1
|
Mansouri Z, Salimi Y, Hajianfar G, Wolf NB, Knappe L, Xhepa G, Gleyzolle A, Ricoeur A, Garibotto V, Mainta I, Zaidi H. The role of biomarkers and dosimetry parameters in overall and progression free survival prediction for patients treated with personalized 90Y glass microspheres SIRT: a preliminary machine learning study. Eur J Nucl Med Mol Imaging 2024; 51:4111-4126. [PMID: 38981950 DOI: 10.1007/s00259-024-06805-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Overall Survival (OS) and Progression-Free Survival (PFS) analyses are crucial metrics for evaluating the efficacy and impact of treatment. This study evaluated the role of clinical biomarkers and dosimetry parameters on survival outcomes of patients undergoing 90Y selective internal radiation therapy (SIRT). MATERIALS/METHODS This preliminary and retrospective analysis included 17 patients with hepatocellular carcinoma (HCC) treated with 90Y SIRT. The patients underwent personalized treatment planning and voxel-wise dosimetry. After the procedure, the OS and PFS were evaluated. Three structures were delineated including tumoral liver (TL), normal perfused liver (NPL), and whole normal liver (WNL). 289 dose-volume constraints (DVCs) were extracted from dose-volume histograms of physical and biological effective dose (BED) maps calculated on 99mTc-MAA and 90Y SPECT/CT images. Subsequently, the DVCs and 16 clinical biomarkers were used as features for univariate and multivariate analysis. Cox proportional hazard ratio (HR) was employed for univariate analysis. HR and the concordance index (C-Index) were calculated for each feature. Using eight different strategies, a cross-combination of various models and feature selection (FS) methods was applied for multivariate analysis. The performance of each model was assessed using an averaged C-Index on a three-fold nested cross-validation framework. The Kaplan-Meier (KM) curve was employed for univariate and machine learning (ML) model performance assessment. RESULTS The median OS was 11 months [95% CI: 8.5, 13.09], whereas the PFS was seven months [95% CI: 5.6, 10.98]. Univariate analysis demonstrated the presence of Ascites (HR: 9.2[1.8,47]) and the aim of SIRT (segmentectomy, lobectomy, palliative) (HR: 0.066 [0.0057, 0.78]), Aspartate aminotransferase (AST) level (HR:0.1 [0.012-0.86]), and MAA-Dose-V205(%)-TL (HR:8.5[1,72]) as predictors for OS. 90Y-derived parameters were associated with PFS but not with OS. MAA-Dose-V205(%)-WNL, MAA-BED-V400(%)-WNL with (HR:13 [1.5-120]) and 90Y-Dose-mean-TL, 90Y-D50-TL-Gy, 90Y-Dose-V205(%)-TL, 90Y-Dose- D50-TL-Gy, and 90Y-BED-V400(%)-TL (HR:15 [1.8-120]) were highly associated with PFS among dosimetry parameters. The highest C-index observed in multivariate analysis using ML was 0.94 ± 0.13 obtained from Variable Hunting-variable-importance (VH.VIMP) FS and Cox Proportional Hazard model predicting OS, using clinical features. However, the combination of VH. VIMP FS method with a Generalized Linear Model Network model predicting OS using Therapy strategy features outperformed the other models in terms of both C-index and stratification of KM curves (C-Index: 0.93 ± 0.14 and log-rank p-value of 0.023 for KM curve stratification). CONCLUSION This preliminary study confirmed the role played by baseline clinical biomarkers and dosimetry parameters in predicting the treatment outcome, paving the way for the establishment of a dose-effect relationship. In addition, the feasibility of using ML along with these features was demonstrated as a helpful tool in the clinical management of patients, both prior to and following 90Y-SIRT.
