1
|
Zafeiropoulou K, Kalampounias G, Alexis S, Anastasopoulos D, Symeonidis A, Katsoris P. Autophagy and oxidative stress modulation mediate Bortezomib resistance in prostate cancer. PLoS One 2024; 19:e0289904. [PMID: 38412186 PMCID: PMC10898778 DOI: 10.1371/journal.pone.0289904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/27/2024] [Indexed: 02/29/2024] Open
Abstract
Proteasome inhibitors such as Bortezomib represent an established type of targeted treatment for several types of hematological malignancies, including multiple myeloma, Waldenstrom's macroglobulinemia, and mantle cell lymphoma, based on the cancer cell's susceptibility to impairment of the proteasome-ubiquitin system. However, a major problem limiting their efficacy is the emergence of resistance. Their application to solid tumors is currently being studied, while simultaneously, a wide spectrum of hematological cancers, such as Myelodysplastic Syndromes show minimal or no response to Bortezomib treatment. In this study, we utilize the prostate cancer cell line DU-145 to establish a model of Bortezomib resistance, studying the underlying mechanisms. Evaluating the resulting resistant cell line, we observed restoration of proteasome chymotrypsin-like activity, regardless of drug presence, an induction of pro-survival pathways, and the substitution of the Ubiquitin-Proteasome System role in proteostasis by induction of autophagy. Finally, an estimation of the oxidative condition of the cells indicated that the resistant clones reduce the generation of reactive oxygen species induced by Bortezomib to levels even lower than those induced in non-resistant cells. Our findings highlight the role of autophagy and oxidative stress regulation in Bortezomib resistance and elucidate key proteins of signaling pathways as potential pharmaceutical targets, which could increase the efficiency of proteasome-targeting therapies, thus expanding the group of molecular targets for neoplastic disorders.
Collapse
Affiliation(s)
- Kalliopi Zafeiropoulou
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
- Hematology Division, Department of Internal Medicine, University of Patras Medical School-University Hospital, Patras, Greece
| | - Georgios Kalampounias
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| | - Spyridon Alexis
- Hematology Division, Department of Internal Medicine, University of Patras Medical School-University Hospital, Patras, Greece
| | - Daniil Anastasopoulos
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| | - Argiris Symeonidis
- Hematology Division, Department of Internal Medicine, University of Patras Medical School-University Hospital, Patras, Greece
| | - Panagiotis Katsoris
- Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
2
|
Bai Y, Zhou L, Zhang C, Guo M, Xia L, Tang Z, Liu Y, Deng S. Dual network analysis of transcriptome data for discovery of new therapeutic targets in non-small cell lung cancer. Oncogene 2023; 42:3605-3618. [PMID: 37864031 PMCID: PMC10691970 DOI: 10.1038/s41388-023-02866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023]
Abstract
The drug therapy for non-small cell lung cancer (NSCLC) have always been issues of poisonous side effect, acquired drug resistance and narrow applicable population. In this study, we built a novel network analysis method (difference- correlation- enrichment- causality- node), which was based on the difference analysis, Spearman correlation network analysis, biological function analysis and Bayesian causality network analysis to discover new therapeutic target of NSCLC in the sequencing data of BEAS-2B and 7 NSCLC cell lines. Our results showed that, as a proteasome subunit coding gene in the central of cell cycle network, PSMD2 was associated with prognosis and was an independent prognostic factor for NSCLC patients. Knockout of PSMD2 inhibited the proliferation of NSCLC cells by inducing cell cycle arrest, and exhibited marked increase of cell cycle blocking protein p21, p27 and decrease of cell cycle driven protein CDK4, CDK6, CCND1 and CCNE1. IPA and molecular docking suggested bortezomib has stronger affinity to PSMD2 compared with reported targets PSMB1 and PSMB5. In vitro and In vivo experiments demonstrated the inhibitory effect of bortezomib in NSCLC with different driven mutations or with tyrosine kinase inhibitors resistance. Taken together, bortezomib could target PSMD2, PSMB1 and PSMB5 to inhibit the proteasome degradation of cell cycle check points, to block cell proliferation of NSCLC, which was potential optional drug for NSCLC patients.
Collapse
Affiliation(s)
- Yuquan Bai
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Zhou
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuanfen Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minzhang Guo
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liang Xia
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenying Tang
- College of Computer Science, Sichuan University, Chengdu, 610041, China
| | - Yi Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Senyi Deng
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Hwang KW, Yun JW, Kim HS. Unveiling the Molecular Landscape of FOXA1 Mutant Prostate Cancer: Insights and Prospects for Targeted Therapeutic Strategies. Int J Mol Sci 2023; 24:15823. [PMID: 37958805 PMCID: PMC10650174 DOI: 10.3390/ijms242115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Prostate cancer continues to pose a global health challenge as one of the most prevalent malignancies. Mutations of the Forkhead box A1 (FOXA1) gene have been linked to unique oncogenic features in prostate cancer. In this study, we aimed to unravel the intricate molecular characteristics of FOXA1 mutant prostate cancer through comprehensive in silico analysis of transcriptomic data from The Cancer Genome Atlas (TCGA). A comparison between FOXA1 mutant and control groups unearthed 1525 differentially expressed genes (DEGs), which map to eight intrinsic and six extrinsic signaling pathways. Interestingly, the majority of intrinsic pathways, but not extrinsic pathways, were validated using RNA-seq data of 22Rv1 cells from the GEO123619 dataset, suggesting complex biology in the tumor microenvironment. As a result of our in silico research, we identified novel therapeutic targets and potential drug candidates for FOXA1 mutant prostate cancer. KDM1A, MAOA, PDGFB, and HSP90AB1 emerged as druggable candidate targets, as we found that they have approved drugs throughout the drug database CADDIE. Notably, as most of the approved drugs targeting MAOA and KDM1A were monoamine inhibitors used for mental illness or diabetes, we suggest they have a potential to cure FOXA1 mutant primary prostate cancer without lethal side effects.
Collapse
Affiliation(s)
- Kyung Won Hwang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jae Won Yun
- Veterans Health Service Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea;
| | - Hong Sook Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
4
|
Feng D, Zhu W, Shi X, Wei W, Han P, Wei Q, Yang L. Leucine zipper protein 2 serves as a prognostic biomarker for prostate cancer correlating with immune infiltration and epigenetic regulation. Heliyon 2022; 8:e10750. [PMID: 36217461 PMCID: PMC9547219 DOI: 10.1016/j.heliyon.2022.e10750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
Background We sought to determine whether leucine zipper protein 2 (LUZP2) could benefit men with prostate cancer (PCa) undergoing radical radiotherapy (RT) or prostatectomy (RP). Methods Analysis was done on differentiating expression, clinical prognosis, co-expressed genes, immune infiltration, and epigenetic changes. All of our analyses were done using the R software (version 3.6.3) and the appropriate packages. Results In terms of PCa, tumor samples expressed LUZP2 more than normal samples did. In the TCGA database and GSE116918, we found that LUZP2 was the only independent risk factor for PCa. The shared enriched pathways for patients undergoing RP or RT were cell-cell adhesion, regulation of filopodium assembly, and extracellular matrix containing collagen. With the exception of TNFRSF14, we discovered that LUZP2 was negatively correlated with 21 immune checkpoints in PCa patients receiving RT. We found a significant inverse relationship between LUZP2 expression and the tumor immune environment, which included B cells, CD4+ T cells, neutrophils, macrophages, dendritic cells, stromal score, immune score, and estimate score, in patients receiving RP or RT. Additionally, tumor purity was positively correlated with LUZP2. We found that the drug bortezomib may be susceptible to the LUZP2. DNA methylation was significantly associated with the mRNA expression of LUZP2 in PCa patients from the TCGA database, and LUZP2 methylation was positively correlated with immune cells. The proliferative activity of various PCa cells, which correlated to different stages of this disease, was also found to be significantly reduced by LUZP2 reduction, according to the results of our experimental work. Conclusions We proposed a relatively comprehensive understanding of the roles of LUZP2 on PCa from the fresh perspective of senescence.
