1
|
Galey L, Olanrewaju A, Nabi H, Paquette JS, Pouliot F, Audet-Walsh É. Rediscovering citrate as a biomarker for prostate cancer. Nat Rev Urol 2024; 21:573-575. [PMID: 38811764 DOI: 10.1038/s41585-024-00899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Affiliation(s)
- Lucas Galey
- Endocrinology-Nephrology Research Axis, Centre de recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
- Centre de recherche sur le cancer de l'Université Laval, Québec City, Québec, Canada
| | - Ayokunle Olanrewaju
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hermann Nabi
- Centre de recherche sur le cancer de l'Université Laval, Québec City, Québec, Canada
- Oncology Axis, Centre de recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
- Departement of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Jean-Sébastien Paquette
- Laboratoire de recherche et d'innovation en médecine de première ligne (ARIMED), Groupe de médecine de famille universitaire de Saint-Charles-Borromée, CISSS Lanaudière, Saint-Charles-Borromée, Québec, Canada
- VITAM Research Centre for Sustainable Health, Québec City, Québec, Canada
- Department of Family Medicine and Emergency Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Frédéric Pouliot
- Centre de recherche sur le cancer de l'Université Laval, Québec City, Québec, Canada
- Oncology Axis, Centre de recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Étienne Audet-Walsh
- Endocrinology-Nephrology Research Axis, Centre de recherche du CHU de Québec, Université Laval, Québec City, Québec, Canada.
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada.
- Centre de recherche sur le cancer de l'Université Laval, Québec City, Québec, Canada.
| |
Collapse
|
2
|
Galey L, Olanrewaju A, Nabi H, Paquette JS, Pouliot F, Audet-Walsh É. PSA, an outdated biomarker for prostate cancer: In search of a more specific biomarker, citrate takes the spotlight. J Steroid Biochem Mol Biol 2024; 243:106588. [PMID: 39025336 DOI: 10.1016/j.jsbmb.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
The prevailing biomarker employed for prostate cancer (PCa) screening and diagnosis is the prostate-specific antigen (PSA). Despite excellent sensitivity, PSA lacks specificity, leading to false positives, unnecessary biopsies and overdiagnosis. Consequently, PSA is increasingly less used by clinicians, thus underscoring the imperative for the identification of new biomarkers. An emerging biomarker in this context is citrate, a molecule secreted by the normal prostate, which has been shown to be inversely correlated with PCa. Here, we discuss about PSA and its usage for PCa diagnosis, its lack of specificity, and the various conditions that can affect its levels. We then provide our vision about what we think would be a valuable addition to our PCa diagnosis toolkit, citrate. We describe the unique citrate metabolic program in the prostate and how this profile is reprogrammed during carcinogenesis. Finally, we summarize the evidence that supports the usage of citrate as a biomarker for PCa diagnosis, as it can be measured in various patient samples and be analyzed by several methods. The unique relationship between citrate and PCa, combined with the stability of citrate levels in other prostate-related conditions and the simplicity of its detection, further accentuates its potential as a biomarker.
Collapse
Affiliation(s)
- Lucas Galey
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Ayokunle Olanrewaju
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Hermann Nabi
- Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada
| | - Jean-Sébastien Paquette
- Laboratoire de recherche et d'innovation en médecine de première ligne (ARIMED), Groupe de médecine de famille universitaire de Saint-Charles-Borromée, CISSS Lanaudière, Saint-Charles-Borromée, QC, Canada; VITAM Research Centre for Sustainable Health, Québec, QC, Canada; Department of Family Medicine and Emergency Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Frédéric Pouliot
- Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada; Department of Family Medicine and Emergency Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada; Department of surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Étienne Audet-Walsh
- Endocrinology - Nephrology Research Axis, Centre de recherche du CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; Centre de recherche sur le cancer de l'Université Laval, Québec City, Canada.
| |
Collapse
|
3
|
Stamatelatou A, Rizzo R, Simsek K, van Asten JJA, Heerschap A, Scheenen T, Kreis R. Diffusion-weighted MR spectroscopy of the prostate. Magn Reson Med 2024; 92:1323-1337. [PMID: 38775024 DOI: 10.1002/mrm.30141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE Prostate tissue has a complex microstructure, mainly composed of epithelial and stromal cells, and of extracellular (acinar-luminal) spaces. Diffusion-weighted MR spectroscopy (DW-MRS) is ideally suited to explore complex microstructure in vivo with metabolites selectively distributed in different subspaces. To date, this technique has been applied to brain and muscle. This study presents the development and pioneering utilization of 1H-DW-MRS in the prostate, accompanied by in vitro studies to support interpretations of in vivo findings. METHODS Nine healthy volunteers underwent a prostate MR examination (mean age, 56 years; range, 31-66). Metabolic complexation was studied in vitro using solutions with major compounds found in prostatic fluid of the lumen. DW-MRS was performed at 3 T with a non-water-suppressed single-voxel sequence with metabolite-cycling to concurrently measure metabolite and water signals. The water signal was used in postprocessing as a reference in a motion-compensation scheme. The spectra were fitted simultaneously in the spectral and diffusion-weighting dimensions. Apparent diffusion coefficients (ADCs) were derived by fitting signal decays that were assumed to be mono-exponential for metabolites and biexponential for water. RESULTS DW-MRS of the prostate revealed relatively low ADCs for Cho and Cr compounds, aligning with their intracellular location and higher ADCs for citrate and spermine supporting their luminal origin. In vitro assessments of the ADCs of citrate and spermine demonstrated their complex formation and protein binding. Tissue concentrations of MRS-detectable metabolites were as expected for the voxel location. CONCLUSIONS This work successfully demonstrates the feasibility of 1H-DW-MRS of the prostate and its potential for providing valuable microstructural information.
Collapse
Affiliation(s)
- Angeliki Stamatelatou
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rudy Rizzo
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center, sitem-insel, Bern, Switzerland
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kadir Simsek
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom
- School of Computer Science and Informatics, Cardiff University, Cardiff, United Kingdom
| | - Jack J A van Asten
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roland Kreis
- Magnetic Resonance Methodology, Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center, sitem-insel, Bern, Switzerland
- Institute of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Lu B, Liu Y, Yao Y, Yang T, Zhang H, Yang X, Huang R, Zhou W, Pan X, Cui X. Advances in sequencing and omics studies in prostate cancer: unveiling molecular pathogenesis and clinical applications. Front Oncol 2024; 14:1355551. [PMID: 38800374 PMCID: PMC11116611 DOI: 10.3389/fonc.2024.1355551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background Prostate cancer (PCa) is one of the most threatening health problems for the elderly males. However, our understanding of the disease has been limited by the research technology for a long time. Recently, the maturity of sequencing technology and omics studies has been accelerating the studies of PCa, establishing themselves as an essential impetus in this field. Methods We assessed Web of Science (WoS) database for publications of sequencing and omics studies in PCa on July 3rd, 2023. Bibliometrix was used to conduct ulterior bibliometric analysis of countries/affiliations, authors, sources, publications, and keywords. Subsequently, purposeful large amounts of literature reading were proceeded to analyze research hotspots in this field. Results 3325 publications were included in the study. Research associated with sequencing and omics studies in PCa had shown an obvious increase recently. The USA and China were the most productive countries, and harbored close collaboration. CHINNAIYAN AM was identified as the most influential author, and CANCER RESEARCH exhibited huge impact in this field. Highly cited publications and their co-citation relationships were used to filtrate literatures for subsequent literature reading. Based on keyword analysis and large amounts of literature reading, 'the molecular pathogenesis of PCa' and 'the clinical application of sequencing and omics studies in PCa' were summarized as two research hotspots in the field. Conclusion Sequencing technology had a deep impact on the studies of PCa. Sequencing and omics studies in PCa helped researchers reveal the molecular pathogenesis, and provided new possibilities for the clinical practice of PCa.
Collapse
Affiliation(s)
- Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntao Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyue Yang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Ambrosini G, Cordani M, Zarrabi A, Alcon-Rodriguez S, Sainz RM, Velasco G, Gonzalez-Menendez P, Dando I. Transcending frontiers in prostate cancer: the role of oncometabolites on epigenetic regulation, CSCs, and tumor microenvironment to identify new therapeutic strategies. Cell Commun Signal 2024; 22:36. [PMID: 38216942 PMCID: PMC10790277 DOI: 10.1186/s12964-023-01462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024] Open
Abstract
Prostate cancer, as one of the most prevalent malignancies in males, exhibits an approximate 5-year survival rate of 95% in advanced stages. A myriad of molecular events and mutations, including the accumulation of oncometabolites, underpin the genesis and progression of this cancer type. Despite growing research demonstrating the pivotal role of oncometabolites in supporting various cancers, including prostate cancer, the root causes of their accumulation, especially in the absence of enzymatic mutations, remain elusive. Consequently, identifying a tangible therapeutic target poses a formidable challenge. In this review, we aim to delve deeper into the implications of oncometabolite accumulation in prostate cancer. We center our focus on the consequential epigenetic alterations and impacts on cancer stem cells, with the ultimate goal of outlining novel therapeutic strategies.
Collapse
Affiliation(s)
- Giulia Ambrosini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul, 34396, Turkey
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Sergio Alcon-Rodriguez
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Rosa M Sainz
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain
| | - Pedro Gonzalez-Menendez
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain.
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy.
| |
Collapse
|
6
|
Cooper AJL, Dorai T, Pinto JT, Denton TT. Metabolic Heterogeneity, Plasticity, and Adaptation to "Glutamine Addiction" in Cancer Cells: The Role of Glutaminase and the GTωA [Glutamine Transaminase-ω-Amidase (Glutaminase II)] Pathway. BIOLOGY 2023; 12:1131. [PMID: 37627015 PMCID: PMC10452834 DOI: 10.3390/biology12081131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Many cancers utilize l-glutamine as a major energy source. Often cited in the literature as "l-glutamine addiction", this well-characterized pathway involves hydrolysis of l-glutamine by a glutaminase to l-glutamate, followed by oxidative deamination, or transamination, to α-ketoglutarate, which enters the tricarboxylic acid cycle. However, mammalian tissues/cancers possess a rarely mentioned, alternative pathway (the glutaminase II pathway): l-glutamine is transaminated to α-ketoglutaramate (KGM), followed by ω-amidase (ωA)-catalyzed hydrolysis of KGM to α-ketoglutarate. The name glutaminase II may be confused with the glutaminase 2 (GLS2) isozyme. Thus, we recently renamed the glutaminase II pathway the "glutamine transaminase-ω-amidase (GTωA)" pathway. Herein, we summarize the metabolic importance of the GTωA pathway, including its role in closing the methionine salvage pathway, and as a source of anaplerotic α-ketoglutarate. An advantage of the GTωA pathway is that there is no net change in redox status, permitting α-ketoglutarate production during hypoxia, diminishing cellular energy demands. We suggest that the ability to coordinate control of both pathways bestows a metabolic advantage to cancer cells. Finally, we discuss possible benefits of GTωA pathway inhibitors, not only as aids to studying the normal biological roles of the pathway but also as possible useful anticancer agents.