Collapse
Affiliation(s)
- Zahra Mansouri
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Yazdan Salimi
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Ghasem Hajianfar
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Nicola Bianchetto Wolf
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Luisa Knappe
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Genti Xhepa
- Service of Radiology, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Adrien Gleyzolle
- Service of Radiology, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Alexis Ricoeur
- Service of Radiology, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, CH-1211, Geneva, Switzerland
- Centre for Biomedical Imaging (CIBM), Geneva, Switzerland
| | - Ismini Mainta
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, Geneva University Hospital, CH-1211, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
- University Research and Innovation Center, Óbuda University, Budapest, Hungary.
| |
Collapse
|
2
|
Buscombe J, Cwikla J, Quigley AM, Navalkissoor S, Yu D. Selective Internal Radiotherapy in Liver Tumors: Early Promise Yet to be Fulfilled. Semin Nucl Med 2024; 54:530-536. [PMID: 38627159 DOI: 10.1053/j.semnuclmed.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 08/05/2024]
Abstract
Selective intra-arterial radiotherapy (SIRT) is a technique which has evolved over the past 30 years. In present this is primarily used to treat primary and secondary tumors in the liver. The technique normally depends on the delivery of a therapeutic radiopharmaceutical or radiolabeled particulate via a radiologically placed intra-arterial catheter in the hepatic artery. This is because most of these tumors have a single arterial blood supply but normal hepatocytes are supplied by both the hepatic artery and portal vein. Initially, this was done with I-131 labelled poppy seed oil but this technique was only used in a few centers. The technique became more popular when Y-90 particulates become widely available. Early results were promising but in phase 3 randomized controlled trials resulted in disappointing results compared to systemic chemotherapy. More recent work however, have shown that increasing the radiation dose to the tumor to at least 60Gy and combining with more effective systemic therapies are starting to produce better clinical results. There have also been advances in the angiographic methods used to make this into a day-case technique and the use of new radionuclides such as Ho-166 and Re-188 provides a wider range of possible SIRT techniques.
Collapse
Affiliation(s)
- John Buscombe
- Department of Nuclear Medicine, Cambridge University Hospitals, Cambridge, UK.
| | - Jaroslaw Cwikla
- Nuclear Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | | | | | - Dominic Yu
- Department of Radiology, Royal Free Hospital, London, UK
| |
Collapse
|
3
|
Yeakel J, Seyedin SN, Harada G, Hagopian G, Mahmood S, Bennett R, Harris JP, Abbott EM, Lindner S, Dayyani F, Sehgal V, Kuo JV, Abi-Jaoudeh N. The Impact of Local Control on Overall Survival after Y-90 Selective Internal Radiotherapy of Liver Metastases in Oligometastatic Cancer: A Retrospective Analysis. Cancers (Basel) 2024; 16:2401. [PMID: 39001464 PMCID: PMC11240767 DOI: 10.3390/cancers16132401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Y-90 Selective Internal Radiotherapy (SIRT) is an ablative therapy used for inoperable liver metastasis. The purpose of this investigation was to examine the impact of local control after SIRT on overall survival (OS) in oligometastatic patients. A retrospective, single-institution study identified oligometastatic patients with ≤5 non-intracranial metastases receiving unilateral or bilateral lobar Y-90 SIRT from 2009 to 2021. The primary endpoint was OS defined from Y-90 SIRT completion to the date of death or last follow-up. Local failure was classified as a progressive disease at the target lesion(s) by RECIST v1.1 criteria starting at 3 months after SIRT. With a median follow-up of 15.7 months, 33 patients were identified who had a total of 79 oligometastatic lesions treated with SIRT, with the majority histology of colorectal adenocarcinoma (n = 22). In total, 94% of patients completed the Y-90 lobectomy. Of the 79 individual lesions treated, 22 (27.8%) failed. Thirteen patients received salvage liver-directed therapy following intrahepatic failure; ten received repeat SIRT. Median OS (mOS) was 20.1 months, and 12-month OS was 68.2%. Intralesional failure was associated with worse 1 y OS (52.3% vs. 86.2%, p = 0.004). These results suggest that intralesional failure following Y-90 may be associated with inferior OS, emphasizing the importance of disease control in low-metastatic-burden patients.
