1
|
Tan Y, Zheng T, Su Z, Chen M, Chen S, Zhang R, Wang R, Li K, Na N. Alternative polyadenylation reprogramming of MORC2 induced by NUDT21 loss promotes KIRC carcinogenesis. JCI Insight 2023; 8:e162893. [PMID: 37737260 PMCID: PMC10561724 DOI: 10.1172/jci.insight.162893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
Alternative polyadenylation (APA), a posttranscriptional mechanism of gene expression via determination of 3'UTR length, has an emerging role in carcinogenesis. Although abundant APA reprogramming is found in kidney renal clear cell carcinoma (KIRC), which is one of the major malignancies, whether APA functions in KIRC remains unknown. Herein, we found that chromatin modifier MORC2 gained oncogenic potential in KIRC among the genes with APA reprogramming, and moreover, its oncogenic potential was enhanced by 3'UTR shortening through stabilization of MORC2 mRNA. MORC2 was found to function in KIRC by downregulating tumor suppressor DAPK1 via DNA methylation. Mechanistically, MORC2 recruited DNMT3A to facilitate hypermethylation of the DAPK1 promoter, which was strengthened by 3'UTR shortening of MORC2. Furthermore, loss of APA regulator NUDT21, which was induced by DNMT3B-mediated promoter methylation, was identified as responsible for 3'UTR shortening of MORC2 in KIRC. Additionally, NUDT21 was confirmed to act as a tumor suppressor mainly depending on downregulation of MORC2. Finally, we designed an antisense oligonucleotide (ASO) to enhance NUDT21 expression and validated its antitumor effect in vivo and in vitro. This study uncovers the DNMT3B/NUDT21/APA/MORC2/DAPK1 regulatory axis in KIRC, disclosing the role of APA in KIRC and the crosstalk between DNA methylation and APA.
Collapse
Affiliation(s)
- Yuqin Tan
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tong Zheng
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zijun Su
- The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Min Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| | - Rui Zhang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruojiao Wang
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ke Li
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Jing ZF, Bi JB, Li Z, Liu X, Li J, Zhu Y, Zhang XT, Zhang Z, Li Z, Kong CZ. Inhibition of miR-34a-5p can rescue disruption of the p53-DAPK axis to suppress progression of clear cell renal cell carcinoma. Mol Oncol 2019; 13:2079-2097. [PMID: 31294899 PMCID: PMC6763763 DOI: 10.1002/1878-0261.12545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/06/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
DAPK, a transcriptional target of the p53 protein, has long been characterized as a tumor suppressor that acts as a negative regulator in multiple cellular processes. However, increasing studies have suggested that the role of DAPK may vary depending on cell type and cellular context. Thus far, the expression and function of DAPK in clear cell renal cell carcinoma (ccRCC) remain ambiguous. Since ccRCC behaves in an atypical way with respect to p53, whether the p53‐DAPK axis functions normally in ccRCC is also an intriguing question. Here, tissue specimens from 61 ccRCC patients were examined for DAPK expression. Functional studies regarding apoptosis, growth, and migration were used to determine the role of DAPK in renal cancer cells. The validity of the p53‐DAPK axis in ccRCC was also determined. Our study identified DAPK as a negative regulator of ccRCC, and its expression was reduced in certain subgroups. However, the p53‐DAPK axis was disrupted due to upregulation of miR‐34a‐5p under stressed conditions. miR‐34a‐5p was identified as a novel repressor of DAPK acting downstream of p53. Inhibition of miR‐34a‐5p can correct the p53‐DAPK axis disruption by upregulating DAPK protein and may have potential to be used as a therapeutic target to improve outcomes for ccRCC patients.