Collapse
Affiliation(s)
- Arthur J. L. Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Thambi Dorai
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
- Department of Urology, New York Medical College, Valhalla, NY 10595, USA
| | - John T. Pinto
- Department of Biochemistry and Molecular Biology, New York Medical College, 15 Dana Road, Valhalla, NY 10595, USA; (T.D.); (J.T.P.)
| | - Travis T. Denton
- Department Pharmaceutical Sciences, College of Pharmacy & Pharmaceutical Sciences, Washington State University Health Sciences Spokane, Spokane, WA 99202, USA
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
- Steve Gleason Institute for Neuroscience, Washington State University Health Sciences Spokane, Spokane, WA 99164, USA
| |
Collapse
|
7
|
Yun KI, Pak UG, Han TS, Jo CM, Sonu KS, Ri HG. Determination of prostatic fluid citrate concentration using peroxidase-like activity of a peroxotitanium complex. Anal Biochem 2023; 672:115152. [PMID: 37121535 DOI: 10.1016/j.ab.2023.115152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023]
Abstract
There have been developed many kinds of methods for detecting citrate in body fluids since citrate is very important physiologically and biochemically. In particular, determination of citrate concentration in prostatic or seminal fluid is useful in early diagnosis of prostate cancer. Recently, a peroxotitanium complex prepared from titanium tetrachloride and hydrogen peroxide has been shown to have peroxidase-like activity which is greatly inhibited by some hydroxyalkanoic acids. Hence, we established a method for determining citrate concentration in prostatic fluid using selective inhibition of citrate on the catalytic activity of the peroxotitanium complex.
Collapse
Affiliation(s)
- Kyong-Il Yun
- Institute of Molecular Biology, Faculty of Life Science, Kim Il Sung University, Pyongyang, North Korea; Natural Science Center, Kim Il Sung University, Pyongyang, North Korea.
| | - Un-Gyong Pak
- Institute of Molecular Biology, Faculty of Life Science, Kim Il Sung University, Pyongyang, North Korea
| | - Tong-Sul Han
- Institute of Molecular Biology, Faculty of Life Science, Kim Il Sung University, Pyongyang, North Korea
| | - Chol-Man Jo
- High-tech Development Center, Kim Il Sung University, Pyongyang, North Korea
| | - Kyong-Su Sonu
- Institute of Molecular Biology, Faculty of Life Science, Kim Il Sung University, Pyongyang, North Korea
| | - Hyong-Gwan Ri
- Institute of Molecular Biology, Faculty of Life Science, Kim Il Sung University, Pyongyang, North Korea
| |
Collapse
|
8
|
Zhang Z, Bao C, Jiang L, Wang S, Wang K, Lu C, Fang H. When cancer drug resistance meets metabolomics (bulk, single-cell and/or spatial): Progress, potential, and perspective. Front Oncol 2023; 12:1054233. [PMID: 36686803 PMCID: PMC9854130 DOI: 10.3389/fonc.2022.1054233] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
Resistance to drug treatment is a critical barrier in cancer therapy. There is an unmet need to explore cancer hallmarks that can be targeted to overcome this resistance for therapeutic gain. Over time, metabolic reprogramming has been recognised as one hallmark that can be used to prevent therapeutic resistance. With the advent of metabolomics, targeting metabolic alterations in cancer cells and host patients represents an emerging therapeutic strategy for overcoming cancer drug resistance. Driven by technological and methodological advances in mass spectrometry imaging, spatial metabolomics involves the profiling of all the metabolites (metabolomics) so that the spatial information is captured bona fide within the sample. Spatial metabolomics offers an opportunity to demonstrate the drug-resistant tumor profile with metabolic heterogeneity, and also poses a data-mining challenge to reveal meaningful insights from high-dimensional spatial information. In this review, we discuss the latest progress, with the focus on currently available bulk, single-cell and spatial metabolomics technologies and their successful applications in pre-clinical and translational studies on cancer drug resistance. We provide a summary of metabolic mechanisms underlying cancer drug resistance from different aspects; these include the Warburg effect, altered amino acid/lipid/drug metabolism, generation of drug-resistant cancer stem cells, and immunosuppressive metabolism. Furthermore, we propose solutions describing how to overcome cancer drug resistance; these include early detection during cancer initiation, monitoring of clinical drug response, novel anticancer drug and target metabolism, immunotherapy, and the emergence of spatial metabolomics. We conclude by describing the perspectives on how spatial omics approaches (integrating spatial metabolomics) could be further developed to improve the management of drug resistance in cancer patients.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaohui Bao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chang Lu
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Jupin M, van Heijster FHA, Heerschap A. Metabolite interactions in prostatic fluid mimics assessed by 1H NMR. MAGMA (NEW YORK, N.Y.) 2022; 35:683-694. [PMID: 34919194 DOI: 10.1007/s10334-021-00983-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Molecular interactions in prostatic fluid are of biological interest and may affect MRI and MRS of the prostate. We investigated the existence of interactions between the major components of this fluid: spermine, citrate and myoinositol, metal ions, including zinc, and proteins. MATERIALS AND METHODS Solutions of 90 mM citrate, 18 mM spermine and 6 mM myo-inositol, mimicking expressed prostatic fluid, were investigated by 1H NMR using changes in T2 relaxation and chemical shift as markers for interactions. RESULTS AND DISCUSSION Adding to this metabolite mixture the ions Na+ , K+, Ca++, Mg++ and Zn++, decreased the T2 relaxation times of citrate and spermine protons by factors of 3 and 2, respectively, with Zn++ causing the largest effect, indicating ion-metabolite interactions. The T2 of 18 mM spermine dropped by a factor of 2 upon addition with 90 mM citrate, but no effect on T2 was seen with myo-inositol pointing to a specific citrate-spermine interaction. Moreover, the T2 of citrate in the presence of spermine decreased by adding metal ions and increasing amounts of Zn++, indicating complexation of citrate and spermine with metal ions, particularly with Zn. The addition of bovine serum albumin (BSA), as an index protein, substantially further decreased the T2 of spermine and citrate implying the formation of a transient spermine-metal ion-citrate-BSA complex. Finally, we found that the T2 of citrate in extracellular fluid of prostate cancer cells, as a mimic of fluid in cancerous prostates, decreased by adding fetal calf serum, indicating protein binding.
Collapse
Affiliation(s)
- Marc Jupin
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein zuid 10, 6525 GA, Nijmegen, The Netherlands
- Biophysical Chemistry, Institute for Materials and Molecules, Radboud University, Heyendaalseweg 135, 6524AJ, Nijmegen, The Netherlands
| | - Frits H A van Heijster
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein zuid 10, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Fidelito G, Watt MJ, Taylor RA. Personalized Medicine for Prostate Cancer: Is Targeting Metabolism a Reality? Front Oncol 2022; 11:778761. [PMID: 35127483 PMCID: PMC8813754 DOI: 10.3389/fonc.2021.778761] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer invokes major shifts in gene transcription and metabolic signaling to mediate alterations in nutrient acquisition and metabolic substrate selection when compared to normal tissues. Exploiting such metabolic reprogramming is proposed to enable the development of targeted therapies for prostate cancer, yet there are several challenges to overcome before this becomes a reality. Herein, we outline the role of several nutrients known to contribute to prostate tumorigenesis, including fatty acids, glucose, lactate and glutamine, and discuss the major factors contributing to variability in prostate cancer metabolism, including cellular heterogeneity, genetic drivers and mutations, as well as complexity in the tumor microenvironment. The review draws from original studies employing immortalized prostate cancer cells, as well as more complex experimental models, including animals and humans, that more accurately reflect the complexity of the in vivo tumor microenvironment. In synthesizing this information, we consider the feasibility and potential limitations of implementing metabolic therapies for prostate cancer management.
Collapse
Affiliation(s)
- Gio Fidelito
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Matthew J. Watt
- Department of Anatomy & Physiology, The University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Renea A. Taylor, ; Matthew J. Watt,
| | - Renea A. Taylor
- Department of Physiology, Biomedicine Discovery Institute, Cancer Program, Monash University, Melbourne, VIC, Australia
- Prostate Cancer Research Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Renea A. Taylor, ; Matthew J. Watt,
| |
Collapse
|
11
|
Eftekhari A, Maleki Dizaj S, Sharifi S, Salatin S, Khalilov R, Samiei M, Zununi Vahed S, Ahmadian E. Salivary biomarkers in cancer. Adv Clin Chem 2022; 110:171-192. [DOI: 10.1016/bs.acc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Jagannathan N, Reddy RR. Potential of nuclear magnetic resonance metabolomics in the study of prostate cancer. Indian J Urol 2022; 38:99-109. [PMID: 35400867 PMCID: PMC8992727 DOI: 10.4103/iju.iju_416_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Nuclear magnetic resonance (NMR) metabolomics is a powerful analytical technique and a tool which has unique characteristics and capabilities for the evaluation of a number of biochemicals/metabolites of cancer and other disease processes that are present in biofluids (urine and blood) and tissues. The potential of NMR metabolomics in prostate cancer (PCa) has been explored by researchers and its usefulness has been documented. A large number of metabolites such as citrate, choline, and sarcosine were detected by NMR metabolomics from biofluids and tissues related to PCa and their levels were compared with controls and benign prostatic hyperplasia. The changes in the levels of these metabolites aid in the diagnosis and help to understand the dysregulated metabolic pathways in PCa. We review recent studies on in vitro and ex vivo NMR spectroscopy-based PCa metabolomics and its possible role as a diagnostic tool.
Collapse
|
13
|
Kumar D, Bansal N, Gupta A, Mandhani A, Lal H, Kumar M, Sankhwar SN. Metabolomics of prostate cancer: Knock-in versus knock-out prostate. J Pharm Biomed Anal 2021; 205:114333. [PMID: 34461489 DOI: 10.1016/j.jpba.2021.114333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Several metabolomics-derived biomarkers of prostate cancer (PC) have been reported with pre-radical prostatectomy (RP) (knock-in PC) conditions; however, uncontested PC biomarkers panel appraisal and investigation of correlative evidence of these measures is lacking through post-RP (knock-out PC). We sought to explore patients' filtered serum-based metabolomics derived signature measures in knock-in PC (n = 90) using nuclear magnetic resonance spectroscopy and multiple rigorous statistical analyses, and to develop the correlative evidence of these measures through knock-out PC (n = 90) follow-up on the 15th and 30th days. The glutamate, citrate and glycine were observed as hallmarks of PC. Observed trends revealed; augmented glutamate level in knock-in PC following a sudden drop and subsequently upside of glutamate at 15th and 30th days of knock-out PC, reduction of citrate in knock-in PC subsequently gradual increase of citrate in knock-out PC, and glycine lessening in knock-in PC following augmentation on 30th day of knock-out PC. This study-based evidence clears the doubts regarding the discovery of metabolomics-derived PC biomarkers.
Collapse
Affiliation(s)
- Deepak Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | - Navneeta Bansal
- Department of Urology, King George's Medical University, Lucknow, India
| | - Ashish Gupta
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India.
| | - Anil Mandhani
- Department of Urology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Hira Lal
- Department of Radiodiagnosis, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Manoj Kumar
- Department of Urology, King George's Medical University, Lucknow, India
| | | |
Collapse
|
14
|
Semen as a rich source of diagnostic biomarkers for prostate cancer: latest evidence and implications. Mol Cell Biochem 2021; 477:213-223. [PMID: 34655417 DOI: 10.1007/s11010-021-04273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is one of the most common cancers in men and the cause of numerous cancer deaths in the world. Nowadays, based on diagnostic criteria, prostate-specific antigen (PSA) evaluation and rectal examination are used to diagnose prostate-related malignancies. However, due to the different types of PCa, there are several doubts about the diagnostic value of PSA. On the other hand, semen is considered an appropriate source and contains various biomarkers in non-invasive diagnosing several autoimmune disorders and malignancies. Evidence suggests that analysis of semen biomarkers could be helpful in PCa diagnosis. Therefore, due to the invasiveness of most diagnostic methods in PCa, the use of semen as a biologic sample containing various biomarkers can lead to the emergence of novel and non-invasive diagnostic approaches. This review summarized recent studies on the use of various seminal biomarkers for diagnosis, prognosis and prediction of PCa.