Collapse
|
5
|
Lin W, Wu L, Zhang Y, Wen Y, Yan B, Dai C, Liu K, He S, Bo X. An enhanced cascade-based deep forest model for drug combination prediction. Brief Bioinform 2022; 23:6513435. [DOI: 10.1093/bib/bbab562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/20/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Abstract
Combination therapy has shown an obvious curative effect on complex diseases, whereas the search space of drug combinations is too large to be validated experimentally even with high-throughput screens. With the increase of the number of drugs, artificial intelligence techniques, especially machine learning methods, have become applicable for the discovery of synergistic drug combinations to significantly reduce the experimental workload. In this study, in order to predict novel synergistic drug combinations in various cancer cell lines, the cell line-specific drug-induced gene expression profile (GP) is added as a new feature type to capture the cellular response of drugs and reveal the biological mechanism of synergistic effect. Then, an enhanced cascade-based deep forest regressor (EC-DFR) is innovatively presented to apply the new small-scale drug combination dataset involving chemical, physical and biological (GP) properties of drugs and cells. Verified by the dataset, EC-DFR outperforms two state-of-the-art deep neural network-based methods and several advanced classical machine learning algorithms. Biological experimental validation performed subsequently on a set of previously untested drug combinations further confirms the performance of EC-DFR. What is more prominent is that EC-DFR can distinguish the most important features, making it more interpretable. By evaluating the contribution of each feature type, GP feature contributes 82.40%, showing the cellular responses of drugs may play crucial roles in synergism prediction. The analysis based on the top contributing genes in GP further demonstrates some potential relationships between the transcriptomic levels of key genes under drug regulation and the synergism of drug combinations.
Collapse
|
6
|
Wang T, Zhang P, Chen L, Qi H, Chen H, Zhu Y, Zhang L, Zhong M, Shi X, Li Q. Ixazomib induces apoptosis and suppresses proliferation in esophageal squamous cell carcinoma through activation of the c-Myc/NOXA pathway. J Pharmacol Exp Ther 2021; 380:15-25. [PMID: 34740946 DOI: 10.1124/jpet.121.000837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the major subtypes of esophageal cancer. More than half of the ESCC patients in the world are in China, and the 5-year survival rate is less than 10%. As a new oral proteasome inhibitor, ixazomib has shown strong therapeutic effect in many solid tumors. In this study, we aimed to investigate the effects of ixazomib on the proliferation inhibition and apoptosis of ESCC cells.We used four human ESCC cell lines, cell viability assay, cell cycle and apoptosis assay, RT-PCR, Western blot, immunohistochemistry and ESCC xenografts model to clarify the roles of the therapeutic effect and mechanism of ixazomib in ESCC. Ixazomib significantly inhibited the proliferation and induced apoptosis in ESCC cells. RT-PCR results showed that the expression of endoplasmic reticulum stress-related gene NOXA and c-Myc significant increase after treatment with ixazomib in ESCC cell. Then we knockdown the NOXA and c-Myc by siRNA, the therapeutic effect of ixazomib markedly decrease, which confirmed that c-Myc/NOXA pathway played a key role in the treatment of ESCC with ixazomib. In vivo, the xenograft ESCC model mice were given 10 mg/kg of ixazomib every other day for 30 days. The results showed that the tumor size in the treatment group was significantly smaller than the control group. These results suggested that ixazomib is known to suppress proliferation and induce apoptosis in an ESCC cell lines, and this effect was likely mediated by increased activation of the c-Myc/NOXA signaling pathways. Significance Statement Esophageal squamous cell carcinoma (ESCC) is the common worldwide malignant tumors,but conventional chemotherapeutics suffer from a number of limitations. In this study, our results suggested that ixazomib is known to suppress proliferation and induce apoptosis in an ESCC cell lines. Therefore, ixazomib may be a potential new stratgegy for ESCC therapy.
Collapse
|
7
|
Korani M, Nikoofal-Sahlabadi S, Nikpoor AR, Ghaffari S, Attar H, Mashreghi M, Jaafari MR. The Effect of Phase Transition Temperature on Therapeutic Efficacy of Liposomal Bortezomib. Anticancer Agents Med Chem 2021; 20:700-708. [PMID: 31893998 DOI: 10.2174/1871520620666200101150640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
AIMS Here, three liposomal formulations of DPPC/DPPG/Chol/DSPE-mPEG2000 (F1), DPPC/DPPG/Chol (F2) and HSPC/DPPG/Chol/DSPE-mPEG2000 (F3) encapsulating BTZ were prepared and characterized in terms of their size, surface charge, drug loading, and release profile. Mannitol was used as a trapping agent to entrap the BTZ inside the liposomal core. The cytotoxicity and anti-tumor activity of formulations were investigated in vitro and in vivo in mice bearing tumor. BACKGROUND Bortezomib (BTZ) is an FDA approved proteasome inhibitor for the treatment of mantle cell lymphoma and multiple myeloma. The low solubility of BTZ has been responsible for the several side effects and low therapeutic efficacy of the drug. Encapsulating BTZ in a nano drug delivery system; helps overcome such issues. Among NDDSs, liposomes are promising diagnostic and therapeutic delivery vehicles in cancer treatment. OBJECTIVE Evaluating anti-tumor activity of bortezomib liposomal formulations. METHODS Data prompted us to design and develop three different liposomal formulations of BTZ based on Tm parameter, which determines liposomal stiffness. DPPC (Tm 41°C) and HSPC (Tm 55°C) lipids were chosen as variables associated with liposome rigidity. In vitro cytotoxicity assay was then carried out for the three designed liposomal formulations on C26 and B16F0, which are the colon and melanoma cancer mouse-cell lines, respectively. NIH 3T3 mouse embryonic fibroblast cell line was also used as a normal cell line. The therapeutic efficacy of these formulations was further assessed in mice tumor models. RESULT MBTZ were successfully encapsulated into all the three liposomal formulations with a high entrapment efficacy of 60, 64, and 84% for F1, F2, and F3, respectively. The findings showed that liposomes mean particle diameter ranged from 103.4 to 146.8nm. In vitro cytotoxicity studies showed that liposomal-BTZ formulations had higher IC50 value in comparison to free BTZ. F2-liposomes with DPPC, having lower Tm of 41°C, showed much higher anti-tumor efficacy in mice models of C26 and B16F0 tumors compared to F3-HSPC liposomes with a Tm of 55°C. F2 formulation also enhanced mice survival compared with untreated groups, either in BALB/c or in C57BL/6 mice. CONCLUSION Our findings indicated that F2-DPPC-liposomal formulations prepared with Tm close to body temperature seem to be effective in reducing the side effects and increasing the therapeutic efficacy of BTZ and merits further investigation.