Collapse
Affiliation(s)
- Zhi-Fei Jing
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Jian-Bin Bi
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Zeliang Li
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Xiankui Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Jun Li
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Yuyan Zhu
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Xiao-Tong Zhang
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Zhe Zhang
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Zhenhua Li
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| | - Chui-Ze Kong
- Department of Urology, First Hospital of China Medical University, Shenyang, Liaoning, China.,Institute of Urology, China Medical University, Shenyang, China
| |
Collapse
|
3
|
CBX8 promotes tumorigenesis and confers radioresistance in esophageal squamous cell carcinoma cells through targeting APAF1. Gene 2019; 711:143949. [DOI: 10.1016/j.gene.2019.143949] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 11/22/2022]
|
4
|
|
5
|
Yang Q, Mas A, Diamond MP, Al-Hendy A. The Mechanism and Function of Epigenetics in Uterine Leiomyoma Development. Reprod Sci 2016; 23:163-75. [PMID: 25922306 PMCID: PMC5933172 DOI: 10.1177/1933719115584449] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Uterine leiomyomas, also known as uterine fibroids, are the most common pelvic tumors, occurring in nearly 70% of all reproductive-aged women and are the leading indication for hysterectomy worldwide. The development of uterine leiomyomas involve a complex and heterogeneous constellation of hormones, growth factors, stem cells, genetic, and epigenetic abnormalities. An increasing body of evidence emphasizes the important contribution of epigenetics in the pathogenesis of leiomyomas. Genome-wide methylation analysis demonstrates that a subset of estrogen receptor (ER) response genes exhibit abnormal hypermethylation levels that are inversely correlated with their RNA expression. Several tumor suppressor genes, including Kruppel-like factor 11 (KLF11), deleted in lung and esophageal cancer 1 (DLEC1), keratin 19 (KRT19), and death-associated protein kinase 1 (DAPK1) also display higher hypermethylation levels in leiomyomas when compared to adjacent normal tissues. The important role of active DNA demethylation was recently identified with regard to the ten-eleven translocation protein 1 and ten-eleven translocation protein 3-mediated elevated levels of 5-hydroxymethylcytosine in leiomyoma. In addition, both histone deacetylase and histone methyltransferase are reported to be involved in the biology of leiomyomas. A number of deregulated microRNAs have been identified in leiomyomas, leading to an altered expression of their targets. More recently, the existence of side population (SP) cells with characteristics of tumor-initiating cells have been characterized in leiomyomas. These SP cells exhibit a tumorigenic capacity in immunodeficient mice when exposed to 17β-estradiol and progesterone, giving rise to fibroid-like tissue in vivo. These new findings will likely enhance our understanding of the crucial role epigenetics plays in the pathogenesis of uterine leiomyomas as well as point the way to novel therapeutic options.
Collapse
Affiliation(s)
- Qiwei Yang
- Division of Translation Research, Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| | - Aymara Mas
- Division of Translation Research, Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| | - Michael P Diamond
- Division of Translation Research, Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| | - Ayman Al-Hendy
- Division of Translation Research, Department of Obstetrics and Gynecology, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
6
|
Jia MX, Chen J. Apoptotic protease activating factor-1 and tumors. Shijie Huaren Xiaohua Zazhi 2015; 23:3729-3735. [DOI: 10.11569/wcjd.v23.i23.3729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apoptotic protease activating factor-1 (Apaf-1) functions as a core apoptosis factor in the mitochondrial apoptosis pathway. Apaf-1 promoter methylation and loss of heterozygosity are the main causes of cancer, and lower expression of Apaf-1 is closely related to malignant tumors. Apaf-1 expression deletion and methylation can be used as markers for deeper tumor invasion, frequent lymph node metastasis, tumor differentiation and poor prognosis. Apaf-1 can be used as a molecular target for anticancer therapy and prognosis prediction. Further research on Apaf-1 will contribute to the development of effective anti-tumor drugs. In this paper, we will review the biochemical structure and function of Apaf-1, Apaf-1 signal transduction pathway, expression of Apaf-1 in a variety of tumors, as well as its role in tumor occurrence, drug resistance and treatment.