Collapse
|
15
|
Ferrara F, Zoupanou S, Primiceri E, Ali Z, Chiriacò MS. Beyond liquid biopsy: Toward non-invasive assays for distanced cancer diagnostics in pandemics. Biosens Bioelectron 2021; 196:113698. [PMID: 34688113 PMCID: PMC8527216 DOI: 10.1016/j.bios.2021.113698] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Liquid biopsy technologies have seen a significant improvement in the last decade, offering the possibility of reliable analysis and diagnosis from several biological fluids. The use of these technologies can overcome the limits of standard clinical methods, related to invasiveness and poor patient compliance. Along with this there are now mature examples of lab-on-chips (LOC) which are available and could be an emerging and breakthrough technology for the present and near-future clinical demands that provide sample treatment, reagent addition and analysis in a sample-in/answer-out approach. The possibility of combining non-invasive liquid biopsy and LOC technologies could greatly assist in the current need for minimizing exposure and transmission risks. The recent and ongoing pandemic outbreak of SARS-CoV-2, indeed, has heavily influenced all aspects of life worldwide. Ordinary tasks have been forced to switch from “in presence” to “distanced”, limiting the possibilities for a large number of activities in all fields of life outside of the home. Unfortunately, one of the settings in which physical distancing has assumed noteworthy consequences is the screening, diagnosis and follow-up of diseases. In this review, we analyse biological fluids that are easily collected without the intervention of specialized personnel and the possibility that they may be used -or not-for innovative diagnostic assays. We consider their advantages and limitations, mainly due to stability and storage and their integration into Point-of-Care diagnostics, demonstrating that technologies in some cases are mature enough to meet current clinical needs.
Collapse
Affiliation(s)
- Francesco Ferrara
- STMicroelectronics s.r.l., via per Monteroni, 73100, Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy.
| | - Sofia Zoupanou
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy; University of Salento, Dept. of Mathematics & Physics E. de Giorgi, Via Arnesano, 73100, Lecce, Italy
| | - Elisabetta Primiceri
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy
| | - Zulfiqur Ali
- University of Teesside, School of Health & Life Sciences, Healthcare Innovation Centre, Middlesbrough, TS1 3BX, Tees Valley, England, UK
| | | |
Collapse
|
16
|
Falegan OS, Jarvi K, Vogel HJ, Hyndman ME. Seminal plasma metabolomics reveals lysine and serine dysregulation as unique features distinguishing between prostate cancer tumors of Gleason grades 6 and 7. Prostate 2021; 81:713-720. [PMID: 34097313 DOI: 10.1002/pros.24145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is a metabolic disease. Most men are diagnosed with low grade indolent disease and differentiating these men from those who have life threatening cancer is a challenging but important clinical dilemma. There are currently limited biomarkers that can distinguish between the indolent Gleason grade 6 and higher-grade disease. Moreover, some individuals initially diagnosed with low grade disease progress to higher grade disease. Currently prostate biopsies are the only reliable methods of stratifying risk, but biopsies can cause significant morbidity, sample only a small portion of the gland and are costly. Therefore, biomarkers distinguishing between indolent and aggressive patterns of PCa are urgently required to minimize biopsy-associated morbidity, prevent over-treatment of indolent PCa and to better stratify patients for appropriate treatment. METHODS Seminal fluid samples were collected from normal individuals (n = 13) Before infertility treatment and histologically confirmed PCa patients (n = 51). 1 H Nuclear magnetic resonance spectroscopy and orthogonal partial least square discriminant analysis were used to compare the populations. RESULTS Alterations in amino acids levels, specifically lysine and serine and changes in glycolytic intermediates were the most significant metabolic features associated with differences between healthy controls and PCa and between Gleason grade 6 (GS6) and Gleason grade 7 (GS7) samples. Orthogonal partial least square plots discriminated healthy controls from PCa samples (R 2 = 0.54, Q 2 = 0.31; area under the receiver operating characteristics curve [AUC] = 0.96), and GS6 from GS7 samples (R 2 = 0.62, Q 2 = 0.49; AUC = 0.98) based on lysine and serine content. CONCLUSION This study suggests that seminal plasma metabolomics profiling of seminal fluid is a promising means of differentiating indolent from aggressive disease. Particularly, lysine and serine levels may be able to differentiate GS6 from GS7 disease.
Collapse
Affiliation(s)
- Oluyemi S Falegan
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Keith Jarvi
- Division of Urology, Department of Surgery, University of Toronto, Toronto, Canada
| | - Hans J Vogel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - M Eric Hyndman
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Urology, Prostate Cancer Center, Rockyview Hospital, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Walz S, Wang Q, Zhao X, Hoene M, Häring HU, Hennenlotter J, Maas M, Peter A, Todenhöfer T, Stenzl A, Liu X, Lehmann R, Xu G. Comparison of the metabolome in urine prior and eight weeks after radical prostatectomy uncovers pathologic and molecular features of prostate cancer. J Pharm Biomed Anal 2021; 205:114288. [PMID: 34371449 DOI: 10.1016/j.jpba.2021.114288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022]
Abstract
Prostate cancer (PCa) is associated with cellular metabolism alterations leading to changes of the metabolome. So far, studies investigating these alterations mainly focused on comparisons of metabolite profiles of PCa patients and healthy controls. In the present study we compared for the first time metabolite profiles in a significant number of paired urine samples collected before and eight weeks after radical prostatectomy (rPX) in 34 patients with PCa. Our comprehensive non-targeted liquid chromatographic-mass spectrometric metabolomics approach covered > 3000 metabolite ion masses. We annotated 23 metabolites showing significant changes eight weeks after rPX. While the levels of uridine and six acylcarnitines in urine were increased before surgery, lower levels were detected for 16 metabolites, like e.g. citrate, phenyl-lactic acid, choline, myo-inositol, emphasizing a relevant pathophysiological role of these biomarkers and the associated metabolic pathways. These results have important implications for potential use of metabolome analyses for detection of prostate cancer and related pathologic and molecular features.
Collapse
Affiliation(s)
- Simon Walz
- Department of Urology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Qingqing Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Miriam Hoene
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Moritz Maas
- Department of Urology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076, Tübingen, Germany; Core Facility DZD Clinical Chemistry Laboratory, Department for Molecular Diabetology, Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Tilman Todenhöfer
- Department of Urology, University Hospital Tübingen, 72076, Tübingen, Germany; Studienpraxis Urologie, Clinical Trial Unit, Nürtingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China
| | - Rainer Lehmann
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076, Tübingen, Germany; Core Facility DZD Clinical Chemistry Laboratory, Department for Molecular Diabetology, Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Zentrum München at the University of Tuebingen, Tuebingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany.
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, China.
| |
Collapse
|
18
|
Abstract
Nuclear magnetic resonance (NMR) spectroscopy offers reproducible quantitative analysis and structural identification of metabolites in various complex biological samples, such as biofluids (plasma, serum, and urine), cells, tissue extracts, and even intact organs. Therefore, NMR-based metabolomics, a mainstream metabolomic platform, has been extensively applied in many research fields, including pharmacology, toxicology, pathophysiology, nutritional intervention, disease diagnosis/prognosis, and microbiology. In particular, NMR-based metabolomics has been successfully used for cancer research to investigate cancer metabolism and identify biomarker and therapeutic targets. This chapter highlights the innovations and challenges of NMR-based metabolomics platform and its applications in cancer research.
Collapse
|
19
|
Salihu R, Abd Razak SI, Ahmad Zawawi N, Rafiq Abdul Kadir M, Izzah Ismail N, Jusoh N, Riduan Mohamad M, Hasraf Mat Nayan N. Citric acid: A green cross-linker of biomaterials for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110271] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
The metabolic importance of the glutaminase II pathway in normal and cancerous cells. Anal Biochem 2020; 644:114083. [PMID: 33352190 DOI: 10.1016/j.ab.2020.114083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
Abstract
In rapidly dividing cells, including many cancer cells, l-glutamine is a major energy source. Utilization of glutamine is usually depicted as: l-glutamine → l-glutamate (catalyzed by glutaminase isozymes; GLS1 and GLS2), followed by l-glutamate → α-ketoglutarate [catalyzed by glutamate-linked aminotransferases or by glutamate dehydrogenase (GDH)]. α-Ketoglutarate is a major anaplerotic component of the tricarboxylic acid (TCA) cycle. However, the glutaminase II pathway also converts l-glutamine to α-ketoglutarate. This pathway consists of a glutamine transaminase coupled to ω-amidase [Net reaction: l-Glutamine + α-keto acid + H2O → α-ketoglutarate + l-amino acid + NH4+]. This review focuses on the biological importance of the glutaminase II pathway, especially in relation to metabolism of cancer cells. Our studies suggest a component enzyme of the glutaminase II pathway, ω-amidase, is utilized by tumor cells to provide anaplerotic carbon. Inhibitors of GLS1 are currently in clinical trials as anti-cancer agents. However, this treatment will not prevent the glutaminase II pathway from providing anaplerotic carbon derived from glutamine. Specific inhibitors of ω-amidase, perhaps in combination with a GLS1 inhibitor, may provide greater therapeutic efficacy.
Collapse
|
21
|
Wang Y, Wondisford FE, Song C, Zhang T, Su X. Metabolic Flux Analysis-Linking Isotope Labeling and Metabolic Fluxes. Metabolites 2020; 10:metabo10110447. [PMID: 33172051 PMCID: PMC7694648 DOI: 10.3390/metabo10110447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 01/02/2023] Open
Abstract
Metabolic flux analysis (MFA) is an increasingly important tool to study metabolism quantitatively. Unlike the concentrations of metabolites, the fluxes, which are the rates at which intracellular metabolites interconvert, are not directly measurable. MFA uses stable isotope labeled tracers to reveal information related to the fluxes. The conceptual idea of MFA is that in tracer experiments the isotope labeling patterns of intracellular metabolites are determined by the fluxes, therefore by measuring the labeling patterns we can infer the fluxes in the network. In this review, we will discuss the basic concept of MFA using a simplified upper glycolysis network as an example. We will show how the fluxes are reflected in the isotope labeling patterns. The central idea we wish to deliver is that under metabolic and isotopic steady-state the labeling pattern of a metabolite is the flux-weighted average of the substrates’ labeling patterns. As a result, MFA can tell the relative contributions of converging metabolic pathways only when these pathways make substrates in different labeling patterns for the shared product. This is the fundamental principle guiding the design of isotope labeling experiment for MFA including tracer selection. In addition, we will also discuss the basic biochemical assumptions of MFA, and we will show the flux-solving procedure and result evaluation. Finally, we will highlight the link between isotopically stationary and nonstationary flux analysis.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (Y.W.); (F.E.W.)
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Fredric E. Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (Y.W.); (F.E.W.)
| | - Chi Song
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH 43210, USA;
| | - Teng Zhang
- Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA;
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (Y.W.); (F.E.W.)