Collapse
Affiliation(s)
- Mitra Korani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Nikoofal-Sahlabadi
- Department of Pharmaceutics, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amin R Nikpoor
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.,Immunogenetic and Cell Culture Department, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Solmaz Ghaffari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Attar
- Chemical Engineering Department, Engineering and Technology Faculty, Sciences and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud R Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
|
9
|
PSMA5 promotes the tumorigenic process of prostate cancer and is related to bortezomib resistance. Anticancer Drugs 2020; 30:e0773. [PMID: 30807553 DOI: 10.1097/cad.0000000000000773] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteasome α5 subunit (PSMA5) is related to poor prognosis in various cancers. The first therapeutic proteasome inhibitor, bortezomib, induces apoptosis, suppressing cell growth in many tumor types. However, the effects of PSMA5 and bortezomib in prostate cancer (PCa) are still unknown. In this study, we investigated whether PSMA5 is associated with the tumorigenic progression and the interaction of PSMA5 with bortezomib in PCa. We knocked down PSMA5 with siRNA and studied the changes in cell viability and motility with Cell Counting Kit-8, quantitative PCR, fluorescence-activated cell sorting, scratch, and invasion assays. We also investigated the effect of PSMA5 in PCa cells treated with bortezomib and in those that are resistant to bortezomib. We found that silencing PSMA5 inhibited cell proliferation, induced apoptosis, restricted cell migration and invasion, and demonstrated a coordinated effect with bortezomib. Cells resistant to bortezomib gained sensitivity to bortezomib after PSMA5 was knocked down. Our results show, for the first time, that PSMA5 promotes the tumorigenic process of PCa and is linked to bortezomib resistance.
Collapse
|
10
|
Okubo K, Isono M, Miyai K, Asano T, Sato A. Fluvastatin potentiates anticancer activity of vorinostat in renal cancer cells. Cancer Sci 2019; 111:112-126. [PMID: 31675763 PMCID: PMC6942444 DOI: 10.1111/cas.14225] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Drug repositioning is an emerging approach to developing novel cancer treatments. Vorinostat is a histone deacetylase inhibitor approved for cancer treatment, but it could attenuate its anticancer activity by activating the mTOR pathway. The HMG‐CoA reductase inhibitor fluvastatin reportedly activates the mTOR inhibitor AMP‐activated protein kinase (AMPK), and we thought that it would potentiate vorinostat's anticancer activity in renal cancer cells. The combination of vorinostat and fluvastatin induced robust apoptosis and inhibited renal cancer growth effectively both in vitro and in vivo. Vorinostat activated the mTOR pathway, as evidenced by the phosphorylation of ribosomal protein S6, and fluvastatin inhibited this phosphorylation by activating AMPK. Fluvastatin also enhanced vorinostat‐induced histone acetylation. Furthermore, the combination induced endoplasmic reticulum (ER) stress that was accompanied by aggresome formation. We also found that there was a positive feedback cycle among AMPK activation, histone acetylation, and ER stress induction. This is the first study to report the beneficial combined effect of vorinostat and fluvastatin in cancer cells.
Collapse
Affiliation(s)
- Kazuki Okubo
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Makoto Isono
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Kosuke Miyai
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Japan
| | - Takako Asano
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Akinori Sato
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
11
|
Okubo K, Isono M, Asano T, Sato A. Metformin Augments Panobinostat's Anti-Bladder Cancer Activity by Activating AMP-Activated Protein Kinase. Transl Oncol 2019; 12:669-682. [PMID: 30849634 PMCID: PMC6402380 DOI: 10.1016/j.tranon.2019.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/09/2023] Open
Abstract
Panobinostat, a histone deacetylase inhibitor, induces histone acetylation and acts against cancer but attenuates its anticancer activity by activating the mammalian target of rapamycin (mTOR) pathway. AMP-activated protein kinase (AMPK) is a cellular energy sensor that reportedly inhibits the mTOR pathway. The antidiabetic drug metformin is also a potent AMPK activator and we investigated whether it augmented panobinostat's antineoplastic activity in bladder cancer cells (UMUC3, J82, T24 and MBT-2). Metformin enhanced panobinostat-induced apoptosis and the combination inhibited the growth of bladder cancer cells cooperatively in vitro and in vivo. As expected, metformin increased the phosphorylation of AMPK and decreased the panobinostat-caused phosphorylation of S6 ribosomal protein, thus inhibiting the panobinostat-activated mTOR pathway. The AMPK activation was shown to play a pivotal role in the combination's action because the AMPK inhibitor compound C attenuated the combination's anticancer activity. Furthermore, the AMPK activation by metformin enhanced panobinostat-induced histone and non-histone acetylation. This acetylation was especially remarkable in the proteins in the detergent-insoluble fraction, which would be expected if the combination also induced endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Kazuki Okubo
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Makoto Isono
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Takako Asano
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Akinori Sato
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| |
Collapse
|
12
|
Baumann B, Acosta AM, Richards Z, Deaton R, Sapatynska A, Murphy A, Kajdacsy-Balla A, Gann PH, Nonn L. Association of High miR-182 Levels with Low-Risk Prostate Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:911-923. [PMID: 30703341 PMCID: PMC6446228 DOI: 10.1016/j.ajpath.2018.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
A subset of men with prostate cancer develops aggressive disease. We sought to determine whether miR-182, an miRNA with reported oncogenic functions in the prostate, is associated with biochemical recurrence and aggressive disease. Prostate epithelial miR-182 expression was quantified via in situ hybridization of two prostate tissue microarrays and by laser-capture microdissection of prostate epithelium. miR-182 was significantly higher in cancer epithelium than adjacent benign epithelium (P < 0.0001). The ratio of cancer to benign miR-182 expression per patient was inversely associated with recurrence in a multivariate logistic regression model (odds ratio = 0.18; 95% CI, 0.03–0.89; P = 0.044). Correlation of miR-182 with mRNA expression in laser-capture microdissected benign prostate epithelium was used to predict prostatic miR-182 targets. Genes that were negatively correlated with miR-182 were enriched for its predicted targets and for genes previously identified as up-regulated in prostate cancer metastases. miR-182 expression was also negatively correlated with genes previously identified as up-regulated in primary prostate tumors from African American patients, who are at an increased risk of developing aggressive prostate cancer. Taken together, these results suggest that although miR-182 is expressed at higher levels in localized prostate cancer, its levels are lower in aggressive cancers, suggesting a biphasic role for this miRNA that may be exploited for prognostic and/or therapeutic purposes to reduce prostate cancer progression.
