1
|
Assad H, Saha SK, Kang N, Kumar S, Sharma PK, Dahiya H, Thakur A, Sharma S, Ganjoo R, Kumar A. Electrochemical and computational insights into the utilization of 2, 2- dithio bisbenzothiazole as a sustainable corrosion inhibitor for mild steel in low pH medium. ENVIRONMENTAL RESEARCH 2024; 242:117640. [PMID: 38007078 DOI: 10.1016/j.envres.2023.117640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/02/2023] [Accepted: 11/08/2023] [Indexed: 11/27/2023]
Abstract
Industries today place a high premium on environmentally friendly supplies that may effectively inhibit metal dissolution at a reasonable cost. Hence, in this paper, we assessed the corrosion inhibition effectiveness of the Thiazole derivative namely, 2, 2-Dithio Bisbenzothiazole (DBBT) against mild steel (MS) corrosion in 1 M HCl. Several experimental approaches, including gravimetric analysis, potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), and surface exploration using scanning electron/atomic force microscopy (SEM/AFM) and contact angle (CA), were utilized to conduct the measurements. In 1 M HCl corrosive medium at 298 K in the subsistence of 800 ppm of DBBT, this experiment indicated DBBT as an environment-friendly and sustainable corrosion inhibitor (CI) for MS, demonstrating an inhibition efficiency (IE %) of 97.71%. To deliver a deeper knowledge of the mechanism behind inhibitive behavior, the calculated thermodynamic and activation characteristics were applied. The calculated Gibbs free energy values indicated that the CI interacted physically and chemically with the MS surface, validating physio-chemical adsorption. The findings of the EIS research revealed that an upsurge in the doses of the CI is escorted by an upsurge in polarization resistance (Rp) from (88.05 → 504.04) Ωcm2, and a diminution in double layer capacitance (Cdl) from (97.46 → 46.33) μFcm-2 at (50 → 800) ppm respectively, affirming the inhibitive potential of DBBT. Additionally, the greatest displacement in Ecorr value being 76.13 mV < 85 mV, indicating that DBBT act as a mixed-form CI. To study the further impacts of DBBT on the inhibition capabilities of the compound under investigation, density functional theory (DFT) and molecular dynamics (MD) simulation were employed. Chemical and electrochemical approaches are in agreement with the computational analysis indicating DBBT is the most efficient CI.
Collapse
Affiliation(s)
- Humira Assad
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab, India
| | - Sourav Kr Saha
- Department of Materials Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Namhyun Kang
- Department of Materials Science and Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Suresh Kumar
- Department of Chemistry, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| | - Praveen Kumar Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab, India
| | - Hariom Dahiya
- Department of Chemistry, M. D. University, Rohtak, Haryana, 124001, India
| | - Abhinay Thakur
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab, India
| | - Shveta Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab, India
| | - Richika Ganjoo
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab, India
| | - Ashish Kumar
- Nalanda College of Engineering, Bihar Engineering University, Science, Technology and Technical Education Department , Government of Bihar, 803108, India.
| |
Collapse
|
2
|
Sheetal, Kundu S, Thakur S, Singh AK, Singh M, Pani B, Saji VS. A Review of Electrochemical Techniques for Corrosion Monitoring - Fundamentals and Research Updates. Crit Rev Anal Chem 2023:1-26. [PMID: 37878408 DOI: 10.1080/10408347.2023.2267671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Interculturally, corrosion has been counted as one of the most expensive factors toward the retrogression of concrete and metallic structures resulting in huge monetary losses and unanticipated loss of life. To a large extent, corrosion-related catastrophes can be avoided by having the ability to monitor corrosion before structural integrity is jeopardized. This paper critically reviews the various accustomed electrochemical techniques utilized for corrosion monitoring in terms of their definition, timeline, experimental set-up, advantages, and shortcomings. Additionally, literature exploiting these techniques as their corrosion detection technique has been focused on here. Furthermore, a comparison between recently reported methods has been made to provide better insights into the research progress in this arena.