- Metabolomics Shared Resource, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Correspondence: ; Tel.: +1-732-235-5447
| |
Collapse
|
22
|
Hackshaw KV, Miller JS, Aykas DP, Rodriguez-Saona L. Vibrational Spectroscopy for Identification of Metabolites in Biologic Samples. Molecules 2020; 25:E4725. [PMID: 33076318 PMCID: PMC7587585 DOI: 10.3390/molecules25204725] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Vibrational spectroscopy (mid-infrared (IR) and Raman) and its fingerprinting capabilities offer rapid, high-throughput, and non-destructive analysis of a wide range of sample types producing a characteristic chemical "fingerprint" with a unique signature profile. Nuclear magnetic resonance (NMR) spectroscopy and an array of mass spectrometry (MS) techniques provide selectivity and specificity for screening metabolites, but demand costly instrumentation, complex sample pretreatment, are labor-intensive, require well-trained technicians to operate the instrumentation, and are less amenable for implementation in clinics. The potential for vibration spectroscopy techniques to be brought to the bedside gives hope for huge cost savings and potential revolutionary advances in diagnostics in the clinic. We discuss the utilization of current vibrational spectroscopy methodologies on biologic samples as an avenue towards rapid cost saving diagnostics.
Collapse
Affiliation(s)
- Kevin V. Hackshaw
- Department of Internal Medicine, Division of Rheumatology, Dell Medical School, The University of Texas, 1601 Trinity St, Austin, TX 78712, USA
| | - Joseph S. Miller
- Department of Medicine, Ohio University Heritage College of Osteopathic Medicine, Dublin, OH 43016, USA;
| | - Didem P. Aykas
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA; (D.P.A.); (L.R.-S.)
- Department of Food Engineering, Faculty of Engineering, Adnan Menderes University, Aydin 09100, Turkey
| | - Luis Rodriguez-Saona
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA; (D.P.A.); (L.R.-S.)
| |
Collapse
|
23
|
Sharma U, Jagannathan NR. Metabolism of prostate cancer by magnetic resonance spectroscopy (MRS). Biophys Rev 2020; 12:1163-1173. [PMID: 32918707 DOI: 10.1007/s12551-020-00758-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding the metabolism of prostate cancer (PCa) is important for developing better diagnostic approaches and also for exploring new therapeutic targets. Magnetic resonance spectroscopy (MRS) techniques have been shown to be useful in the detection and quantification of metabolites. PCa illustrates metabolic phenotype, showing lower levels of citrate (Cit), a key metabolite of oxidative phosphorylation and alteration in several metabolic pathways to sustain tumor growth. Recently, dynamic nuclear polarization (DNP) studies have documented high rates of glycolysis (Warburg phenomenon) in PCa. High-throughput metabolic profiling strategies using MRS on variety of samples including intact tissues, biofluids like prostatic fluid, seminal fluid, blood plasma/sera, and urine have also played a vital role in understanding the abnormal metabolic activity of PCa patients. The enhanced analytical potential of these techniques in the detection and quantification of a large number of metabolites provides an in-depth understanding of metabolic rewiring associated with the tumorigenesis. Metabolomics analysis offers dual advantages of identification of diagnostic and predictive biomarkers as well as in understanding the altered metabolic pathways which can be targeted for inhibiting the cancer progression. This review briefly describes the potential applications of in vivo 1H MRS, high-resolution magic angle spinning spectroscopy (HRMAS) and in vitro MRS methods in understanding the metabolic changes of PCa and its usefulness in the management of PCa patients.
Collapse
Affiliation(s)
- Uma Sharma
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Naranamangalam R Jagannathan
- Department of Radiology, Chettinad Hospital & Research Institute, Chettinad Academy of Research & Education, Kelambakkam, TN, 603103, India.
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, India.
- Department of Electrical Engineering, Indian Institute Technology Madras, Chennai, 600 036, India.
| |
Collapse
|
24
|
Abudurexiti M, Zhu W, Wang Y, Wang J, Xu W, Huang Y, Zhu Y, Shi G, Zhang H, Zhu Y, Shen Y, Dai B, Wan F, Lin G, Ye D. Targeting CPT1B as a potential therapeutic strategy in castration-resistant and enzalutamide-resistant prostate cancer. Prostate 2020; 80:950-961. [PMID: 32648618 DOI: 10.1002/pros.24027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Prostate cancer is characterized by aberrant lipid metabolism, including elevated fatty acid oxidation. Carnitine palmitoyltransferase 1B (CPT1B) catalyzes the rate-limiting step of fatty acid oxidation. This study aimed to determine if CPT1B has a critical role in prostate cancer progression and to identify its regulatory mechanism. METHODS CPT1B expression data from The Cancer Genome Atlas and Gene Expression Omnibus databases was compared with patient survival data. A tissue microarray was constructed with 60 samples of prostate cancer and immunohistochemically stained for CPT1B. Castration-resistant prostate cancer (CRPC) cell lines 22RV1 and C4-2 in which CPT1B expression had been stably knocked down were established; and cell proliferation, cell cycle distribution, and invasion were investigated by Cell Counting Kit-8 (CCK-8) and colony formation assays, flow cytometry, and Transwell assays, respectively. To examine the impact of androgen receptor (AR) inhibition on CPT1B expression, JASPAR CORE was searched to identify AR-binding sites in CPT1B. Dual luciferase and ChIP assays were performed to confirm CPT1B activity and AR binding, respectively. Differentially expressed genes (DEGs) in prostate cancer underwent gene set enrichment analysis (GSEA). Enzalutamide-resistant C4-2 cells were generated and the mechanism of enzalutamide resistance and downstream signaling pathway changes of CPT1B to C4-2 was explored through CCK-8 test. RESULTS CPT1B expression was upregulated in human prostate cancer compared with normal prostate tissue and was associated with poor disease-free survival and overall survival. Silencing of CPT1B resulted in downregulated cell proliferation, reduced S-phase distribution, and lower invasive ability, whereas the opposite was observed in CRPC cells overexpressing CPTB1. DEGS in prostate cancer were correlated with G-protein-coupled receptor signaling, molecular transducer activity, and calcium ion binding. AR may regulate CPT1B expression and activity via specific binding sites, as confirmed by dual luciferase and ChIP assays. The CCK-8 experiment demonstrated that CPT1B overexpression in C4-2 cells did not significantly increase the ability of enzalutamide resistance. However, overexpression of CPT1B in C4-2R cells significantly increased the enzalutamide resistance. Upregulation of CPT1B expression increased AKT expression and phosphorylation. CONCLUSIONS CPT1B is upregulated in prostate cancer and is correlated with poor prognosis, indicating its potential as a biomarker. AR inhibits the transcription of CPT1B. In the CRPC cell line, overexpression of CPT1B alone cannot promote enzalutamide resistance, but in the drug-resistant line C4-2R, overexpression of CPT1B can promote the resistance of C4-2R to enzalutamide.
Collapse
Affiliation(s)
- Mierxiati Abudurexiti
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenkai Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuchen Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongqiang Huang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiping Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yijun Shen
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guowen Lin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Deev V, Solovieva S, Andreev E, Protoshchak V, Karpushchenko E, Sleptsov A, Kartsova L, Bessonova E, Legin A, Kirsanov D. Prostate cancer screening using chemometric processing of GC-MS profiles obtained in the headspace above urine samples. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1155:122298. [PMID: 32771969 DOI: 10.1016/j.jchromb.2020.122298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
The development of screening methods for various types of cancer is of utmost importance as the early diagnostics of these diseases significantly increases the chances for patient's successful medical treatment and recovery. In this study we have developed the procedure for chromatographic profiling of urine samples based on solid-phase microextraction and GC-MS. 50 urine samples (20 from the patients with biopsy conformed prostate cancer and 30 from control group) were studied in the optimized experimental conditions. Application of chemometric classification algorithms such as k-nearest neighbors and partial least squares-discriminant analysis allowed construction of predictive models yielding very high sensitivity, specificity and accuracy values all close to 100%. This gives a good promise for further validation of this approach with a broader sample sets.
Collapse
Affiliation(s)
- Vladislav Deev
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Svetlana Solovieva
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Evgeny Andreev
- Urology Clinic of S.M. Kirov Military Medical Academy, ul. Akademika Lebedeva 6, Saint-Petersburg 194044, Russia
| | - Vladimir Protoshchak
- Urology Clinic of S.M. Kirov Military Medical Academy, ul. Akademika Lebedeva 6, Saint-Petersburg 194044, Russia
| | - Evgeny Karpushchenko
- Urology Clinic of S.M. Kirov Military Medical Academy, ul. Akademika Lebedeva 6, Saint-Petersburg 194044, Russia
| | - Aleksander Sleptsov
- Urology Clinic of S.M. Kirov Military Medical Academy, ul. Akademika Lebedeva 6, Saint-Petersburg 194044, Russia
| | - Liudmila Kartsova
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Elena Bessonova
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Andrey Legin
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia
| | - Dmitry Kirsanov
- Institute of Chemistry, Saint-Petersburg State University, Peterhof, Universitetsky Prospect, 26, Saint-Petersburg 198504, Russia.
| |
Collapse
|
26
|
Quintás G, Yáñez Y, Gargallo P, Juan Ribelles A, Cañete A, Castel V, Segura V. Metabolomic profiling in neuroblastoma. Pediatr Blood Cancer 2020; 67:e28113. [PMID: 31802629 DOI: 10.1002/pbc.28113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Previous studies on several cancer types show that metabolomics provides a potentially useful noninvasive screening approach for outcome prediction and accurate response to treatment assessment. Neuroblastoma (NB) accounts for at least 15% of cancer-related deaths in children. Although current risk-based treatment approaches in NB have resulted in improved outcome, survival for high-risk patients remains poor. This study aims to evaluate the use of metabolomics for improving patients' risk-group stratification and outcome prediction in NB. DESIGN AND METHODS Plasma samples from 110 patients with NB were collected at diagnosis prior to starting therapy and at the end of treatment if available. Metabolomic analysis of samples was carried out by ultra-performance liquid chromatography-time of flight mass spectrometry (UPLC-MS). RESULTS The metabolomic analysis was able to identify different plasma metabolic profiles in high-risk and low-risk NB patients at diagnosis. The metabolic model correctly classified 16 high-risk and 15 low-risk samples in an external validation set providing 84.2% sensitivity (60.4-96.6, 95% CI) and 93.7% specificity (69.8-99.8, 95% CI). Metabolomic profiling could also discriminate high-risk patients with active disease from those in remission. Notably, a plasma metabolomic signature at diagnosis identified a subset of high-risk NB patients who progressed during treatment. CONCLUSIONS To the best of our knowledge, this is the largest NB study investigating the prognostic power of plasma metabolomics. Our results support the potential of metabolomic profiling for improving NB risk-group stratification and outcome prediction. Additional validating studies with a large cohort are needed.
Collapse
Affiliation(s)
- Guillermo Quintás
- Leitat Technological Center, Health and Biomedicine Division, Barcelona, Spain.,Unidad Analítica, Instituto de Investigación Sanitaria Hospital La Fe, Valencia, Spain
| | - Yania Yáñez
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Pablo Gargallo
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Antonio Juan Ribelles
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Adela Cañete
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Victoria Castel
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Vanessa Segura
- Pediatric Oncology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
27
|
Gregorio EP, Alexandrino AP, Schuquel ITA, da Costa WF, Rodrigues MADF. Seminal citrate is superior to PSA for detecting clinically significant prostate cancer. Int Braz J Urol 2020; 45:1113-1121. [PMID: 31808398 PMCID: PMC6909860 DOI: 10.1590/s1677-5538.ibju.2018.0730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 07/08/2019] [Indexed: 01/13/2023] Open
Abstract
Purpose: To establish whether the citrate concentration in the seminal fluid ([CITRATE]) measured by means of high-resolution nuclear magnetic resonance spectroscopy (1HNMRS) is superior to the serum prostate-specific antigen (PSA) concentration in detecting of clinically significant prostate cancer (csPCa) in men with persistently elevated PSA. Materials and Methods: The group of patients consisted of 31 consecutively seen men with histological diagnosis of clinically localized csPCa. The control group consisted of 28 men under long-term follow-up (mean of 8.7 ± 3.0 years) for benign prostate hyperplasia (BPH), with persistently elevated PSA (above 4 ng/mL) and several prostate biopsies negative for cancer (mean of 2.7 ± 1.3 biopsies per control). Samples of blood and seminal fluid (by masturbation) for measurement of PSA and citrate concentration, respectively, were collected from patients and controls. Citrate concentration in the seminal fluid ([CITRATE]) was determined by means of 1HNMRS. The capacities of PSA and [CITRATE] to predict csPCa were compared by means of univariate analysis and receiver operating characteristic (ROC) curves. Results: Median [CITRATE] was significantly lower among patients with csPCa compared to controls (3.93 mM/l vs. 15.53 mM/l). There was no significant difference in mean PSA between patients and controls (9.42 ng/mL vs. 8.57 ng/mL). The accuracy of [CITRATE] for detecting csPCa was significantly superior compared to PSA (74.8% vs. 54.8%). Conclusion: Measurement of [CITRATE] by means of 1HNMRS is superior to PSA for early detection of csPCa in men with elevated PSA.