Collapse
Affiliation(s)
- Bethany Baumann
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago
| | - Andrés M Acosta
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago
| | - Zachary Richards
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago
| | - Ryan Deaton
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago
| | - Anastasiya Sapatynska
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago
| | - Adam Murphy
- Department of Urology, Feinberg College of Medicine, Northwestern University, Chicago, Illinois
| | - Andre Kajdacsy-Balla
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago
| | - Peter H Gann
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago
| | - Larisa Nonn
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago.
| |
Collapse
|
13
|
Pratheeshkumar P, Siraj AK, Divya SP, Parvathareddy SK, Begum R, Melosantos R, Al-Sobhi SS, Al-Dawish M, Al-Dayel F, Al-Kuraya KS. Downregulation of SKP2 in Papillary Thyroid Cancer Acts Synergistically With TRAIL on Inducing Apoptosis via ROS. J Clin Endocrinol Metab 2018; 103:1530-1544. [PMID: 29300929 DOI: 10.1210/jc.2017-02178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/21/2017] [Indexed: 02/09/2023]
Abstract
CONTEXT AND OBJECTIVE S-phase kinase protein 2 (SKP2) is an F-box protein with proteasomal properties and has been found to be overexpressed in a variety of cancers. However, its role in papillary thyroid cancer (PTC) has not been fully elucidated. EXPERIMENTAL DESIGN SKP2 expression was assessed by immunohistochemistry in a tissue microarray format on a cohort of >1000 PTC samples. In vitro and in vivo studies were performed using proteasome inhibitor bortezomib and proapoptopic death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) either alone or in combination on PTC cell lines. RESULTS SKP2 was overexpressed in 45.5% of PTC cases and was significantly associated with extrathyroidal extension (P = 0.0451), distant metastasis (P = 0.0435), and tall cell variant (P = 0.0271). SKP2 overexpression was also directly associated with X-linked inhibitor of apoptosis protein overexpression (P < 0.0001) and Bcl-xL overexpression (P = 0.0005) and inversely associated with death receptor 5 (P < 0.0001). The cotreatment of bortezomib and TRAIL synergistically induced apoptosis via mitochondrial apoptotic pathway in PTC cell lines. Furthermore, bortezomib and TRAIL synergistically induced reactive oxygen species (ROS) generation and caused death receptor 5 upregulation through activation of the extracellular signal-regulated kinase-C/EBP homologous protein signaling cascade. Finally, bortezomib treatment augmented the TRAIL-mediated anticancer effect on PTC xenograft tumor growth in nude mice. CONCLUSION These data suggest that SKP2 is a potential therapeutic target in PTC and that a combination of bortezomib and TRAIL might be a viable therapeutic option for the treatment of patients with aggressive PTC.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Abdul K Siraj
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sasidharan Padmaja Divya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | - Rafia Begum
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Roxanne Melosantos
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Saif S Al-Sobhi
- Department of Surgery, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Mohammed Al-Dawish
- Department of Diabetes and Endocrinology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Fouad Al-Dayel
- Department of Pathology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khawla S Al-Kuraya
- Human Cancer Genomic Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Gao M, Chen G, Wang H, Xie B, Hu L, Kong Y, Yang G, Tao Y, Han Y, Wu X, Zhang Y, Dai B, Shi J. Therapeutic potential and functional interaction of carfilzomib and vorinostat in T-cell leukemia/lymphoma. Oncotarget 2018; 7:29102-15. [PMID: 27074555 PMCID: PMC5045381 DOI: 10.18632/oncotarget.8667] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/28/2016] [Indexed: 11/25/2022] Open
Abstract
We previously showed that the proteasome inhibitor carfilzomib and the histone deacetylase inhibitor (HDACI) vorinostat cooperated to induce cell apoptosis in one T-cell leukemia cell line in vitro, implying the possibility of the combination treatment of carfilzomib and vorinostat as a potential therapeutic strategy in human T-cell leukemia/lymphoma. Here we report that combination treatment of carfilzomib and vorinostat enhanced cell apoptosis and induced a marked increase in G2-M arrest, reactive oxygen species (ROS) generation, and activated the members of mitogen-activated protein kinases (MAPK) family, including the stress-activated kinases JNK, p38MAPK, and ERK1/2. Carfilzomib/vorinostat-mediated apoptosis was blocked by the ROS scavenger N-acetylcysteine (NAC). The JNK inhibitor SP600125 and the p38MAPK inhibitor SB203580 but not the MEK1/2 inhibitor U0126 significantly attenuated carfilzomib/vorinostat-induced apoptosis, suggesting that p38MAPK and JNK activation contribute to carfilzomib and vorinostat-induced apoptosis. This was further confirmed via short hairpin (shRNA) RNA knockdown of p38MAPK and JNK. Interestingly, the ROS scavenger NAC attenuated carfilzomib/vorinostat-mediated activation of p38MAPK and JNK. However, p38MAPK shRNA but not JNK shRNA diminished carfilzomib/vorinostat-mediated ROS generation. In contrast, overexpression of p38MAPK significantly increased carfilzomib/vorinostat-mediated ROS generation, suggesting that an amplification loop exists between ROS and p38MAPK pathway. Combination treatment of carfilzomib and vorinostat enhanced their individual antitumor activity in both a human xenograft model as well as human primary T-cell leukemia/lymphoma cells. These data suggest the potential clinical benefit and underlying molecular mechanism of combining carfilzomib with vorinostat in the treatment of human T-cell leukemia/lymphoma.
Collapse
Affiliation(s)
- Minjie Gao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gege Chen
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Houcai Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingqian Xie
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liangning Hu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanyuan Kong
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guang Yang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Tao
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ying Han
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiwen Zhang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bojie Dai
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,College of Life Science and Technology, Tongji University, Shanghai, China
| | - Jumei Shi
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Sato A, Asano T, Okubo K, Isono M, Asano T. Nelfinavir and Ritonavir Kill Bladder Cancer Cells Synergistically by Inducing Endoplasmic Reticulum Stress. Oncol Res 2017; 26:323-332. [PMID: 28560953 PMCID: PMC7844765 DOI: 10.3727/096504017x14957929842972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The human immunodeficiency virus (HIV) protease inhibitor nelfinavir acts against malignancies by inducing endoplasmic reticulum (ER) stress. The HIV protease inhibitor ritonavir, on the other hand, not only induces ER stress but also inhibits P-glycoprotein's pump activity and thereby enhances the effects of its substrate drugs. We therefore postulated that ritonavir in combination with nelfinavir would kill bladder cancer cells effectively by inducing ER stress cooperatively and also enhancing nelfinavir's effect. Nelfinavir was shown to be a P-glycoprotein substrate, and the combination of nelfinavir and ritonavir inhibited bladder cancer cell growth synergistically. It also suppressed colony formation significantly. The combination significantly increased the number of cells in the sub-G1 fraction and also the number of annexin V+ cells, confirming robust apoptosis induction. The combination induced ER stress synergistically, as evidenced by the increased expression of glucose-regulated protein 78, ER-resident protein 44, and endoplasmic oxidoreductin-1-like protein. It also increased the expression of the mammalian target of rapamycin (mTOR) inhibitor AMP-activated protein kinase and caused dephosphorylation of S6 ribosomal protein, demonstrating that the combination also inhibited the mTOR pathway. We also found that the combination enhanced histone acetylation synergistically by decreasing the expression of HDACs 1, 3, and 6.