Collapse
|
7
|
Apoptosis: the intrinsic pathway. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
8
|
Youssef RF, Cost NG, Darwish OM, Margulis V. Prognostic markers in renal cell carcinoma: A focus on the 'mammalian target of rapamycin' pathway. Arab J Urol 2012; 10:110-7. [PMID: 26558012 PMCID: PMC4442886 DOI: 10.1016/j.aju.2012.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 02/23/2012] [Accepted: 02/25/2012] [Indexed: 11/25/2022] Open
Abstract
Objectives Increased knowledge about the molecular pathways involved in tumorigenesis has led to the discovery of new prognostic molecular markers and development of novel targeted therapies for renal cell carcinoma (RCC). In this review we describe the prognostic markers of RCC and highlight the areas of recent discovery with a focus on the mammalian target of rapamycin (mTOR) pathway. Methods We reviewed previous reports, using PubMed with the search terms ‘renal cell carcinoma’, ‘molecular markers’, ‘prognosis’, ‘outcomes’ and ‘mammalian target of rapamycin pathway’ published in the last two decades. We created a library of 100 references and focused on presenting the recent advances in the field. Results Growing evidence suggests that mTOR deregulation is associated with many types of human cancer, including RCC. Consequently, temsirolimus and everolimus, which target mTOR, are approved for treating advanced RCC. There is a demand to integrate clinical, pathological and molecular markers into accurate prognostic models to provide patients with the most personalised cancer care possible. Conclusions The mTOR pathway is highly implicated in RCC tumorigenesis and progression, and its constituents might represent a promising prognostic tool and target for treating RCC. Combining newly discovered molecular markers with classic clinicopathological prognostics might potentially improve the management of RCC.
Collapse
Key Words
- 4E-BP1, eukaryotic initiation factor-binding protein-1
- CA-9, carbonic anhydrase 9
- HIF, hypoxia inducible factor
- IRS-1, insulin receptor substrate-1
- LDH, lactate dehydrogenase
- Molecular markers
- PI3k, phosphatidylinositol 3-kinase
- Prognostic
- Renal cell carcinoma
- S6K1, S6 kinase 1
- TKR, tyrosine kinase receptor
- TSC, tuberous sclerosis complex
- VEGF, vascular endothelial growth factor
- VHL, von Hippel-Lindau
- mTOR
- mTOR, mammalian target of rapamycin
Collapse
Affiliation(s)
- Ramy F Youssef
- Division of Urologic Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicholas G Cost
- Division of Urologic Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Oussama M Darwish
- Division of Urologic Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vitaly Margulis
- Division of Urologic Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Ahmad ST, Arjumand W, Seth A, Saini AK, Sultana S. Methylation of the APAF-1 and DAPK-1 promoter region correlates with progression of renal cell carcinoma in North Indian population. Tumour Biol 2011; 33:395-402. [PMID: 21922274 DOI: 10.1007/s13277-011-0235-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 08/26/2011] [Indexed: 12/31/2022] Open
Abstract
Aberrant promoter hypermethylation of cancer associated genes occur frequently during carcinogenesis and may serve as a cancer biomarker. The aim of this study was to investigate the occurrence and relevance of promoter methylation of the tumor suppressor DAPK-1, APAF-1 () and SPARC in relation to different pathological stages and histological grades of tumor progression that might act as possible independent prognostic factor in the susceptibility towards renal cell carcinoma (RCC) in North Indian population. Three tumor suppressor gene promoters namely APAF-1, DAPK-1 and SPARC were assessed by methylation-specific PCR (MS-PCR) in 196 primarily resected renal cell tumors paired with the corresponding normal tissue samples. After genomic DNA isolation and sodium bisulfite modification, methylation levels were determined and correlated with standard clinicopathological parameters, pathological stage and Fuhrman nuclear grade of RCC. Significant differences in methylation frequency among the four subtypes of renal tumors were found for APAF-1 (p < 0.001), DAPK-1 (p < 0.001) and SPARC (p = 0.182), when compared with the corresponding normal tissue. Male subjects showed stronger association of methylation frequency of all the three genes with RCC than the female subjects. Additionally, higher frequency of APAF-1, DAPK-1 and SPARC promoter methylation were directly correlated with higher tumor stage (p (trend) < 0.001). Higher frequency of promoter methylation of APAF-1 and SPARC were also associated with higher nuclear grade (p < 0.001 and p = 0.036, respectively). This gene panel might contribute to a more optimal diagnostic coverage and information, improving preoperative assessment and therapeutic decision-making in patients harboring suspicious renal masses.