Collapse
Affiliation(s)
| | - Antonio Paulo Alexandrino
- Disciplina de Urologia, Departamento de Cirurgia Clínica, Universidade Estadual de Londrina (UEL), Londrina, PR, Brasil
| | | | - Willian Ferreira da Costa
- Departamento de Química, Universidade Estadual de Maringá (Universidade Estadual de Maringá-UEM), Maringá, PR, Brasil
| | | |
Collapse
|
28
|
Gholizadeh N, Pundavela J, Nagarajan R, Dona A, Quadrelli S, Biswas T, Greer PB, Ramadan S. Nuclear magnetic resonance spectroscopy of human body fluids and in vivo magnetic resonance spectroscopy: Potential role in the diagnosis and management of prostate cancer. Urol Oncol 2020; 38:150-173. [PMID: 31937423 DOI: 10.1016/j.urolonc.2019.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/22/2019] [Accepted: 10/31/2019] [Indexed: 01/17/2023]
Abstract
Prostate cancer is the most common solid organ cancer in men, and the second most common cause of male cancer-related mortality. It has few effective therapies, and is difficult to diagnose accurately. Prostate-specific antigen (PSA), which is currently the most effective diagnostic tool available, cannot reliably discriminate between different pathologies, and in fact only around 30% of patients found to have elevated levels of PSA are subsequently confirmed to actually have prostate cancer. As such, there is a desperate need for more reliable diagnostic tools that will allow the early detection of prostate cancer so that the appropriate interventions can be applied. Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance spectroscopy (MRS) are 2 high throughput, noninvasive analytical procedures that have the potential to enable differentiation of prostate cancer from other pathologies using metabolomics, by focusing specifically on certain metabolites which are associated with the development of prostate cancer cells and its progression. The value that this type of approach has for the early detection, diagnosis, prognosis, and personalized treatment of prostate cancer is becoming increasingly apparent. Recent years have seen many promising developments in the fields of NMR spectroscopy and MRS, with improvements having been made to hardware as well as to techniques associated with the acquisition, processing, and analysis of related data. This review focuses firstly on proton NMR spectroscopy of blood serum, urine, and expressed prostatic secretions in vitro, and then on 1- and 2-dimensional proton MRS of the prostate in vivo. Major advances in these fields and methodological principles of data collection, acquisition, processing, and analysis are described along with some discussion of related challenges, before prospects that proton MRS has for future improvements to the clinical management of prostate cancer are considered.
Collapse
Affiliation(s)
- Neda Gholizadeh
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia
| | - Jay Pundavela
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences, University of Massachusetts Amherst, MA, USA
| | - Anthony Dona
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, St Leonards, NSW, Australia
| | - Scott Quadrelli
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia; Radiology Department, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Tapan Biswas
- Department of Instrumentation and Electronics Engineering, Jadavpur University, Kolkata, India
| | - Peter B Greer
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia; Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW, Australia
| | - Saadallah Ramadan
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW, Australia; Imaging Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
29
|
Dorai T, Dorai B, Pinto JT, Grasso M, Cooper AJL. High Levels of Glutaminase II Pathway Enzymes in Normal and Cancerous Prostate Suggest a Role in 'Glutamine Addiction'. Biomolecules 2019; 10:biom10010002. [PMID: 31861280 PMCID: PMC7022959 DOI: 10.3390/biom10010002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
Abstract: Many tumors readily convert l-glutamine to α-ketoglutarate. This conversion is almost invariably described as involving deamidation of l-glutamine to l-glutamate followed by a transaminase (or dehydrogenase) reaction. However, mammalian tissues possess another pathway for conversion of l-glutamine to α-ketoglutarate, namely the glutaminase II pathway: l-Glutamine is transaminated to α-ketoglutaramate, which is then deamidated to α-ketoglutarate by ω-amidase. Here we show that glutamine transaminase and ω-amidase specific activities are high in normal rat prostate. Immunohistochemical analyses revealed that glutamine transaminase K (GTK) and ω-amidase are present in normal and cancerous human prostate and that expression of these enzymes increases in parallel with aggressiveness of the cancer cells. Our findings suggest that the glutaminase II pathway is important in providing anaplerotic carbon to the tricarboxylic acid (TCA) cycle, closing the methionine salvage pathway, and in the provision of citrate carbon in normal and cancerous prostate. Finally, our data also suggest that selective inhibitors of GTK and/or ω-amidase may be clinically important for treatment of prostate cancer. In conclusion, the demonstration of a prominent glutaminase II pathway in prostate cancer cells and increased expression of the pathway with increasing aggressiveness of tumor cells provides a new perspective on 'glutamine addiction' in cancers.
Collapse
Affiliation(s)
- Thambi Dorai
- Department of Urology, New York Medical College, Valhalla, NY 10595, USA; (T.D.); (M.G.)
- Department of Biochemistry & Molecular Biology, New York Medical College, Valhalla, NY 10595, USA;
| | - Bhuvaneswari Dorai
- Department of Pathology, Montefiore-Nyack Hospital, Nyack, NY 10960, USA;
| | - John T. Pinto
- Department of Biochemistry & Molecular Biology, New York Medical College, Valhalla, NY 10595, USA;
| | - Michael Grasso
- Department of Urology, New York Medical College, Valhalla, NY 10595, USA; (T.D.); (M.G.)
| | - Arthur J. L. Cooper
- Department of Biochemistry & Molecular Biology, New York Medical College, Valhalla, NY 10595, USA;
- Correspondence: ; Tel.: +1-914-594-3330; Fax: +1-914-594-4058
| |
Collapse
|
30
|
Huang L, Wang C, Xu H, Peng G. Targeting citrate as a novel therapeutic strategy in cancer treatment. Biochim Biophys Acta Rev Cancer 2019; 1873:188332. [PMID: 31751601 DOI: 10.1016/j.bbcan.2019.188332] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/09/2023]
Abstract
An important feature shared by many cancer cells is drastically altered metabolism that is critical for rapid growth and proliferation. The distinctly reprogrammed metabolism in cancer cells makes it possible to manipulate the levels of metabolites for cancer treatment. Citrate is a key metabolite that bridges many important metabolic pathways. Recent studies indicate that manipulating the level of citrate can impact the behaviors of both cancer and immune cells, resulting in induction of cancer cell apoptosis, boosting immune responses, and enhanced cancer immunotherapy. In this review, we discuss the recent developments in this emerging area of targeting citrate in cancer treatment. Specifically, we summarize the molecular basis of altered citrate metabolism in both tumors and immune cells, explore the seemingly conflicted growth promoting and growth inhibiting roles of citrate in various tumors, discuss the use of citrate in the clinic as a novel biomarker for cancer progression and outcomes, and highlight the new development of combining citrate with other therapeutic strategies in cancer therapy. An improved understanding of complex roles of citrate in the suppressive tumor microenvironment should open new avenues for cancer therapy.
Collapse
Affiliation(s)
- Lan Huang
- Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA; Department of Immunology, Jiangsu University School of Medicine, Zhenjiang 212013, PR China
| | - Cindy Wang
- Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Huaxi Xu
- Department of Immunology, Jiangsu University School of Medicine, Zhenjiang 212013, PR China
| | - Guangyong Peng
- Division of Infectious Diseases, Allergy & Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA.
| |
Collapse
|
31
|
Karami P, Khoshsafar H, Johari-Ahar M, Arduini F, Afkhami A, Bagheri H. Colorimetric immunosensor for determination of prostate specific antigen using surface plasmon resonance band of colloidal triangular shape gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 222:117218. [PMID: 31174151 DOI: 10.1016/j.saa.2019.117218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/12/2019] [Accepted: 05/27/2019] [Indexed: 05/06/2023]
Abstract
In this work, we demonstrated the development of a colorimetric immunosensor using surface plasmon resonance band of gold nanoparticles for the detection of prostate specific antigen (PSA). To develop this biosensing tool, triangular gold nanoparticles (AuNPs) were synthesized using Tween-20 as a nonionic surfactant and then, conjugated with PSA capture antibody (Ab1-AuNPs). When exposed to Ab1-AuNPs, PSA antigens were found to be successfully captured by nanosystem (PSA)-Ab1-AuNPs. Next, (PSA)-Ab1-AuNPs were incubated with second PSA antibody (2)-decorated magnetite (Fe3O4-Ab2) and separated by an external magnetic force to leave Ab1-AuNPs in the supernatant solution to be directly analyzed using UV-Vis spectroscopy. It was found that the absorption intensity was directly proportional to the PSA concentration. As a result, the linear range for PSA detection was found to be 0.01-20 ng mL-1 with a detection limit of 0.009 ng mL-1. Because of significant stability of the prepared Ab1-AuNPs and excellent selectivity to the PSA antigen, this simple and sensitive sensing system is proposed to be potentially effective in the fast and real-time analysis of clinical samples from prostate cancer patients. We believe that the simple platform of this immunosensor to be useful in the development of future point-of-care sensing tools, working on the quantification of biomarkers in a drop of blood.
Collapse
Affiliation(s)
- Pari Karami
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Hosein Khoshsafar
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Mohammad Johari-Ahar
- Department of Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Biosensor Research Center (BRC), Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Abstract
Infertility is an important reproductive health problem, and male infertility is especially important in more than half of infertility cases. Due to the importance of genetic factors in this condition, analysis of semen alone is not enough to recognize men with idiopathic infertility. A molecular non-invasive investigation is necessary to gain valuable information. Currently, microRNAs (miRNAs) are being used as non-invasive diagnostic biomarkers. miRNAs, single-stranded non-coding RNA molecules, act as post-transcriptional gene silencing regulators either by inhibition or repression of translation. Changes in the regulation of miRNAs have been investigated in several different types of male infertility, therefore the biological role of miRNA and gene targets has been defined. The purpose of this study was to review recent research on the altered expression of miRNA in semen, sperm, and testicular biopsy samples in infertile males with different types of unexplained infertility. Changes in miRNA regulation were investigated using microarray and the miRNA levels were confirmed by real-time qRT-PCR. This review explains why creating a non-invasive diagnostic method for male infertility is necessary and how changes in miRNA expression can be used as new diagnostic biomarkers in patients with differing spermatogenic and histopathologic injury.