Collapse
Affiliation(s)
- Akinori Sato
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takako Asano
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuki Okubo
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Makoto Isono
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tomohiko Asano
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
16
|
Sato A, Asano T, Okubo K, Isono M, Asano T. Ritonavir and ixazomib kill bladder cancer cells by causing ubiquitinated protein accumulation. Cancer Sci 2017; 108:1194-1202. [PMID: 28342223 PMCID: PMC5480085 DOI: 10.1111/cas.13242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/28/2017] [Accepted: 03/14/2017] [Indexed: 12/13/2022] Open
Abstract
There is no curative treatment for advanced bladder cancer. Causing ubiquitinated protein accumulation and endoplasmic reticulum stress is a novel approach to cancer treatment. The HIV protease inhibitor ritonavir has been reported to suppress heat shock protein 90 and increase the amount of unfolded proteins in the cell. If the proteasome functions normally, however, they are rapidly degraded. We postulated that the novel proteasome inhibitor ixazomib combined with ritonavir would kill bladder cancer cells effectively by inhibiting degradation of these unfolded proteins and thereby causing ubiquitinated proteins to accumulate. The combination of ritonavir and ixazomib induced drastic apoptosis and inhibited the growth of bladder cancer cells synergistically. The combination decreased the expression of cyclin D1 and cyclin‐dependent kinase 4, and increased the sub‐G1 fraction significantly. Mechanistically, the combination caused ubiquitinated protein accumulation and endoplasmic reticulum stress. The combination‐induced apoptosis was markedly attenuated by the protein synthesis inhibitor cycloheximide, suggesting that the accumulation of ubiquitinated proteins played an important role in the combination's antineoplastic activity. Furthermore, the combination induced histone acetylation cooperatively and the decreased expression of histone deacetylases was thought to be one mechanism of this histone acetylation. The present study provides a theoretical basis for future development of novel ubiquitinated‐protein‐accumulation‐based therapies effective against bladder cancer.
Collapse
Affiliation(s)
- Akinori Sato
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Takako Asano
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Kazuki Okubo
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Makoto Isono
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| | - Tomohiko Asano
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
17
|
Rosati R, Chen B, Patki M, McFall T, Ou S, Heath E, Ratnam M, Qin Z. Hybrid Enzalutamide Derivatives with Histone Deacetylase Inhibitor Activity Decrease Heat Shock Protein 90 and Androgen Receptor Levels and Inhibit Viability in Enzalutamide-Resistant C4-2 Prostate Cancer Cells. Mol Pharmacol 2016; 90:225-37. [PMID: 27382012 DOI: 10.1124/mol.116.103416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/30/2016] [Indexed: 11/22/2022] Open
Abstract
Histone deacetylase inhibitors (HDACIs) can disrupt the viability of prostate cancer (PCa) cells through modulation of the cytosolic androgen receptor (AR) chaperone protein heat shock protein 90 (HSP90). However, toxicities associated with their pleiotropic effects could contribute to the ineffectiveness of HDACIs in PCa treatment. We designed hybrid molecules containing partial chemical scaffolds of enzalutamide and suberoylanilide hydroxamic acid (SAHA), with weakened intrinsic pan-HDACI activities, to target HSP90 and AR in enzalutamide-resistant PCa cells. The potency of the new molecules, compounds 2-75 [4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-thioxoimidazolidin-1-yl)-2-fluoro-N-(7-(hydroxyamino)-7-oxoheptyl)benzamide] and 1005 [(E)-3-(4-(3-(4-cyano-3-(trifluoromethyl)phenyl)-5,5-dimethyl-4-oxo-2-thioxoimidazolidin-1-yl)-2-fluorophenyl)-N-hydroxyacrylamide], as inhibitors of nuclear and cytosolic histone deacetylases was substantially lower than that of SAHA in cell-free and in situ assays. Compounds 2-75 and 1005 antagonized gene activation by androgen without inducing chromatin association of AR. Enzalutamide had no effect on the levels of AR or HSP90, whereas the hybrid compounds induced degradation of both AR and HSP90, similar to (compound 1005) or more potently than (compound 2-75) SAHA. Similar to SAHA, compounds 2-75 and 1005 decreased the level of HSP90 and induced acetylation in a predicted approximately 55 kDa HSP90 fragment. Compared with SAHA, compound 2-75 induced greater hyperacetylation of the HDAC6 substrate α-tubulin. In contrast with SAHA, neither hybrid molecule caused substantial hyperacetylation of histones H3 and H4. Compounds 2-75 and 1005 induced p21 and caused loss of viability in the enzalutamide-resistant C4-2 cells, with efficacies that were comparable to or better than SAHA. The results suggest the potential of the new compounds as prototype antitumor drugs that would downregulate HSP90 and AR in enzalutamide-resistant PCa cells with weakened effects on nuclear HDACI targets.
Collapse
Affiliation(s)
- Rayna Rosati
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Bailing Chen
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Mugdha Patki
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Thomas McFall
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Siyu Ou
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Elisabeth Heath
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Manohar Ratnam
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| | - Zhihui Qin
- Barbara Ann Karmanos Cancer Institute, Departments of Oncology (R.R., M.P., T.M., E.H., M.R.) and Pharmaceutical Sciences (B.C., S.O., Z.Q.), Wayne State University, Detroit, Michigan
| |
Collapse
|
18
|
Theodoraki MA, Rezende CO, Chantarasriwong O, Corben AD, Theodorakis EA, Alpaugh ML. Spontaneously-forming spheroids as an in vitro cancer cell model for anticancer drug screening. Oncotarget 2016; 6:21255-67. [PMID: 26101913 PMCID: PMC4673263 DOI: 10.18632/oncotarget.4013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/08/2015] [Indexed: 12/12/2022] Open
Abstract
The limited translational value in clinic of analyses performed on 2-D cell cultures has prompted a shift toward the generation of 3-dimensional (3-D) multicellular systems. Here we present a spontaneously-forming in vitro cancer spheroid model, referred to as spheroidsMARY-X, that precisely reflects the pathophysiological features commonly found in tumor tissues and the lymphovascular embolus. In addition, we have developed a rapid, inexpensive means to evaluate response following drug treatment where spheroid dissolution indices from brightfield image analyses are used to construct dose-response curves resulting in relevant IC50 values. Using the spheroidsMARY-X model, we demonstrate the unique ability of a new class of molecules, containing the caged Garcinia xanthone (CGX) motif, to induce spheroidal dissolution and apoptosis at IC50 values of 0.42 +/−0.02 μM for gambogic acid and 0.66 +/−0.02 μM for MAD28. On the other hand, treatment of spheroidsMARY-X with various currently approved chemotherapeutics of solid and blood-borne cancer types failed to induce any response as indicated by high dissolution indices and subsequent poor IC50 values, such as 7.8 +/−3.1 μM for paclitaxel. Our studies highlight the significance of the spheroidsMARY-X model in drug screening and underscore the potential of the CGX motif as a promising anticancer pharmacophore.