Collapse
Affiliation(s)
- John Yeakel
- Department of Radiation Oncology, University of California Irvine, Orange, CA 92868, USA
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902, USA
| | - Steven N Seyedin
- Department of Radiation Oncology, University of California Irvine, Orange, CA 92868, USA
| | - Garrett Harada
- Department of Radiation Oncology, University of California Irvine, Orange, CA 92868, USA
| | - Garo Hagopian
- Department of Medicine, University of California Irvine, Orange, CA 92868, USA
| | - Sharmeen Mahmood
- Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Orange, CA 92868, USA
| | - Rebecca Bennett
- Division of Vascular and Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| | - Jeremy P Harris
- Department of Radiation Oncology, University of California Irvine, Orange, CA 92868, USA
| | | | | | - Farshid Dayyani
- Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Orange, CA 92868, USA
| | - Varun Sehgal
- Department of Radiation Oncology, University of California Irvine, Orange, CA 92868, USA
| | - Jeffrey V Kuo
- Department of Radiation Oncology, University of California Irvine, Orange, CA 92868, USA
| | - Nadine Abi-Jaoudeh
- Division of Vascular and Interventional Radiology, Department of Radiological Sciences, University of California Irvine, Orange, CA 92868, USA
| |
Collapse
|
4
|
Nuffer Z. Focus on Uniformity, Not Dose: The Folly of Yttrium-90 Transarterial Radioembolization Dose-Escalation Studies. J Vasc Interv Radiol 2024; 35:918-919. [PMID: 38447769 DOI: 10.1016/j.jvir.2023.12.575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 03/08/2024] Open
Affiliation(s)
- Zachary Nuffer
- Division of Interventional Radiology, Union Hospital, 1606 N 7th St, Terre Haute, IN 47804.
| |
Collapse
|
5
|
Braat MN, Braat AJ, Lam MG. Toxicity comparison of yttrium-90 resin and glass microspheres radioembolization. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2024; 68:133-142. [PMID: 35762664 DOI: 10.23736/s1824-4785.22.03452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND To investigate the clinical, hematological and biochemical toxicity differences between glass and resin yttrium-90 (90Y)-microspheres radioembolization treatment of primary and metastatic liver disease. METHODS Between May 2014 and November 2016 all consecutive glass and resin 90Y microspheres radioembolization treatments were retrospectively analyzed. Biochemical, hematological and clinical data were collected at treatment day, two weeks, one month and three months follow-up. Post-treatment 90Y PET/CTs were assessed for the absorbed doses in non-tumorous liver volume (DNTLV) and tumor volume (DTV). Biochemical, hematological and clinical toxicity were compared between glass and resin using chi square tests and repeated ANOVA measures. Biochemical and clinical toxicity was correlated with DNTLV,total by means of Pearson correlation and independent t-tests. RESULTS A total of 85 patients were included (N.=44 glass, N.=41 resin). Clinical toxicity the day after treatment (i.e. abdominal pain [P=0.000], nausea [P=0.000] and vomiting [P=0.003]) was more prevalent for resin. Biochemical and hematological toxicities were similar for both microspheres. The DNTLV,total was significantly higher in patients with REILD grade ≥3 in the resin group (43.5 versus 33.3 Gy [P=0.050]). A similar non-significant trend was seen in the glass group: 95.0 versus 69.0 Gy [P=0.144]. CONCLUSIONS The clinical, hematological and biochemical toxicity of radioembolization treatment with glass and resin is comparable, however, post-embolization syndrome related complaints are more common for resin.
Collapse
Affiliation(s)
- Manon N Braat
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands -
| | - Arthur J Braat
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marnix G Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
6
|
Fassia MK, Charalel RA. Techniques to Optimize Radioembolization Tumor Coverage. Semin Intervent Radiol 2024; 41:16-19. [PMID: 38495264 PMCID: PMC10940038 DOI: 10.1055/s-0043-1778659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Yttrium-90 (Y90) radioembolization has become a major locoregional treatment option for several primary and secondary liver cancers. Understanding the various factors that contribute to optimal tumor coverage including sphere count, embolization techniques, and catheter choice is important for all interventional radiologists while planning Y90 dosimetry and delivery. Here, we review these factors and the evidence supporting current practice paradigms.