Collapse
Affiliation(s)
- Sheetal
- Department of Chemistry, Netaji Subhas University of Technology, New Delhi, India
| | - Sheetal Kundu
- Department of Chemistry, Netaji Subhas University of Technology, New Delhi, India
| | - Sanjeeve Thakur
- Department of Chemistry, Netaji Subhas University of Technology, New Delhi, India
| | - Ashish Kumar Singh
- Department of Chemistry, Netaji Subhas University of Technology, New Delhi, India
- Department of Chemistry, Hansraj College, University of Delhi, New Delhi, India
| | - Manjeet Singh
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl, Mizoram, India
| | - Balaram Pani
- Department of Chemistry, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
3
|
Afshari F, Ghomi ER, Dinari M, Ramakrishna S. Recent Advances on the Corrosion Inhibition Behavior of Schiff base Compounds on Mild Steel in Acidic Media. ChemistrySelect 2023. [DOI: 10.1002/slct.202203231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Fahimeh Afshari
- Pharmacology Research Center Zahedan University of Medical Sciences Zahedan Iran
| | - Erfan Rezvani Ghomi
- E. Rezvani Ghomi Prof. S. Ramakrishna Center for Nanotechnology and Sustainability Department of Mechanical Engineering National University of Singapore Singapore 117581 Singapore
| | - Mohammad Dinari
- Department of Chemistry Isfahan University of Technology Isfahan Iran
| | - Seeram Ramakrishna
- E. Rezvani Ghomi Prof. S. Ramakrishna Center for Nanotechnology and Sustainability Department of Mechanical Engineering National University of Singapore Singapore 117581 Singapore
| |
Collapse
|
4
|
Synthesis, experimental and computational studies on the anti-corrosion performance of substituted Schiff bases of 2-methoxybenzaldehyde for mild steel in HCl medium. Sci Rep 2023; 13:3265. [PMID: 36828888 PMCID: PMC9958021 DOI: 10.1038/s41598-023-30396-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
Corrosion inhibition performance of two synthesized Schiff base ligands; (E)-2-((2-methoxybenzylidene)amino)phenol L1 and (E)-2-((4-methoxybenzylidene)amino)phenol L2 were carried out by weight loss measurement in 0.1 M hydrochloric acid (HCl) solution. Density Functional Theory (DFT) and Molecular dynamics (MD) simulation were applied to theoretically explain the inhibitors' intrinsic properties and adsorption mechanism in the corrosion study. The result of the inhibition performances carried out at varying concentrations and temperatures were compared. The corrosion inhibition efficiencies of L1 and L2 at an optimal concentration of 10 × 10-4 M were 75% and 76%. Langmuir isotherm model fits the data obtained from the experiment with a correlation coefficient (R2) value closer to unity. The adsorption mechanism of inhibitor on the surface of the Fe metal occurred via chemisorption inferred from the Gibbs free energy (ΔGads). Scanning electron microscopy showed a mild degradation on the surface of the mild steel immersed in the L1, and L2 inhibited acid solution, which could be due to surface coverage. The energy dispersive X-ray spectroscopy showed the metal surface's elemental composition and the existence of the chlorine peak, which emanates from the HCl medium. DFT calculations revealed that the hybrid B3LYP functional performed better than the M06-2X meta-functional in estimating the energies of the synthesized Schiff bases for corrosion inhibition as seen in the lower ΔE values of 3.86 eV and 3.81 eV for L1 and L2. The MD simulation revealed that the orientation of inhibitors on the surface of the metal resulted in the coordination bond formation and that the interaction energy of L2 was -746.84 kJ/mol compared to -743.74 kJ/mol of L1. The DFT and MD results agreed with the observed trend of the experimental findings.