Collapse
Affiliation(s)
| | - Celso O Rezende
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA, USA
| | - Oraphin Chantarasriwong
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA, USA.,Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Adriana D Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emmanuel A Theodorakis
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA, USA
| | - Mary L Alpaugh
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA, USA.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
19
|
Aras B, Yerlikaya A. Bortezomib and etoposide combinations exert synergistic effects on the human prostate cancer cell line PC-3. Oncol Lett 2016; 11:3179-3184. [PMID: 27123085 DOI: 10.3892/ol.2016.4340] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 02/16/2016] [Indexed: 12/24/2022] Open
Abstract
Novel treatment modalities are urgently required for androgen-independent prostate cancer. In order to develop an alternative treatment for prostate cancer, the cytotoxic effects of the 26S proteasome inhibitor bortezomib, either alone or in combination with the two commonly used chemotherapeutic agents irinotecan and etoposide, on the human prostate cancer cell line PC-3 were evaluated in the present study. The PC-3 cell line was maintained in Dulbecco's modified Eagle's medium with 10% fetal bovine serum and treated with various doses of bortezomib, irinotecan, etoposide or their combinations. The growth inhibitory and cytotoxic effects were determined by water-soluble tetrazolium (WST)-1 assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay or iCELLigence system. The combination index values were determined by the Chou-Talalay method. The half maximal inhibitory concentration (IC50) value of bortezomib on the PC-3 cell line was determined to be 53.4 nM by WST-1 assay, whereas the IC50 values of irinotecan and etoposide were determined to be 2.1 and 26.5 µM, respectively. These results suggest that the 26S proteasome inhibitor bortezomib is more potent, compared with irinotecan and etoposide, in the androgen-insensitive and tumor protein p53-null cell line PC-3. The combined effects of bortezomib+irinotecan and bortezomib+etoposide were also tested on PC-3 cells. The effect of bortezomib+irinotecan combination was not significantly different than that produced by either monotherapy, according to the results of iCELLigence system and MTT assay. However, 40 nM bortezomib+5 µM etoposide or 40 nM bortezomib+20 µM etoposide combinations were observed to be more effective than each drug tested alone. The results of the current study suggest that bortezomib and etoposide combination may be additionally evaluated in clinical trials for the treatment of hormone-refractory prostate cancer.
Collapse
Affiliation(s)
- Bekir Aras
- Department of Urology, Faculty of Medicine, Dumlupınar University, Kütahya 43100, Turkey
| | - Azmi Yerlikaya
- Department of Medical Biology, Faculty of Medicine, Dumlupınar University, Kütahya 43100, Turkey
| |
Collapse
|
20
|
Yang S, Zhang J, Zhang Y, Wan X, Zhang C, Huang X, Huang W, Pu H, Pei C, Wu H, Huang Y, Huang S, Li Y. KDM1A triggers androgen-induced miRNA transcription via H3K4me2 demethylation and DNA oxidation. Prostate 2015; 75:936-46. [PMID: 25728837 DOI: 10.1002/pros.22977] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 01/13/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Androgen receptor (AR) is a ligand dependent transcription factor that regulates the transcription of target genes. AR activity is closely involved in the maintenance and progression of prostate cancer. After the binding with androgen, AR moves into nucleus and binds to DNA sequence containing androgen response elements (ARE). Flavin-dependent monoamine oxidase KDM1A is necessary for AR driven transcription while the mechanism remains unclear. METHODS The association between androgen-dependent transcription and oxidation was tested through pharmaceutical inhibitions and siRNA knockdown of DNA oxidation repair components in prostate cancer cells. The recruitment of involved proteins and the histone methylation dynamics on ARE region was explored by chromatin immunoprecipitation (ChIP). RESULTS Oxidation inhibition reduced AR dependent expression of KLK3, TMPRSS2, hsa-miR-125b2, and hsa-miR-133b. And such reduction could be restored by H2 O2 treatment. KDM1A recruitment and H3K4me2 demethylation on ARE regions, which produce H2 O2 , are associated with AR targets transcription. AR targets transcription and coupled oxidation recruit 8-oxoguanine-DNA glycosylase (OGG1) and the nuclease APEX1 to ARE regions. Such recruitment depends on KDM1A, and is necessary for AR targets transcription. CONCLUSION Our work underlined the importance of histone demethylation and DNA oxidation/repairing machinery in androgen-dependent transcription. The present finds have implications for research into new druggable targets for prostate cancer relying on the cascade of AR activity regulation.
Collapse
MESH Headings
- Acetylcysteine/pharmacology
- Cell Line, Tumor
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Histone Demethylases/antagonists & inhibitors
- Histone Demethylases/genetics
- Histone Demethylases/metabolism
- Histones/genetics
- Histones/metabolism
- Humans
- Kallikreins/genetics
- Kallikreins/metabolism
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Oxidation-Reduction
- Pargyline/pharmacology
- Prostate-Specific Antigen/genetics
- Prostate-Specific Antigen/metabolism
- Prostatic Neoplasms/enzymology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- RNA/chemistry
- RNA/genetics
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Shu Yang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University, Shanghai, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Re: Ion Channel TRPM8 Promotes Hypoxic Growth of Prostate Cancer Cells via an O2-Independent and RACK1-Mediated Mechanism of HIF-1α Stabilization. J Urol 2015; 194:260. [PMID: 26088253 DOI: 10.1016/j.juro.2015.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Sato A. The human immunodeficiency virus protease inhibitor ritonavir is potentially active against urological malignancies. Onco Targets Ther 2015; 8:761-8. [PMID: 25914545 PMCID: PMC4399512 DOI: 10.2147/ott.s79776] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The human immunodeficiency virus protease inhibitor ritonavir has recently been shown to have antineoplastic activity, and its use in urological malignancies is under investigation with an eye toward drug repositioning. Ritonavir is thought to exert its antineoplastic activity by inhibiting multiple signaling pathways, including the Akt and nuclear factor-kappaB pathways. It can increase the amount of unfolded proteins in the cell by inhibiting both the proteasome and heat shock protein 90. Combinations of ritonavir with agents that increase the amount of unfolded proteins, such as proteasome inhibitors, histone deacetylase inhibitors, or heat shock protein 90 inhibitors, therefore, induce endoplasmic reticulum stress cooperatively and thereby kill cancer cells effectively. Ritonavir is also a potent cytochrome P450 3A4 and P-glycoprotein inhibitor, increasing the intracellular concentration of combined drugs by inhibiting their degradation and efflux from cancer cells and thereby enhancing their antineoplastic activity. Furthermore, riotnavir’s antineoplastic activity includes modulation of immune system activity. Therapies using ritonavir are thus an attractive new approach to cancer treatment and, due to their novel mechanisms of action, are expected to be effective against malignancies that are refractory to current treatment strategies. Further investigations using ritonavir are expected to find new uses for clinically available drugs in the treatment of urological malignancies as well as many other types of cancer.