Collapse
|
33
|
MacKinnon N, Ge W, Han P, Siddiqui J, Wei JT, Raghunathan T, Chinnaiyan AM, Rajendiran TM, Ramamoorthy A. NMR-Based Metabolomic Profiling of Urine: Evaluation for Application in Prostate Cancer Detection. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19849978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Detection of prostate cancer (PCa) and distinguishing indolent versus aggressive forms of the disease is a critical clinical challenge. The current clinical test is circulating prostate-specific antigen levels, which faces particular challenges in cancer diagnosis in the range of 4 to 10 ng/mL. Thus, a concerted effort toward building a noninvasive biomarker panel has developed. In this report, the hypothesis that nuclear magnetic resonance (NMR)-derived metabolomic profiles measured in the urine of biopsy-negative versus biopsy-positive individuals would nominate a selection of potential biomarker signals was investigated. 1H NMR spectra of urine samples from 317 individuals (111 biopsy-negative, 206 biopsy-positive) were analyzed. A double cross-validation partial least squares-discriminant analysis modeling technique was utilized to nominate signals capable of distinguishing the two classes. It was observed that after variable selection protocols were applied, a subset of 29 variables produced an area under the curve (AUC) value of 0.94 after logistic regression analysis, whereas a “master list” of 18 variables produced a receiver operating characteristic ROC) AUC of 0.80. As proof of principle, this study demonstrates the utility of NMR-based metabolomic profiling of urine biospecimens in the nomination of PCa-specific biomarker signals and suggests that further investigation is certainly warranted.
Collapse
Affiliation(s)
- Neil MacKinnon
- Biophysics, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Wencheng Ge
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Peisong Han
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Javed Siddiqui
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - John T. Wei
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Trivellore Raghunathan
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thekkelnaycke M. Rajendiran
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
34
|
Caiazza C, D'Agostino M, Passaro F, Faicchia D, Mallardo M, Paladino S, Pierantoni GM, Tramontano D. Effects of Long-Term Citrate Treatment in the PC3 Prostate Cancer Cell Line. Int J Mol Sci 2019; 20:ijms20112613. [PMID: 31141937 PMCID: PMC6600328 DOI: 10.3390/ijms20112613] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/18/2023] Open
Abstract
Acute administration of a high level of extracellular citrate displays an anti-proliferative effect on both in vitro and in vivo models. However, the long-term effect of citrate treatment has not been investigated yet. Here, we address this question in PC3 cells, a prostate-cancer-derived cell line. Acute administration of high levels of extracellular citrate impaired cell adhesion and inhibited the proliferation of PC3 cells, but surviving cells adapted to grow in the chronic presence of 20 mM citrate. Citrate-resistant PC3 cells are significantly less glycolytic than control cells. Moreover, they overexpress short-form, citrate-insensitive phosphofructokinase 1 (PFK1) together with full-length PFK1. In addition, they show traits of mesenchymal-epithelial transition: an increase in E-cadherin and a decrease in vimentin. In comparison with PC3 cells, citrate-resistant cells display morphological changes that involve both microtubule and microfilament organization. This was accompanied by changes in homeostasis and the organization of intracellular organelles. Thus, the mitochondrial network appears fragmented, the Golgi complex is scattered, and the lysosomal compartment is enlarged. Interestingly, citrate-resistant cells produce less total ROS but accumulate more mitochondrial ROS than control cells. Consistently, in citrate-resistant cells, the autophagic pathway is upregulated, possibly sustaining their survival. In conclusion, chronic administration of citrate might select resistant cells, which could jeopardize the benefits of citrate anticancer treatment.
Collapse
Affiliation(s)
- Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Fabiana Passaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Deriggio Faicchia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Giovanna Maria Pierantoni
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| | - Donatella Tramontano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
35
|
Karami P, Bagheri H, Johari-Ahar M, Khoshsafar H, Arduini F, Afkhami A. Dual-modality impedimetric immunosensor for early detection of prostate-specific antigen and myoglobin markers based on antibody-molecularly imprinted polymer. Talanta 2019; 202:111-122. [PMID: 31171159 DOI: 10.1016/j.talanta.2019.04.061] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/26/2022]
Abstract
A new dual-modality immunosensor based on molecularly imprinted polymer (MIP) and a nanostructured biosensing layer has fabricated for the simultaneous detection of two important markers including prostate-specific antigen (PSA) and myoglobin (Myo) in human serum and urine samples. In the first step, 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) (DSP) was self-assembled on a gold screen printed electrode (SPE). Then, the target proteins were attached covalently to the DSP-SPE. The imprinted cocktail polymer ((MIP(PSA, Myo)-SPE)) was synthesized at the SPE surface using acrylamide as monomer, N,N'-methylenebisacrylamide as a crosslinker, and PSA and Myo as the templates, respectively. The MIP-SPE was specific for the impedimetric sensing of PSA and Myo. After that, a nanocomposite (NCP) was synthesized based on the decorated magnetite nanoparticles with multi-walled carbon nanotube, graphene oxide and specific antibody for PSA (Ab). Then, NCP incubated with (MIP(PSA, Myo)-SPE. The modified electrodes and synthesized nanoparticles were characterized using electrochemical impedance spectroscopy, dynamic light scattering, surface plasmon resonance and scanning electron microscopy. The limits of detections were found to be 5.4 pg mL-1 and 0.83 ng mL-1 with the linear dynamic ranges of 0.01-100 and 1-20000 ng mL-1 for PSA and Myo, respectively. The ability of proposed biosensor to detect PSA and Myo simultaneously with high sensitivity and specificity offers a powerful opportunity for the new generation of biosensors. This dual-analyte specific receptors-based device is highly desired for the integration with lab-on-chip kits to measure a wide panel of biomarkers present at ultralow levels during early stages of diseases progress.
Collapse
Affiliation(s)
- Pari Karami
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Johari-Ahar
- Biosensors and Bioelectronics Research Center (BBRC), Ardabil University of Medical Sciences, Ardabil, Iran; Department of Bioanalytical Sciences and Medicinal Chemistry, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hosein Khoshsafar
- Research and Development Department, Farin Behbood Tashkhis LTD, Tehran, Iran
| | - Fabiana Arduini
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
36
|
Gómez-Cebrián N, Rojas-Benedicto A, Albors-Vaquer A, López-Guerrero JA, Pineda-Lucena A, Puchades-Carrasco L. Metabolomics Contributions to the Discovery of Prostate Cancer Biomarkers. Metabolites 2019; 9:metabo9030048. [PMID: 30857149 PMCID: PMC6468766 DOI: 10.3390/metabo9030048] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the most frequently diagnosed cancers and a leading cause of death among men worldwide. Despite extensive efforts in biomarker discovery during the last years, currently used clinical biomarkers are still lacking enough specificity and sensitivity for PCa early detection, patient prognosis, and monitoring. Therefore, more precise biomarkers are required to improve the clinical management of PCa patients. In this context, metabolomics has shown to be a promising and powerful tool to identify novel PCa biomarkers in biofluids. Thus, changes in polyamines, tricarboxylic acid (TCA) cycle, amino acids, and fatty acids metabolism have been reported in different studies analyzing PCa patients' biofluids. The review provides an up-to-date summary of the main metabolic alterations that have been described in biofluid-based studies of PCa patients, as well as a discussion regarding their potential to improve clinical PCa diagnosis and prognosis. Furthermore, a summary of the most significant findings reported in these studies and the connections and interactions between the different metabolic changes described has also been included, aiming to better describe the specific metabolic signature associated to PCa.
Collapse
Affiliation(s)
- Nuria Gómez-Cebrián
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain.
- Joint Research Unit in Clinical Metabolomics, Centro de Investigación Príncipe Felipe/Instituto de Investigación Sanitaria La Fe, Valencia 46012, Spain.
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, Valencia 46009, Spain.
| | - Ayelén Rojas-Benedicto
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain.
- Joint Research Unit in Clinical Metabolomics, Centro de Investigación Príncipe Felipe/Instituto de Investigación Sanitaria La Fe, Valencia 46012, Spain.
| | - Arturo Albors-Vaquer
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain.
- Joint Research Unit in Clinical Metabolomics, Centro de Investigación Príncipe Felipe/Instituto de Investigación Sanitaria La Fe, Valencia 46012, Spain.
| | | | - Antonio Pineda-Lucena
- Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, Valencia 46026, Spain.
- Joint Research Unit in Clinical Metabolomics, Centro de Investigación Príncipe Felipe/Instituto de Investigación Sanitaria La Fe, Valencia 46012, Spain.
| | - Leonor Puchades-Carrasco
- Joint Research Unit in Clinical Metabolomics, Centro de Investigación Príncipe Felipe/Instituto de Investigación Sanitaria La Fe, Valencia 46012, Spain.
| |
Collapse
|
37
|
Esmaeili M, Tayari N, Scheenen T, Elschot M, Sandsmark E, Bertilsson H, Heerschap A, Selnæs KM, Bathen TF. Simultaneous 18F-fluciclovine Positron Emission Tomography and Magnetic Resonance Spectroscopic Imaging of Prostate Cancer. Front Oncol 2018; 8:516. [PMID: 30498693 PMCID: PMC6249271 DOI: 10.3389/fonc.2018.00516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/22/2018] [Indexed: 11/26/2022] Open
Abstract
Purpose: To investigate the associations of metabolite levels derived from magnetic resonance spectroscopic imaging (MRSI) and 18F-fluciclovine positron emission tomography (PET) with prostate tissue characteristics. Methods: In a cohort of 19 high-risk prostate cancer patients that underwent simultaneous PET/MRI, we evaluated the diagnostic performance of MRSI and PET for discrimination of aggressive cancer lesions from healthy tissue and benign lesions. Data analysis comprised calculations of correlations of mean standardized uptake values (SUVmean), maximum SUV (SUVmax), and the MRSI-derived ratio of (total choline + spermine + creatine) to citrate (CSC/C). Whole-mount histopathology was used as gold standard. Results: The results showed a moderate significant correlation between both SUVmean and SUVmax with CSC/C ratio. Conclusions: We demonstrated that the simultaneous acquisition of 18F-fluciclovine PET and MRSI with an integrated PET/MRI system is feasible and a combination of these imaging modalities has potential to improve the diagnostic sensitivity and specificity of prostate cancer lesions.
Collapse
Affiliation(s)
- Morteza Esmaeili
- Deparment of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nassim Tayari
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tom Scheenen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mattijs Elschot
- Deparment of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Elise Sandsmark
- Deparment of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Helena Bertilsson
- Department of Surgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kirsten M Selnæs
- Deparment of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Tone F Bathen
- Deparment of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
38
|
Lee JH, Yu SE, Kim KH, Yu MH, Jeong IH, Cho JY, Park SJ, Lee WJ, Han SS, Kim TH, Hong EK, Woo SM, Yoo BC. Individualized metabolic profiling stratifies pancreatic and biliary tract cancer: a useful tool for innovative screening programs and predictive strategies in healthcare. EPMA J 2018; 9:287-297. [PMID: 30174764 PMCID: PMC6107458 DOI: 10.1007/s13167-018-0147-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/31/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) and biliary tract cancer (BTC) are highly aggressive cancers, characterized by their rarity, difficulty in diagnosis, and overall poor prognosis. Diagnosis of PC and BTC is complex and is made using a combination of appropriate clinical suspicion, imaging and endoscopic techniques, and cytopathological examination. However, the late-stage detection and poor prognosis of this tumor have led to an urgent need for biomarkers for early and/or predictive diagnosis and improved personalized treatments. WORKING HYPOTHESIS There are two hypotheses for focusing on low-mass metabolites in the blood. First, valuable information can be obtained from the masses and relative amounts of such metabolites, which present as low-mass ions (LMIs) in mass spectra. Second, metabolic profiling of individuals may provide important information regarding biological changes in disease states that is useful for the early diagnosis of PC and BTC. MATERIALS AND METHODS To assess whether profiling metabolites in serum can serve as a non-invasive screening tool for PC and BTC, 320 serum samples were obtained from patients with PC (n = 51), BTC (n = 39), colorectal cancer (CRC) (n = 100), and ovarian cancer (OVC) (n = 30), and from healthy control subjects (control) (n = 100). We obtained information on the relative amounts of metabolites, as LMIs, via triple time-of-flight mass spectrometry. All data were analyzed according to the peak area ratios of discriminative LMIs. RESULTS AND CONCLUSIONS The levels of the 14 discriminative LMIs were higher in the PC and BTC groups than in the control, CRC and OVC groups, but only two LMIs discriminated between PC and BTC: lysophosphatidylcholine (LysoPC) (16:0) and LysoPC(20:4). The levels of these two LysoPCs were also slightly lower in the PC/BTC/CRC/OVC groups compared with the control group. Taken together, the data showed that metabolic profiling can precisely denote the status of cancer, and, thus, could be useful for screening. This study not only details efficient methods to identify discriminative LMIs for cancer screening but also provides an example of metabolic profiling for distinguishing PC from BTC. Furthermore, the two metabolites [LysoPC(16:0), LysoPC(20:4)] shown to discriminate these diseases are potentially useful when combined with other, previously identified protein or metabolic biomarkers for predictive, preventive and personalized medical approach.