Collapse
Affiliation(s)
- Shiekh Tanveer Ahmad
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard, Hamdard University, Hamdard Nagar, New Delhi, 110062, India
| | | | | | | | | |
Collapse
|
10
|
Murphy TM, Sullivan L, Lane C, O'Connor L, Barrett C, Hollywood D, Lynch T, Lawler M, Perry AS. In silico analysis and DHPLC screening strategy identifies novel apoptotic gene targets of aberrant promoter hypermethylation in prostate cancer. Prostate 2011; 71:1-17. [PMID: 20564325 DOI: 10.1002/pros.21212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Aberrant DNA methylation has been implicated as a key survival mechanism in cancer, whereby promoter hypermethylation silences genes essential for many cellular processes including apoptosis. Limited data is available on the methylation profile of apoptotic genes in prostate cancer (CaP). The aim of this study was to profile methylation of apoptotic-related genes in CaP using denaturing high performance liquid chromatography (DHPLC). METHODS Based on an in silico selection process, 13 genes were screened for methylation in CaP cell lines using DHPLC. Quantitative methylation specific PCR was employed to determine methylation levels in prostate tissue specimens (n = 135), representing tumor, histologically benign prostate, high-grade prostatic intraepithelial neoplasia and benign prostatic hyperplasia. Gene expression was measured by QRT-PCR in cell lines and tissue specimens. RESULTS The promoters of BIK, BNIP3, cFLIP, TMS1, DCR1, DCR2, and CDKN2A appeared fully or partially methylated in a number of malignant cell lines. This is the first report of aberrant methylation of BIK, BNIP3, and cFLIP in CaP. Quantitative methylation analysis in prostate tissues identified 5 genes (BNIP3, CDKN2A, DCR1, DCR2 and TMS1) which were frequently methylated in tumors but were unmethylated in 100% of benign tissues. Furthermore, 69% of tumors were methylated in at least one of the five-gene panel. In the case of all genes, except BNIP3, promoter hypermethylation was associated with concurrent downregulation of gene expression. CONCLUSION Future examination of this "CaP apoptotic methylation signature" in a larger cohort of patients is justified to further evaluate its value as a diagnostic and prognostic marker.
Collapse
Affiliation(s)
- Therese M Murphy
- Prostate Molecular Oncology, Institute of Molecular Medicine, Trinity College, Dublin, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Daniel FI, Cherubini K, Yurgel LS, de Figueiredo MAZ, Salum FG. The role of epigenetic transcription repression and DNA methyltransferases in cancer. Cancer 2010; 117:677-87. [PMID: 20945317 DOI: 10.1002/cncr.25482] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 03/28/2010] [Accepted: 05/13/2010] [Indexed: 12/25/2022]
Abstract
Epigenetic alterations such as DNA methylation have been implicated in the development and progression of various cancers. DNA methylation consists of the reversible addition of a methyl group to the carbon 5 position of cytosine in CpG dinucleotides and is considered essential for normal embryonic development. However, global genomic hypomethylation and aberrant hypermethylation of regulatory regions of tumor suppressor genes have been associated with chromosomal instability and transcription repression, respectively, providing neoplastic cells with a selective advantage. DNA methyltransferases are the enzymes responsible for the addition of methyl groups to CpG dinucleotides, which, together with histone modifiers, initiate the events necessary for transcription repression to occur. It has been demonstrated that increased expression of DNA methyltransferases may contribute to tumor progression through methylation-mediated gene inactivation in various human cancers. Given their importance, this article reviews the main epigenetic mechanisms for regulating transcription and its implications in cancer development.
