem cells (LESCs) located in a specialized microenvironment known as the limbal niche. Many disorders affecting the regeneration of the corneal epithelium are related to deficiency and/or dysfunction of LESCs and the limbal niche. Current approaches for regenerating the corneal epithelium following significant injuries such as burns and inflammatory attacks are primarily aimed at repopulating the LESCs. This review summarizes and assesses the clinical feasibility and efficacy of current and emerging approaches for reconstruction of the limbal niche. In particular, the application of mesenchymal stem cells along with appropriate biological scaffolds appear to be promising strategies for long-term revitalization of the limbal niche.
Collapse
|
32
|
Abbaspanah B, Momeni M, Ebrahimi M, Mousavi SH. Advances in perinatal stem cells research: a precious cell source for clinical applications. Regen Med 2018; 13:595-610. [PMID: 30129876 DOI: 10.2217/rme-2018-0019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Perinatal tissues possess numerous types of stem (stromal) cells, which are considered effective candidates for cell therapy. These tissues possess common characteristics of both embryonic and adult stem cells, and cell therapists have begun to use perinatal stem cells to treat several diseases. Despite their benefits, these cells are considered biological waste and usually discarded after delivery. This review highlights the characteristics and potential clinical applications in regenerative medicine of perinatal stem cell sources - cord blood hematopoietic stem cells, umbilical cord mesenchymal stem cells, amniotic membrane stem cells, amniotic fluid stem cells, amniotic epithelial cells and chorionic mesenchymal stem cells.
Collapse
Affiliation(s)
| | - Maryam Momeni
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran.,Department of Stem Cells & Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
| | - Seyed Hadi Mousavi
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Miki T. Stem cell characteristics and the therapeutic potential of amniotic epithelial cells. Am J Reprod Immunol 2018; 80:e13003. [PMID: 29956869 DOI: 10.1111/aji.13003] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Multiple stem cell types can be isolated from the human placenta. Recent advances in stem cell biology have revealed that human amniotic epithelial cells (hAECs) are one of the perinatal stem cells which possess embryonic stem cell-like differentiation capability and adult stem cell-like immunomodulatory properties. Unlike other types of placental stem cells, hAECs are derived from pluripotent epiblasts and maintain multilineage differentiation potential throughout gestation. Similar to mesenchymal stem cells, hAECs are also able to modulate the local immune response. These, and other properties, make hAECs attractive for cellular therapy. This review article summarizes current knowledge of stem cell characteristics and immunomodulatory properties of amniotic epithelial cells and aims to advance our understanding towards the goal of novel therapy development.
Collapse
Affiliation(s)
- Toshio Miki
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
34
|
Murri MS, Moshirfar M, Birdsong OC, Ronquillo YC, Ding Y, Hoopes PC. Amniotic membrane extract and eye drops: a review of literature and clinical application. Clin Ophthalmol 2018; 12:1105-1112. [PMID: 29950805 PMCID: PMC6012548 DOI: 10.2147/opth.s165553] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The amniotic membrane (AM) has a long history of use in the treatment of various diseases of the ocular surface. It contains pluripotent cells, highly organized collagen, anti-fibrotic and anti-inflammatory cytokines, immune-modulators, growth factors, and matrix proteins. It is used to promote corneal healing in severely damaged eyes. Recently, AM extract and AM extract eye drops have been successfully used in clinical applications, including dry eye and chemical burns. We provide an overview on the recent progress in the preparation, mechanisms of action, and use of AM extract/AM extract eye drops for corneal and external eye diseases.
Collapse
Affiliation(s)
- Michael S Murri
- John A Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Majid Moshirfar
- John A Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.,HDR Research Center, Hoopes Vision, Draper, UT, USA
| | | | | | - Yanning Ding
- HDR Research Center, Hoopes Vision, Draper, UT, USA
| | | |
Collapse
|