Collapse
|
5
|
Bentoumi H, Tliba S, K'tir H, Chohra D, Aouf Z, Adjeroud Y, Amira A, Zerrouki R, Ibrahim-Ouali M, Aouf NE, Liacha M. Experimental synthesis, biological evaluation, theoretical investigations of some novel benzoxazolinone based Schiff under eco-environmental conditions as potential antioxidant agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Mariwamy VH, Kollur SP, Shivananda B, Begum M, Shivamallu C, Dharmashekara C, Pradeep S, Jain AS, Prasad SK, Syed A, Elgorban AM, Al-Rejaie S, Ortega-Castro J, Frau J, Flores-Holguín N, Glossman-Mitnik D. N-((1 H-Pyrrol-2-yl)methylene)-6-methoxypyridin-3-amine and Its Co(II) and Cu(II) Complexes as Antimicrobial Agents: Chemical Preparation, In Vitro Antimicrobial Evaluation, In Silico Analysis and Computational and Theoretical Chemistry Investigations. Molecules 2022; 27:1436. [PMID: 35209226 PMCID: PMC8880514 DOI: 10.3390/molecules27041436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Researchers are interested in Schiff bases and their metal complexes because they offer a wide range of applications. The chemistry of Schiff bases of heterocompounds has got a lot of attention because of the metal's ability to coordinate with Schiff base ligands. In the current study, a new bidentate Schiff base ligand, N-((1H-pyrrol-2-yl)methylene)-6-methoxypyridin-3-amine (MPM) has been synthesized by condensing 6-methoxypyridine-3-amine with pyrrole-2-carbaldehyde. Further, MPM is used to prepare Cu(II) and Co(II) metal complexes. Analytical and spectroscopic techniques are used for the structural elucidation of the synthesized compounds. Both MPM and its metal complexes were screened against Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Klebsiella pneumoniae species for antimicrobial studies. Furthermore, these compounds were subjected to in silico studies against bacterial proteins to comprehend their best non-bonded interactions. The results confirmed that the Schiff base ligand show considerably higher binding affinity with good hydrogen bonding and hydrophobic interactions against various tested microbial species. These results were complemented with a report of the Conceptual DFT global reactivity descriptors of the studied compounds together with their biological scores and their ADMET computed parameters.
Collapse
Affiliation(s)
- Vinusha H. Mariwamy
- Department of Chemistry, Sri Jayachamarajendra College of Enegineering, JSS Science and Technology University, Mysuru 570 006, Karnataka, India; (V.H.M.); (B.S.); (M.B.)
| | - Shiva Prasad Kollur
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), Laucala Campus, The University of the South Pacific, Suva, Fiji
- Department of Sciences, Amrita School of Arts and Sciences, Mysuru Campus, Amrita Vishwa Vidyapeetham, Mysore 570 026, Karnataka, India
| | - Bindya Shivananda
- Department of Chemistry, Sri Jayachamarajendra College of Enegineering, JSS Science and Technology University, Mysuru 570 006, Karnataka, India; (V.H.M.); (B.S.); (M.B.)
| | - Muneera Begum
- Department of Chemistry, Sri Jayachamarajendra College of Enegineering, JSS Science and Technology University, Mysuru 570 006, Karnataka, India; (V.H.M.); (B.S.); (M.B.)
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570 026, Karnataka, India; (C.D.); (S.P.); (A.S.J.); (S.K.P.)
| | - Chandan Dharmashekara
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570 026, Karnataka, India; (C.D.); (S.P.); (A.S.J.); (S.K.P.)
| | - Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570 026, Karnataka, India; (C.D.); (S.P.); (A.S.J.); (S.K.P.)
| | - Anisha S. Jain
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570 026, Karnataka, India; (C.D.); (S.P.); (A.S.J.); (S.K.P.)
| | - Shashanka K. Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570 026, Karnataka, India; (C.D.); (S.P.); (A.S.J.); (S.K.P.)
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.)