Collapse
Affiliation(s)
- Jun Hwa Lee
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Seung Eun Yu
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Kyung-Hee Kim
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, 10408 Republic of Korea
- Omics Core Laboratory, Research Institute, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Myung Hyun Yu
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, 10408 Republic of Korea
| | - In-Hye Jeong
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, 16419 Republic of Korea
| | - Sang-Jae Park
- Center for Liver Cancer, Hospital, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Woo Jin Lee
- Center for Liver Cancer, Hospital, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Sung-Sik Han
- Center for Liver Cancer, Hospital, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Tae Hyun Kim
- Center for Liver Cancer, Hospital, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Eun Kyung Hong
- Center for Liver Cancer, Hospital, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Sang Myung Woo
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, 10408 Republic of Korea
- Center for Liver Cancer, Hospital, National Cancer Center, Goyang, 10408 Republic of Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408 Republic of Korea
| | - Byong Chul Yoo
- Biomarker Branch, Research Institute, National Cancer Center, Goyang, 10408 Republic of Korea
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408 Republic of Korea
| |
Collapse
|
39
|
Marszałek I, Goch W, Bal W. Ternary Zn(II) Complexes of FluoZin-3 and the Low Molecular Weight Component of the Exchangeable Cellular Zinc Pool. Inorg Chem 2018; 57:9826-9838. [PMID: 30088924 DOI: 10.1021/acs.inorgchem.8b00489] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Knowledge of the nature of exchangeable (labile) intracellular Zn(II) is increasingly important for biomedical research. The detection and quantitative determination of Zn(II) ions is usually performed by using Zn(II)-specific fluorescent sensors, among which 2-[2-[2-[2-[bis(carboxylatomethyl)amino]-5-methoxyphenoxy]ethoxy]-4-(2,7-difluoro-3-oxido-6-oxo-4a,9a-dihydroxanthen-9-yl)anilino]acetate (FluoZin-3) has been used most widely. Selectivity of this sensor for Zn(II) over other divalent cations was demonstrated, but possible interference in its performance by other compounds has not been investigated. Many potential low molecular weight ligands for Zn(II) ions (LMWLs) are abundant in the cell. In this study we demonstrate that FluoZin-3 is susceptible to competition for Zn(II) from LMWLs and also forms strong ternary complexes with some of them. We determined the set of conditional stability constants C Ktern for ternary Zn(FluoZin-3)(LMWL) complexes using fluorescence titrations and applied it to model the response of exchangeable zinc to FluoZin-3. We found that competition and formation of ternary complexes with LMWLs together strongly affect (net reduce) the Zn(FluoZin-3) fluorescence. This effect may cause a significant underestimation of exchangeable Zn(II). We also demonstrated a strong pH dependence of this effect. Reduced glutathione (GSH) emerged as the most important Zn(II) partner among the LMWLs, characterized with Ktern = 2.8 ± 0.2 × 106 M-1. Our experiments and calculations suggest that Zn(LMWL) complexes contribute to the exchangeable cellular zinc pool.
Collapse
Affiliation(s)
- Ilona Marszałek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawińskiego 5a , 02-106 Warsaw , Poland
| | - Wojciech Goch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawińskiego 5a , 02-106 Warsaw , Poland.,Faculty of Pharmacy , Medical University of Warsaw , Banacha 1 , 02-091 Warsaw , Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences , Pawińskiego 5a , 02-106 Warsaw , Poland
| |
Collapse
|
40
|
Yang B, Liao GQ, Wen XF, Chen WH, Cheng S, Stolzenburg JU, Ganzer R, Neuhaus J. Nuclear magnetic resonance spectroscopy as a new approach for improvement of early diagnosis and risk stratification of prostate cancer. J Zhejiang Univ Sci B 2018; 18:921-933. [PMID: 29119730 DOI: 10.1631/jzus.b1600441] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PCa) is the second most common male cancer worldwide and the fifth leading cause of death from cancer in men. Early detection and risk stratification is the most effective way to improve the survival of PCa patients. Current PCa biomarkers lack sufficient sensitivity and specificity to cancer. Metabolite biomarkers are evolving as a new diagnostic tool. This review is aimed to evaluate the potential of metabolite biomarkers for early detection, risk assessment, and monitoring of PCa. Of the 154 identified publications, 27 and 38 were original papers on urine and serum metabolomics, respectively. Nuclear magnetic resonance (NMR) is a promising method for measuring concentrations of metabolites in complex samples with good reproducibility, high sensitivity, and simple sample processing. Especially urine-based NMR metabolomics has the potential to be a cost-efficient method for the early detection of PCa, risk stratification, and monitoring treatment efficacy.
Collapse
Affiliation(s)
- Bo Yang
- Department of Urology, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Guo-Qiang Liao
- Department of Urology, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Xiao-Fei Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wei-Hua Chen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Sheng Cheng
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Jens-Uwe Stolzenburg
- Department of Urology, University Hospital of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Roman Ganzer
- Department of Urology, University Hospital of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
| | - Jochen Neuhaus
- Department of Urology, Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China.,Division of Urology, Research Laboratory, University of Leipzig, Liebigstraße 19, 04103 Leipzig, Germany
| |
Collapse
|
41
|
Giskeødegård GF, Madssen TS, Euceda LR, Tessem MB, Moestue SA, Bathen TF. NMR-based metabolomics of biofluids in cancer. NMR IN BIOMEDICINE 2018; 32:e3927. [PMID: 29672973 DOI: 10.1002/nbm.3927] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/13/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
This review describes the current status of NMR-based metabolomics of biofluids with respect to cancer risk assessment, detection, disease characterization, prognosis, and treatment monitoring. While the metabolism of cancer cells is altered compared with that of non-proliferating cells, the metabolome of blood and urine reflects the entire organism. We conclude that many studies show impressive associations between biofluid metabolomics and cancer progression, but translation to clinical practice is currently hindered by lack of validation, difficulties in biological interpretation, and non-standardized analytical procedures.
Collapse
Affiliation(s)
- Guro F Giskeødegård
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology-NTNU, Trondheim, Norway
| | - Torfinn S Madssen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology-NTNU, Trondheim, Norway
| | - Leslie R Euceda
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology-NTNU, Trondheim, Norway
| | - May-Britt Tessem
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology-NTNU, Trondheim, Norway
| | - Siver A Moestue
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology-NTNU, Trondheim, Norway
- Department of Health Science, Nord University, Bodø, Norway
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology-NTNU, Trondheim, Norway
| |
Collapse
|
42
|
Luque de Castro M, Priego-Capote F. The analytical process to search for metabolomics biomarkers. J Pharm Biomed Anal 2018; 147:341-349. [DOI: 10.1016/j.jpba.2017.06.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 01/01/2023]
|
43
|
Zhang TH, Hu CH, Chen JX, Xu ZD, Shen JK. Differentiation Diagnosis of Hypo-Intense T2 Area in Unilateral Peripheral Zone of Prostate Using Magnetic Resonance Spectroscopy (MRS): Prostate Carcinoma versus Prostatitis. Med Sci Monit 2017; 23:3837-3843. [PMID: 28790299 PMCID: PMC5565236 DOI: 10.12659/msm.903123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background To determine whether magnetic resonance spectroscopy (MRS) can be used as a reliable denominator for the differentiation of prostatitis and prostate cancer (PCa) in the peripheral zone. Material/Methods Forty-three patients with unilateral peripheral zone PCa and 35 patients with unilateral peripheral zone prostatitis were recruited for this study. Magnetic resonance imaging (MRI) and MRS were acquired on a 1.5T MR scanner. The ratios of (Cho+Cr)/Cit of hypo-intense T2 area were calculated. The mean ratios of (Cho+Cr)/Cit in hypo-intense T2 area of PCa and that of prostatitis were compared retrospectively by t-test. The citrate and choline amplitudes in the hypo-intense T2 area were compared with that in the contralateral normal peripheral zone tissue. Results The mean ratios of (Cho+Cr)/Cit in the hypo-intense T2 area of PCa was 3.0±2.48, whereas that of prostatitis was 5.2±7.08, without significant statistical difference (p=0.306). A reduction in citrate was seen in both PCa and prostatitis tissue, however, choline was elevated in PCa tissue, whereas on the contrary, choline had no significant change in cases of prostatitis. Conclusions The mean ratios of (Cho+Cr)/Cit had no specificity in differentiation of PCa and prostatitis in the peripheral zone, however, the metabolic pattern showed promise as an adjunct to conventional imaging in differentiating prostatitis from PCa in the peripheral zone.