Collapse
Affiliation(s)
- Filipe Ivan Daniel
- School of Dentistry, Oral Medicine Division, Pontifical Catholic University of Rio Grande do Sul, Brazil.
| | | | | | | | | |
Collapse
|
12
|
Shah JB, Margulis V. In search of a better crystal ball: recent advances in prognostic markers for clear-cell renal cell carcinoma. Expert Rev Anticancer Ther 2010; 10:837-42. [PMID: 20553209 DOI: 10.1586/era.10.70] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in imaging have led to a steady increase in the incidence of kidney cancer over the last two decades. There has been no corresponding improvement in our ability to predict the behavior of renal cell carcinoma. Patients with low-risk renal cell carcinoma have good long-term survival with only localized therapy but patients with aggressive disease do poorly, even with optimal multimodal treatment. Biomarkers to differentiate between these two very divergent populations have traditionally been of only limited utility. We review the recent advances in the development of molecular and immunologic markers aimed at improving prognostication of renal cell carcinoma.
Collapse
Affiliation(s)
- Jay B Shah
- Department of Urology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9110, USA
| | | |
Collapse
|
13
|
Michie AM, McCaig AM, Nakagawa R, Vukovic M. Death-associated protein kinase (DAPK) and signal transduction: regulation in cancer. FEBS J 2009; 277:74-80. [PMID: 19878310 DOI: 10.1111/j.1742-4658.2009.07414.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Death-associated protein kinase (DAPK) is a pro-apoptotic serine/threonine protein kinase that is dysregulated in a wide variety of cancers. The mechanism by which this occurs has largely been attributed to promoter hypermethylation, which results in gene silencing. However, recent studies indicate that DAPK expression can be detected in some cancers, but its function is still repressed, suggesting that DAPK activity can be subverted at a post-translational level in cancer cells. This review will focus on recent data describing potential mechanisms that may alter the expression, regulation or function of DAPK.
Collapse
Affiliation(s)
- Alison M Michie
- Section of Experimental Haematology, Division of Cancer Sciences, Faculty of Medicine, University of Glasgow, Glasgow, UK.
| | | | | | | |
Collapse
|
14
|
Xiong H, Qiu H, Zhuang L, Xiong H, Jiang R, Chen Y. Effects of 5-Aza-CdR on the proliferation of human breast cancer cell line MCF-7 and on the expression of Apaf-1 gene. ACTA ACUST UNITED AC 2009; 29:498-502. [PMID: 19662370 DOI: 10.1007/s11596-009-0421-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Indexed: 12/21/2022]
Abstract
Hypermethylation in the promoter region of tumor suppressor genes is a common mechanism of gene silencing, which tends to occur in cancer. The effects of 5-Aza-2'-deoxycytidine (5-Aza-CdR), a specific DNA methyltransferase inhibitor, on the cell proliferation of human breast cancer cell line MCF-7 and on the expression of Apaf-1 gene were investigated. Human MCF-7 cells were incubated with increasing concentrations of 5-Aza-CdR for 12 to 120 h. The growth inhibition rates of MCF-7 cells were detected by MTT assay. Changes of cell cycle distribution and apoptotic rates of MCF-7 cells were determined by flow cytometry. The expressions of DNA methyltransferase 3b mRNA and Apaf-1 mRNA were measured by reverse transcription polymerase chain reaction (RT-PCR). Meanwhile, the expression of Apaf-1 protein was detected by Western blotting. The results showed that 5-Aza-CdR significantly inhibited the growth of MCF-7 cells and the growth inhibition rate of MCF-7 cells was significantly enhanced with the concentration of 5-Aza-CdR and the action time. Flow cytometry indicated that 5-Aza-CdR could significantly induce G(1)/S cell cycle arrest and increase the apoptosis rate of MCF-7 cells. The mRNA and protein expressions of Apaf-1 were up-regulated in MCF-7 cells treated with 5-Aza-CdR, which was accompanied by down-regulation of DNA methyltransferase 3b mRNA. It is concluded that 5-Aza-CdR might retard the growth of tumor cells and promote the apoptosis of MCF-7 breast cancer cells by inhibiting the expression of DNA methyltransferase 3b and re-activating the Apaf-1 gene expression.
Collapse
Affiliation(s)
- Huihua Xiong
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Carla Kurkjian
- Advanced Developmental Therapeutics Training Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland, USA
| | | | | |
Collapse
|