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.)
| | - Salim Al-Rejaie
- Department of Pharmacology and Toxicology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Joaquín Ortega-Castro
- Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain; (J.O.-C.); (J.F.)
| | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain; (J.O.-C.); (J.F.)
| | - Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| |
Collapse
|
7
|
Inhibition of carbon steel corrosion in HCl solution using N-oleyl-1,3-propanediamine based formulation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
8
|
Mostfa MA, Gomaa H, Othman IMM, Ali GAM. Experimental and theoretical studies of a novel synthesized azopyrazole-benzenesulfonamide derivative as an efficient corrosion inhibitor for mild steel. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02106-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Outstanding anticorrosion and adsorption properties of 2-amino-6-methoxybenzothiazole on Q235 and X70 carbon steels: Effect of time, XPS, electrochemical and theoretical considerations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Okey NC, Obasi NL, Ejikeme PM, Ndinteh DT, Ramasami P, Sherif ESM, Akpan ED, Ebenso EE. Evaluation of some amino benzoic acid and 4-aminoantipyrine derived Schiff bases as corrosion inhibitors for mild steel in acidic medium: Synthesis, experimental and computational studies. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113773] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Anti-corrosion performance of 8-hydroxyquinoline derivatives for mild steel in acidic medium: Gravimetric, electrochemical, DFT and molecular dynamics simulation investigations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113042] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
Ferkous H, Djellali S, Sahraoui R, Benguerba Y, Behloul H, Çukurovali A. Corrosion inhibition of mild steel by 2-(2-methoxybenzylidene) hydrazine-1-carbothioamide in hydrochloric acid solution: Experimental measurements and quantum chemical calculations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112957] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Corrales Luna M, Le Manh T, Cabrera Sierra R, Medina Flores J, Lartundo Rojas L, Arce Estrada E. Study of corrosion behavior of API 5L X52 steel in sulfuric acid in the presence of ionic liquid 1-ethyl 3-methylimidazolium thiocyanate as corrosion inhibitor. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111106] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Shah R, Verma PK. Synthesis of thiophene derivatives and their anti-microbial, antioxidant, anticorrosion and anticancer activity. BMC Chem 2019; 13:54. [PMID: 31384802 PMCID: PMC6661813 DOI: 10.1186/s13065-019-0569-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/05/2019] [Indexed: 11/10/2022] Open
Abstract
Background A new series of thiophene analogues was synthesized and checked for their in vitro antibacterial, antifungal, antioxidant, anticorrosion and anticancer activities. Results A series of ethyl-2-(substituted benzylideneamino)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate derivatives were synthesized by using Gewald synthesis and their structures were confirmed by FTIR, MS and 1H-NMR. The synthesized compounds were further evaluated for their in vitro biological potentials i.e. antimicrobial activity against selected microbial species using tube dilution method, antiproliferative activity against human lung cancer cell line (A-549) by sulforhodamine B assay, antioxidant activity by using DPPH method and anticorrosion activity by gravimetric method. Conclusion Antimicrobial screening results showed that compound S 1 was the most potent antibacterial agent against Staphylococcus aureus, Bacillus subtilis, Escherichia coli and Salmonella typhi having MIC value 0.81 µM/ml and compound S 4 also displayed excellent antifungal activity against both Candida albicans and Aspergillus niger (MIC = 0.91 µM/ml) when compared with cefadroxil (antibacterial) and fluconazole (antifungal) as standard drug. The antioxidant screening results indicated that compound S 4 and S 6 exhibited excellent antioxidant activity with IC50 values 48.45 and 45.33 respectively when compared with the ascorbic acid as standard drug. Anticorrosion screening results indicated that compound S 7 showed more anticorrosion efficiency (97.90%) with low corrosion rate. Results of anticancer screening indicated that compound S 8 showed effective cytotoxic activity against human lung cancer cell line (A-549) at dose of 10-4 M when compared with adriamycin as standard.
Collapse
Affiliation(s)
- Rashmi Shah
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
15
|
Synthesis and comparative study on the anti-corrosion potentials of some Schiff base compounds bearing similar backbone. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Aqueous phase environmental friendly organic corrosion inhibitors derived from one step multicomponent reactions: A review. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.040] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Olajire AA. Corrosion inhibition of offshore oil and gas production facilities using organic compound inhibitors - A review. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.10.097] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|