Collapse
Affiliation(s)
- Akinori Sato
- Department of Urology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
23
|
Huang Z, Peng S, Knoff J, Lee SY, Yang B, Wu TC, Hung CF. Combination of proteasome and HDAC inhibitor enhances HPV16 E7-specific CD8+ T cell immune response and antitumor effects in a preclinical cervical cancer model. J Biomed Sci 2015; 22:7. [PMID: 25591912 PMCID: PMC4298946 DOI: 10.1186/s12929-014-0111-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 12/31/2014] [Indexed: 11/15/2022] Open
Abstract
Background Bortezomib, a proteasome inhibitor and suberoylanilide hydroxamic acid (SAHA, also known as Vorinostat), a histone deacetylase inhibitor, have been recognized as potent chemotherapeutic drugs. Bortezomib and SAHA are FDA-approved for the treatment of cutaneous T cell lymphoma and multiple myeloma/mantle cell lymphoma, respectively. Furthermore, the combination of the bortezomib and SAHA has been tested in a variety of preclinical models and in clinical trials and may be ideal for the treatment of cancer. However, it remains unclear how this treatment strategy affects the host immune response against tumors. Results Here, we used a well-defined E6/E7-expressing tumor model to examine how the immune system can be motivated to act against tumor cells expressing tumor antigens. We demonstrate that the combination of bortezomib and SAHA elicits potent antitumor effects in TC-1 tumor-bearing mice. Additionally, we are the first to show that treatment with bortezomib and SAHA leads to tumor-specific immunity by rendering tumor cells more susceptible to killing by antigen-specific CD8+ T cells than treatment with either drug alone. Conclusions The current study serves an important foundation for the future clinical application of both drugs for the treatment of cervical cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12929-014-0111-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhuomin Huang
- Department of Pathology, Johns Hopkins Medical Institutions, CRB II Room 307, 1550 Orleans Street, 21231, Baltimore, MD, USA. .,Department of Gynecology, Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China.
| | - Shiwen Peng
- Department of Pathology, Johns Hopkins Medical Institutions, CRB II Room 307, 1550 Orleans Street, 21231, Baltimore, MD, USA.
| | - Jayne Knoff
- Department of Pathology, Johns Hopkins Medical Institutions, CRB II Room 307, 1550 Orleans Street, 21231, Baltimore, MD, USA.
| | - Sung Yong Lee
- Department of Pathology, Johns Hopkins Medical Institutions, CRB II Room 307, 1550 Orleans Street, 21231, Baltimore, MD, USA. .,Department of Internal Medicine, Korea University Medical Center, Seoul, South Korea.
| | - Benjamin Yang
- Department of Pathology, Johns Hopkins Medical Institutions, CRB II Room 307, 1550 Orleans Street, 21231, Baltimore, MD, USA.
| | - Tzyy-Choou Wu
- Department of Pathology, Johns Hopkins Medical Institutions, CRB II Room 307, 1550 Orleans Street, 21231, Baltimore, MD, USA. .,Obstetrics and Gynecology, Johns Hopkins Medical Institutions, Baltimore, MD, USA. .,Molecular Microbiology and Immunology, Johns Hopkins Medical Institutions, Baltimore, MD, USA. .,Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins Medical Institutions, CRB II Room 307, 1550 Orleans Street, 21231, Baltimore, MD, USA.
| |
Collapse
|
24
|
Yang X, Shi Z, Zhang N, Ou Z, Fu S, Hu X, Shen Z. Suberoyl bis-hydroxamic acid enhances cytotoxicity induced by proteasome inhibitors in breast cancer cells. Cancer Cell Int 2014; 14:107. [PMID: 25729327 PMCID: PMC4342900 DOI: 10.1186/s12935-014-0107-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/14/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Suberoyl bis-hydroxamic acid (SBHA) is a histone deacetylase (HDAC) inhibitor and exerts anti-growth effects in several malignancies including breast cancer. Proteasome inhibitors such as Bortezomib and MG-132 constitute novel anticancer agents. In this study, we investigated the synergistic antitumour activity of SBHA in combination with proteasome inhibitors. METHODS MCF-7 and MDA-MB-231 breast cancer cells were treated with SBHA, Bortezomib, and MG-132 alone or in combination for 72 h. Cell proliferation, colony formation, apoptosis and gene expression changes were examined. RESULTS SBHA, Bortezomib, and MG-132 alone significantly inhibited the proliferation and colony formation and induced apoptosis in MCF-7 and MDA-MB-231 cells. Combined treatment showed a good synergistic antitumour effect against breast cancer cells. The p53 protein level was significantly elevated by combined treatment with SBHA and proteasome inhibitors. Moreover, combined treatment increased the expression of Bax, Bcl-xS, and Bak and decreased the expression of Bcl-2. Combination of SBHA with proteasome inhibitors causes synergistic anticancer effects on breast cancer cells. The potential molecular mechanism may involve induction of p53 and modulation of the Bcl-2 family proteins. CONCLUSION These findings warrant further investigation of the therapeutic benefits of combination of SBHA with proteasome inhibitors in breast cancer.
Collapse
Affiliation(s)
- Xinmiao Yang
- Department of Radiation Oncology, Shanghai Jiao Tong University affiliated Sixth People's Hospital, 600 Yi Shan Road, Xuhui District Shanghai, 200233 China
| | - Zeliang Shi
- Department of Radiation Oncology, Shanghai Jiao Tong University affiliated Sixth People's Hospital, 600 Yi Shan Road, Xuhui District Shanghai, 200233 China
| | - Ning Zhang
- Department of Medical Oncology, Minhang Branch of Fudan, University Shanghai Cancer Center, Shanghai, China
| | - Zhouluo Ou
- Department of Breast Surgery, Breast Cancer Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Shen Fu
- Department of Radiation Oncology, Shanghai Jiao Tong University affiliated Sixth People's Hospital, 600 Yi Shan Road, Xuhui District Shanghai, 200233 China
| | - Xichun Hu
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zhenzhou Shen
- Department of Breast Surgery, Breast Cancer Institute, Shanghai Cancer Center, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Sato A, Asano T, Isono M, Ito K, Asano T. Panobinostat synergizes with bortezomib to induce endoplasmic reticulum stress and ubiquitinated protein accumulation in renal cancer cells. BMC Urol 2014; 14:71. [PMID: 25176354 PMCID: PMC4153447 DOI: 10.1186/1471-2490-14-71] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/26/2014] [Indexed: 11/18/2022] Open
Abstract
Background Inducing endoplasmic reticulum (ER) stress is a novel strategy used to treat malignancies. Inhibition of histone deacetylase (HDAC) 6 by the HDAC inhibitor panobinostat hinders the refolding of unfolded proteins by increasing the acetylation of heat shock protein 90. We investigated whether combining panobinostat with the proteasome inhibitor bortezomib would kill cancer cells effectively by inhibiting the degradation of these unfolded proteins, thereby causing ubiquitinated proteins to accumulate and induce ER stress. Methods Caki-1, ACHN, and 769-P cells were treated with panobinostat and/or bortezomib. Cell viability, clonogenicity, and induction of apoptosis were evaluated. The in vivo efficacy of the combination was evaluated using a murine subcutaneous xenograft model. The combination-induced ER stress and ubiquitinated protein accumulation were assessed. Results The combination of panobinostat and bortezomib induced apoptosis and inhibited renal cancer growth synergistically (combination indexes <1). It also suppressed colony formation significantly (p <0.05). In a murine subcutaneous tumor model, a 10-day treatment was well tolerated and inhibited tumor growth significantly (p <0.05). Enhanced acetylation of the HDAC6 substrate alpha-tubulin was consistent with the suppression of HDAC6 activity by panobinostat, and the combination was shown to induce ER stress and ubiquitinated protein accumulation synergistically. Conclusions Panobinostat inhibits renal cancer growth by synergizing with bortezomib to induce ER stress and ubiquitinated protein accumulation. The current study provides a basis for testing the combination in patients with advanced renal cancer.