Collapse
Affiliation(s)
- Tong-Hua Zhang
- Department of Radiology, The 1st Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Chun-Hong Hu
- Department of Radiology, The 1st Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Jian-Xin Chen
- Department of Radiology, The 1st People's Hospital of Zhang Jiagang Affiliated to Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Zheng-Dao Xu
- Department of Radiology, The 1st People's Hospital of Zhang Jiagang Affiliated to Soochow University, Suzhou, Jiangsu, China (mainland)
| | - Jun-Kang Shen
- Department of Radiology, The 2nd Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China (mainland)
| |
Collapse
|
44
|
Louis E, Cantrelle FX, Mesotten L, Reekmans G, Bervoets L, Vanhove K, Thomeer M, Lippens G, Adriaensens P. Metabolic phenotyping of human plasma by 1 H-NMR at high and medium magnetic field strengths: a case study for lung cancer. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:706-713. [PMID: 28061019 DOI: 10.1002/mrc.4577] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 12/25/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
Accurate identification and quantification of human plasma metabolites can be challenging in crowded regions of the NMR spectrum with severe signal overlap. Therefore, this study describes metabolite spiking experiments on the basis of which the NMR spectrum can be rationally segmented into well-defined integration regions, and this for spectrometers having magnetic field strengths corresponding to 1 H resonance frequencies of 400 MHz and 900 MHz. Subsequently, the integration data of a case-control dataset of 69 lung cancer patients and 74 controls were used to train a multivariate statistical classification model for both field strengths. In this way, the advantages/disadvantages of high versus medium magnetic field strength were evaluated. The discriminative power obtained from the data collected at the two magnetic field strengths is rather similar, i.e. a sensitivity and specificity of respectively 90 and 97% for the 400 MHz data versus 88 and 96% for the 900 MHz data. This shows that a medium-field NMR spectrometer (400-600 MHz) is already sufficient to perform clinical metabolomics. However, the improved spectral resolution (reduced signal overlap) and signal-to-noise ratio of 900 MHz spectra yield more integration regions that represent a single metabolite. This will simplify the unraveling and understanding of the related, disease disturbed, biochemical pathways. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Evelyne Louis
- Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Francois-Xavier Cantrelle
- CNRS UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille 1, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
| | - Liesbet Mesotten
- Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
- Department of Nuclear Medicine, Ziekenhuis Oost-Limburg, Schiepse Bos 6, 3600, Genk, Belgium
| | - Gunter Reekmans
- Applied and Analytical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Liene Bervoets
- Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Karolien Vanhove
- Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
- Department of Respiratory Medicine, Algemeen Ziekenhuis Vesalius, Hazelereik 51, 3700, Tongeren, Belgium
| | - Michiel Thomeer
- Faculty of Medicine and Life Sciences, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
- Department of Respiratory Medicine, Ziekenhuis Oost-Limburg, Schiepse Bos 6, 3600, Genk, Belgium
| | - Guy Lippens
- CNRS UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille 1, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, INSA, University of Toulouse, CNRS, INRA, 135 Avenue de Rangueil, 31400, Toulouse, France
| | - Peter Adriaensens
- Applied and Analytical Chemistry, Institute for Materials Research, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
45
|
Ren JG, Seth P, Ye H, Guo K, Hanai JI, Husain Z, Sukhatme VP. Citrate Suppresses Tumor Growth in Multiple Models through Inhibition of Glycolysis, the Tricarboxylic Acid Cycle and the IGF-1R Pathway. Sci Rep 2017; 7:4537. [PMID: 28674429 PMCID: PMC5495754 DOI: 10.1038/s41598-017-04626-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/17/2017] [Indexed: 01/08/2023] Open
Abstract
In this study we have tested the efficacy of citrate therapy in various cancer models. We found that citrate administration inhibited A549 lung cancer growth and additional benefit accrued in combination with cisplatin. Interestingly, citrate regressed Ras-driven lung tumors. Further studies indicated that citrate induced tumor cell differentiation. Additionally, citrate treated tumor samples showed significantly higher infiltrating T-cells and increased blood levels of numerous cytokines. Moreover, we found that citrate inhibited IGF-1R phosphorylation. In vitro studies suggested that citrate treatment inhibited AKT phosphorylation, activated PTEN and increased expression of p-eIF2a. We also found that p-eIF2a was decreased when PTEN was depleted. These data suggest that citrate acts on the IGF-1R-AKT-PTEN-eIF2a pathway. Additionally, metabolic profiling suggested that both glycolysis and the tricarboxylic acid cycle were suppressed in a similar manner in vitro in tumor cells and in vivo but only in tumor tissue. We reproduced many of these observations in an inducible Her2/Neu-driven breast cancer model and in syngeneic pancreatic tumor (Pan02) xenografts. Our data suggests that citrate can inhibit tumor growth in diverse tumor types and via multiple mechanisms. Dietary supplementation with citrate may be beneficial as a cancer therapy.
Collapse
Affiliation(s)
- Jian-Guo Ren
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Pankaj Seth
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Huihui Ye
- Department of Pathology, Beth Israel Deaconess Medical Center (BIDMC) and Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Kun Guo
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.,Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun-Ichi Hanai
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Zaheed Husain
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA
| | - Vikas P Sukhatme
- Divisions of Interdisciplinary Medicine and Biotechnology, Hematology-Oncology and Nephrology, Department of Medicine and the Cancer Research Institute, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
46
|
Seminal plasma enables selection and monitoring of active surveillance candidates using nuclear magnetic resonance-based metabolomics: A preliminary investigation. Prostate Int 2017; 5:149-157. [PMID: 29188202 PMCID: PMC5693471 DOI: 10.1016/j.prnil.2017.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 01/15/2023] Open
Abstract
Background Diagnosis and monitoring of localized prostate cancer requires discovery and validation of noninvasive biomarkers. Nuclear magnetic resonance (NMR)-based metabolomics of seminal plasma reportedly improves diagnostic accuracy, but requires validation in a high-risk clinical cohort. Materials and methods Seminal plasma samples of 151 men being investigated for prostate cancer were analyzed with 1H-NMR spectroscopy. After adjustment for buffer (add-to-subtract) and endogenous enzyme influence on metabolites, metabolite profiling was performed with multivariate statistical analysis (principal components analysis, partial least squares) and targeted quantitation. Results Seminal plasma metabolites best predicted low- and intermediate-risk prostate cancer with differences observed between these groups and benign samples. Lipids/lipoproteins dominated spectra of high grade samples with less metabolite contributions. Overall prostate cancer prediction using previously described metabolites was not validated. Conclusion Metabolomics of seminal plasma in vitro may assist urologists with diagnosis and monitoring of either low or intermediate grade prostate cancer. Less clinical benefit may be observed for high-risk patients. Further investigation in active surveillance cohorts, and/or in combination with in vivo magnetic resonance spectroscopic imaging may further optimize localized prostate cancer outcomes.
Collapse
|
47
|
Al Kadhi O, Melchini A, Mithen R, Saha S. Development of a LC-MS/MS Method for the Simultaneous Detection of Tricarboxylic Acid Cycle Intermediates in a Range of Biological Matrices. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2017; 2017:5391832. [PMID: 29075551 PMCID: PMC5624170 DOI: 10.1155/2017/5391832] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/05/2017] [Indexed: 05/05/2023]
Abstract
It is now well-established that perturbations in the tricarboxylic acid (TCA) cycle play an important role in the metabolic transformation occurring in cancer including that of the prostate. A method for simultaneous qualitative and quantitative analysis of TCA cycle intermediates in body fluids, tissues, and cultured cell lines of human origin was developed using a common C18 reversed-phase column by LC-MS/MS technique. This LC-MS/MS method for profiling TCA cycle intermediates offers significant advantages including simple and fast preparation of a wide range of human biological samples. The analytical method was validated according to the guideline of the Royal Society of Chemistry Analytical Methods Committee. The limits of detection were below 60 nM for most of the TCA intermediates with the exception of lactic and fumaric acids. The calibration curves of all TCA analytes showed linearity with correlation coefficients r2 > 0.9998. Recoveries were >95% for all TCA analytes. This method was established taking into consideration problems and limitations of existing techniques. We envisage that its application to different biological matrices will facilitate deeper understanding of the metabolic changes in the TCA cycle from in vitro, ex vivo, and in vivo studies.
Collapse
Affiliation(s)
- Omar Al Kadhi
- Food and Health Programme, Quadram Institute Bioscience, Norwich NR4 7UA, UK
- Department of Urology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich NR4 7UY, UK
| | - Antonietta Melchini
- Food and Health Programme, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| | - Richard Mithen
- Food and Health Programme, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| | - Shikha Saha
- Food and Health Programme, Quadram Institute Bioscience, Norwich NR4 7UA, UK
| |
Collapse
|
48
|
Hwang VJ, Weiss RH. Metabolomic profiling for early cancer detection: current status and future prospects. Expert Opin Drug Metab Toxicol 2016; 12:1263-1265. [PMID: 27642860 DOI: 10.1080/17425255.2016.1238460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Vicki J Hwang
- a Division of Nephrology, Department of Internal Medicine , University of California , Davis , CA , USA
| | - Robert H Weiss
- a Division of Nephrology, Department of Internal Medicine , University of California , Davis , CA , USA.,b Cancer Center , University of California , Davis , CA , USA.,c Medical Service , VA Northern California Health Care System , Sacramento , CA , USA
| |
Collapse
|
49
|
Kumar D, Gupta A, Mandhani A, Sankhwar SN. NMR spectroscopy of filtered serum of prostate cancer: A new frontier in metabolomics. Prostate 2016; 76:1106-19. [PMID: 27197810 DOI: 10.1002/pros.23198] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/19/2016] [Indexed: 11/11/2022]
Abstract
BACKGROUND To address the shortcomings of digital rectal examinations (DRE), serum prostate-specific antigen (PSA), and trans-rectal ultrasound (TRUS) for precise determination of prostate cancer (PC) and differentiation from benign prostatic hyperplasia (BPH), we applied (1) H-nuclear magnetic resonance (NMR) spectroscopy as a surrogate tactic for probing and prediction of PC and BPH. METHODS The study comprises 210 filtered sera from suspected PC, BPH, and a healthy subjects' cohort (HC). The filtered serum approach delineates to identify and quantify 52 metabolites using (1) H NMR spectroscopy. All subjects had undergone clinical evaluations (DRE, PSA, and TRUS) followed by biopsy for Gleason score, if needed. NMR-measured metabolites and clinical evaluation data were examined separately using linear multivariate discriminant function analysis (DFA) to probe the signature descriptors for each cohort. RESULTS DFA indicated that glycine, sarcosine, alanine, creatine, xanthine, and hypoxanthine were able to determine abnormal prostate (BPH + PC). DFA-based classification presented high precision (86.2% by NMR and 68.1% by clinical laboratory method) in discriminating HC from BPH + PC. DFA reveals that alanine, sarcosine, creatinine, glycine, and citrate were able to discriminate PC from BPH. DFA-based categorization exhibited high accuracy (88.3% by NMR and 75.2% by clinical laboratory method) to differentiate PC from BPH. CONCLUSIONS (1) H NMR-based metabolic profiling of filtered-serum sample appears to be assuring, swift, and least-invasive for probing and prediction of PC and BPH with its signature metabolic profile. This novel technique is not only on a par with histopathological evaluation of PC determination but is also comparable to liquid chromatography-based mass spectrometry to identify the metabolites. Prostate 76:1106-1119, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Metabolomics, Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
- Uttar Pradesh Technical University, Lucknow, India
| | - Ashish Gupta
- Department of Metabolomics, Centre of Biomedical Research, SGPGIMS Campus, Lucknow, India
| | - Anil Mandhani
- Department of Urology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | |
Collapse
|
50
|
Biomarker Discovery in Human Prostate Cancer: an Update in Metabolomics Studies. Transl Oncol 2016; 9:357-70. [PMID: 27567960 PMCID: PMC5006818 DOI: 10.1016/j.tranon.2016.05.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/21/2016] [Accepted: 05/31/2016] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading cause of cancer death among men in Western countries. Current screening techniques are based on the measurement of serum prostate specific antigen (PSA) levels and digital rectal examination. A decisive diagnosis of PCa is based on prostate biopsies; however, this approach can lead to false-positive and false-negative results. Therefore, it is important to discover new biomarkers for the diagnosis of PCa, preferably noninvasive ones. Metabolomics is an approach that allows the analysis of the entire metabolic profile of a biological system. As neoplastic cells have a unique metabolic phenotype related to cancer development and progression, the identification of dysfunctional metabolic pathways using metabolomics can be used to discover cancer biomarkers and therapeutic targets. In this study, we review several metabolomics studies performed in prostatic fluid, blood plasma/serum, urine, tissues and immortalized cultured cell lines with the objective of discovering alterations in the metabolic phenotype of PCa and thus discovering new biomarkers for the diagnosis of PCa. Encouraging results using metabolomics have been reported for PCa, with sarcosine being one of the most promising biomarkers identified to date. However, the use of sarcosine as a PCa biomarker in the clinic remains a controversial issue within the scientific community. Beyond sarcosine, other metabolites are considered to be biomarkers for PCa, but they still need clinical validation. Despite the lack of metabolomics biomarkers reaching clinical practice, metabolomics proved to be a powerful tool in the discovery of new biomarkers for PCa detection.
Collapse
|