Collapse
Affiliation(s)
- M. Kasim Fassia
- Division of Interventional Radiology, Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Resmi Ann Charalel
- Division of Interventional Radiology, Department of Radiology, Weill Cornell Medicine, New York, New York
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| |
Collapse
|
7
|
Naydenov N, Teplov A, Zirakchian MZ, Ruan S, Chu BP, Serencsits B, Iraca M, Talarico O, Miller B, Kunin H, Schwartz J, Kesner A, Furenlid LR, Dauer L, Yagi Y, Humm JL, Zanzonico P, Sofocleous CT, Kirov AS. Yttrium-90 Activity Quantification in PET/CT-Guided Biopsy Specimens from Colorectal Hepatic Metastases Immediately after Transarterial Radioembolization Using Micro-CT and Autoradiography. J Vasc Interv Radiol 2023; 34:1556-1564.e4. [PMID: 37201655 PMCID: PMC11163896 DOI: 10.1016/j.jvir.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
PURPOSE To evaluate the yttrium-90 (90Y) activity distribution in biopsy tissue samples of the treated liver to quantify the dose with higher spatial resolution than positron emission tomography (PET) for accurate investigation of correlations with microscopic biological effects and to evaluate the radiation safety of this procedure. MATERIALS AND METHODS Eighty-six core biopsy specimens were obtained from 18 colorectal liver metastases (CLMs) immediately after 90Y transarterial radioembolization (TARE) with either resin or glass microspheres using real-time 90Y PET/CT guidance in 17 patients. A high-resolution micro-computed tomography (micro-CT) scanner was used to image the microspheres in part of the specimens and allow quantification of 90Y activity directly or by calibrating autoradiography (ARG) images. The mean doses to the specimens were derived from the measured specimens' activity concentrations and from the PET/CT scan at the location of the biopsy needle tip for all cases. Staff exposures were monitored. RESULTS The mean measured 90Y activity concentration in the CLM specimens at time of infusion was 2.4 ± 4.0 MBq/mL. The biopsies revealed higher activity heterogeneity than PET. Radiation exposure to the interventional radiologists during post-TARE biopsy procedures was minimal. CONCLUSIONS Counting the microspheres and measuring the activity in biopsy specimens obtained after TARE are safe and feasible and can be used to determine the administered activity and its distribution in the treated and biopsied liver tissue with high spatial resolution. Complementing 90Y PET/CT imaging with this approach promises to yield more accurate direct correlation of histopathological changes and absorbed dose in the examined specimens.
Collapse
Affiliation(s)
- Nicola Naydenov
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexei Teplov
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Shutian Ruan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bae P Chu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brian Serencsits
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marisa Iraca
- University of Rhode Island, Kingston, Rhode Island
| | - Olga Talarico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Henry Kunin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jazmin Schwartz
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adam Kesner
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Larry Dauer
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yukako Yagi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pat Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Assen S Kirov
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
8
|
Watanabe M, Grafe H, Theysohn J, Schaarschmidt B, Ludwig J, Jochheim L, Jeschke M, Schmidt H, Fendler WP, Moraitis A, Herrmann K, Pomykala KL, Weber M. Voxel-Based Dosimetry Predicts Hepatotoxicity in Hepatocellular Carcinoma Patients Undergoing Radioembolization with 90Y Glass Microspheres. J Nucl Med 2023:jnumed.122.264996. [PMID: 37290792 DOI: 10.2967/jnumed.122.264996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/07/2023] [Indexed: 06/10/2023] Open
Abstract