Collapse
Affiliation(s)
- Akinori Sato
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| | | | | | | | | |
Collapse
|
26
|
Shen P, Sun J, Xu G, Zhang L, Yang Z, Xia S, Wang Y, Liu Y, Shi G. KLF9, a transcription factor induced in flutamide-caused cell apoptosis, inhibits AKT activation and suppresses tumor growth of prostate cancer cells. Prostate 2014; 74:946-58. [PMID: 24737412 DOI: 10.1002/pros.22812] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/26/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Kruppel-like factors (KLFs) are involved in various biological processes; emerging studies have indicated that KLF9 plays a critical role in regulating tumorigenesis. The role of KLF9 in prostate cancer (PCa), however, has not yet been investigated. METHODS The expression of KLF members, AKT- and apoptosis-related proteins were analyzed by Western blot or qRT-PCR. Tet-On inducible KLF9 expression was established for the evaluation of the effects of KLF9 on cell proliferation, apoptosis, and xenograft tumor growth in nude mice. Cell cycle and apoptosis were determined by flow cytometry. RESULTS KLF9 was induced in a time-dependent manner in flutamide-caused apoptosis, and knockdown of KLF9 significantly decreased flutamide-induced growth inhibition and apoptosis in LNCaP cells. The levels of KLF9 were relatively lower in PCa cell lines, particularly in androgen-independent cell lines compared with those in nontumorous prostate epithelial cell lines. Overexpression of KLF9 dramatically suppressed cell proliferation and caused cell cycle arrest in the G2/M phase and cell apoptosis in the androgen-independent cell lines, PC3 and DU145. Intriguingly, KLF9 expression severely suppressed the activation of AKT and its downstream targets. AKT reactivation partially rescued the KLF9-mediated inhibitory effects on the proliferation of PCa cells. More importantly, we found that KLF9 overexpression efficiently inhibited the xenograft tumor growth of PCa cells. CONCLUSIONS These data collectively showing that KLF9 substantially inhibits AKT activation and abrogates tumor growth of PCa cells, suggest the potential of either genetic or pharmacological activation of KLF9 in the therapeutic treatment of castration-resistant PCa.
Collapse
Affiliation(s)
- Pengliang Shen
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, P.R., China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Roca H, Pande M, Huo JS, Hernandez J, Cavalcoli JD, Pienta KJ, McEachin RC. A bioinformatics approach reveals novel interactions of the OVOL transcription factors in the regulation of epithelial - mesenchymal cell reprogramming and cancer progression. BMC SYSTEMS BIOLOGY 2014; 8:29. [PMID: 24612742 PMCID: PMC4008156 DOI: 10.1186/1752-0509-8-29] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/03/2014] [Indexed: 01/10/2023]
Abstract
Background Mesenchymal to Epithelial Transition (MET) plasticity is critical to cancer progression, and we recently showed that the OVOL transcription factors (TFs) are critical regulators of MET. Results of that work also posed the hypothesis that the OVOLs impact MET in a range of cancers. We now test this hypothesis by developing a model, OVOL Induced MET (OI-MET), and sub-model (OI-MET-TF), to characterize differential gene expression in MET common to prostate cancer (PC) and breast cancer (BC). Results In the OI-MET model, we identified 739 genes differentially expressed in both the PC and BC models. For this gene set, we found significant enrichment of annotation for BC, PC, cancer, and MET, as well as regulation of gene expression by AP1, STAT1, STAT3, and NFKB1. Focusing on the target genes for these four TFs plus the OVOLs, we produced the OI-MET-TF sub-model, which shows even greater enrichment for these annotations, plus significant evidence of cooperation among these five TFs. Based on known gene/drug interactions, we prioritized targets in the OI-MET-TF network for follow-on analysis, emphasizing the clinical relevance of this work. Reflecting these results back to the OI-MET model, we found that binding motifs for the TF pair AP1/MYC are more frequent than expected and that the AP1/MYC pair is significantly enriched in binding in cancer models, relative to non-cancer models, in these promoters. This effect is seen in both MET models (solid tumors) and in non-MET models (leukemia). These results are consistent with our hypothesis that the OVOLs impact cancer susceptibility by regulating MET, and extend the hypothesis to include mechanisms not specific to MET. Conclusions We find significant evidence of the OVOL, AP1, STAT1, STAT3, and NFKB1 TFs having important roles in MET, and more broadly in cancer. We prioritize known gene/drug targets for follow-up in the clinic, and we show that the AP1/MYC TF pair is a strong candidate for intervention.
Collapse
Affiliation(s)
| | | | | | | | | | - Kenneth J Pienta
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
28
|
Effects of proteasome inhibitors on bone cancer. BONEKEY REPORTS 2013; 2:395. [PMID: 24422114 DOI: 10.1038/bonekey.2013.129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 12/26/2022]
Abstract
Bone metastasis is a frequent complication of cancer, occurring in up to 70% of patients with advanced breast or prostate cancer, while bone disease is also the characteristic clinical feature of multiple myeloma. Skeletal-related events can be devastating, with major effect on the quality of life and survival. Bisphosphonates are the mainstay of therapeutic management of bone disease of solid tumors and myeloma, and denosumab has recently been approved for patients with bone metastases. Both act through inhibition of the osteoclast activity but do not restore bone formation. Proteasome inhibition has direct bone anabolic effects. Proteasome inhibitors have been used in the management of patients with multiple myeloma and mantle-cell lymphoma during the last decade. In multiple myeloma, bortezomib, the first-in-class proteasome inhibitor, has shown both in vitro and in vivo regulation of bone remodeling by inhibiting osteoclast function and promoting osteoblast activity. Bortezomib also reduces bone resorption but more importantly increases bone formation and bone mineral density, at least, in subsets of myeloma patients. Thus, bortezomib is recommended for myeloma patients with extended bone disease in combination with bisphosphonates. This review focuses on the effects of the proteasome system on bone metabolism and the implications into the better management of patients with cancer and bone disease.
Collapse
|
29
|
Abstract
In recent years, histone deacetylase inhibitors (HDACis), a novel class of agents that targets mechanistic abnormalities in cancers, have shown promising anti-cancer activity in both hematological and solid cancers. Among them, vorinostat was approved by FDA to treat cutaneous T-cell lymphoma and is being evaluated in other cancer types. Although initially designed to target histone deacetylase, vorinostat were found to have additional effects on other epigenetic machineries, for example acetylation of non-HDAC, methylation and microRNA (miRNA) expression. In this review, we examined all known mechanisms of action for vorinostat. We also summarized the current findings on the `crosstalk' between different epigenetic machineries. These findings suggest that improved understanding of epigenetic regulatory role of vorinostat and/or other HDACis will provide novel insights in improving utilization of this class of novel agents.
Collapse
Affiliation(s)
- Jean Lee
- Department of Medicine, University of Chicago, USA
| | | |
Collapse
|
30
|
Andersson KE. This Month in Investigative Urology. J Urol 2012. [DOI: 10.1016/j.juro.2012.09.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|