Personalized dosimetry holds promise to improve radioembolization treatment outcomes in hepatocellular carcinoma (HCC) patients. To this end, tolerance absorbed doses for nontumor liver tissue are assessed by calculating the mean absorbed dose to the whole nontumor liver tissue (AD-WNTLT), which may be limited by its neglect of nonuniform dose distribution. Thus, we analyzed whether voxel-based dosimetry could be more accurate in predicting hepatotoxicity in HCC patients undergoing radioembolization. Methods: In total, 176 HCC patients were available for this retrospective analysis; of these, 78 underwent partial- and 98 whole-liver treatment. Posttherapeutic changes in bilirubin were graded using the Common Terminology Criteria for Adverse Events. We performed voxel-based and multicompartment dosimetry using pretherapeutic 99mTc-labeled human serum albumin SPECT and contrast-enhanced CT/MRI and defined the following dosimetry parameters: AD-WNTLT; the nontumor liver tissue volume exposed to at least 20 Gy (V20), at least 30 Gy (V30), and at least 40 Gy (V40); and the threshold absorbed dose to the 20% (AD-20) and 30% (AD-30) of nontumor liver tissue with the lowest absorbed dose. Their impact on hepatotoxicity after 6 mo was analyzed using the area under the receiver-operating-characteristic curve; thresholds were identified using the Youden index. Results: The area under the curve for prediction of posttherapeutic grade 3+ increases in bilirubin was acceptable for V20 (0.77), V30 (0.78), and V40 (0.79), whereas it was low for AD-WNTLT (0.67). The predictive value could further be increased in the subanalysis of patients with whole-liver treatment, where a good discriminatory power was found for V20 (0.80), V30 (0.82), V40 (0.84), AD-20 (0.80), and AD-30 (0.82) and an acceptable discriminatory power was found for AD-WNTLT (0.63). The accuracies of V20 (P = 0.03), V30 (P = 0.009), V40 (P = 0.004), AD-20 (P = 0.04), and AD-30 (P = 0.02) were superior to that of AD-WNTLT but did not differ significantly from each other. The respective thresholds were 78% (V30), 72% (V40), and 43 Gy (AD-30). Statistical significance was not reached for partial-liver treatment. Conclusion: Voxel-based dosimetry may more accurately predict hepatotoxicity than multicompartment dosimetry in HCC patients undergoing radioembolization, which could enable dose escalation or deescalation with the intent to optimize treatment response. Our results indicate that a V40 of 72% may be particularly useful in whole-liver treatment. However, further research is warranted to validate these results.
Collapse
Affiliation(s)
- Masao Watanabe
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany
- University of Duisburg-Essen and German Cancer Consortium-University Hospital, Essen, Germany
| | - Hong Grafe
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany
- University of Duisburg-Essen and German Cancer Consortium-University Hospital, Essen, Germany
| | - Jens Theysohn
- University of Duisburg-Essen and German Cancer Consortium-University Hospital, Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Clinic Essen, Essen, Germany
| | - Benedikt Schaarschmidt
- University of Duisburg-Essen and German Cancer Consortium-University Hospital, Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Clinic Essen, Essen, Germany
| | - Johannes Ludwig
- University of Duisburg-Essen and German Cancer Consortium-University Hospital, Essen, Germany
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Clinic Essen, Essen, Germany
| | - Leonie Jochheim
- University of Duisburg-Essen and German Cancer Consortium-University Hospital, Essen, Germany
- Department of Gastroenterology and Hepatology, University Clinic Essen, Essen, Germany; and
| | - Matthias Jeschke
- University of Duisburg-Essen and German Cancer Consortium-University Hospital, Essen, Germany
- Department of Gastroenterology and Hepatology, University Clinic Essen, Essen, Germany; and
| | - Hartmut Schmidt
- University of Duisburg-Essen and German Cancer Consortium-University Hospital, Essen, Germany
- Department of Gastroenterology and Hepatology, University Clinic Essen, Essen, Germany; and
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany
- University of Duisburg-Essen and German Cancer Consortium-University Hospital, Essen, Germany
| | - Alexandros Moraitis
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany
- University of Duisburg-Essen and German Cancer Consortium-University Hospital, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany
- University of Duisburg-Essen and German Cancer Consortium-University Hospital, Essen, Germany
| | - Kelsey L Pomykala
- Institute for AI in Medicine, University Medicine Essen, Essen, Germany
| | - Manuel Weber
- Department of Nuclear Medicine, University Clinic Essen, Essen, Germany;
- University of Duisburg-Essen and German Cancer Consortium-University Hospital, Essen, Germany
| |
Collapse
|
9
|
Gear J, Stokke C, Terwinghe C, Gnesin S, Sandström M, Tran-Gia J, Cremonesi M, Cicone F, Verburg F, Hustinx R, Giovanella L, Herrmann K, Gabiña PM. EANM enabling guide: how to improve the accessibility of clinical dosimetry. Eur J Nucl Med Mol Imaging 2023; 50:1861-1868. [PMID: 37086275 PMCID: PMC10287783 DOI: 10.1007/s00259-023-06226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
Dosimetry can be a useful tool for personalization of molecular radiotherapy (MRT) procedures, enabling the continuous development of theranostic concepts. However, the additional resource requirements are often seen as a barrier to implementation. This guide discusses the requirements for dosimetry and demonstrates how a dosimetry regimen can be tailored to the available facilities of a centre. The aim is to help centres wishing to initiate a dosimetry service but may not have the experience or resources of some of the more established therapy and dosimetry centres. The multidisciplinary approach and different personnel requirements are discussed and key equipment reviewed example protocols demonstrating these factors are given in the supplementary material for the main therapies carried out in nuclear medicine, including [131I]-NaI for benign thyroid disorders, [177Lu]-DOTATATE and 131I-mIBG for neuroendocrine tumours and [90Y]-microspheres for unresectable hepatic carcinoma.
Collapse
Affiliation(s)
- Jonathan Gear
- Joint Department of Physics, Royal Marsden NHSFT & Institute of Cancer Research, Sutton, UK.
| | - Caroline Stokke
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Christelle Terwinghe
- Department of Nuclear Medicine, Universitair Ziekenhuis Leuven, Louvain, Belgium
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Mattias Sandström
- Section of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Sweden & Section of Medical Physics, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Johannes Tran-Gia
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Marta Cremonesi
- Radiation Research Unit, Department of Medical Imaging and Radiation Sciences, Istituto Europeo Di Oncologia, IRCCS, Milan, Italy
| | - Francesco Cicone
- Department of Experimental and Clinical Medicine, Neuroscience Research Centre, PET/RM Unit, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Nuclear Medicine Unit, University Hospital "Mater Domini, Catanzaro, Italy
| | - Fredrik Verburg
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, Liège, Belgium
- GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Luca Giovanella
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, Duisburg, Germany
- German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Pablo Minguez Gabiña
- Department of Medical Physics and Radiation Protection, Gurutzeta-Cruces University Hospital/Biocruces Health Research Institute, Barakaldo, Spain
- Department of Applied Physics, Faculty of Engineering, UPV/EHU, Bilbao, Spain
| |
Collapse
|
10
|
Cheung TT, Yu SCH, Chan SL, Poon RTP, Kwok P, Lee AS, Tai A, Tam D, Cheung CC, Lai TW, Chia NH, Law A, Shum T, Lam YK, Lau V, Lee V, Chong C, Tang CN, Yau T. The Hong Kong consensus statements on unresectable hepatocellular carcinoma: narrative review and update for 2021. Hepatobiliary Surg Nutr 2023; 12:366-385. [PMID: 37351136 PMCID: PMC10282685 DOI: 10.21037/hbsn-21-405] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/10/2022] [Indexed: 08/30/2023]
Abstract
Background and Objective Hong Kong, like many parts of Asia, faces a high burden of hepatocellular carcinoma (HCC) caused by high endemic rates of hepatitis B virus infection. Hong Kong clinicians have developed a high level of expertise in HCC treatment across surgical, transarterial, ablative, radiotherapeutic and systemic modalities. This publication summarizes the latest evidence-based recommendations on how these modalities should be used. Methods In two meetings held in 2020, a multidisciplinary panel of surgeons, oncologists and interventional radiologists performed a narrative review of evidence on the management of HCC, with an emphasis on treatment of HCC not amenable to surgical resection. Close attention was paid to new evidence published since the previous version of these statements in 2018. Key Content and Findings The expert panel has formulated 60 consensus statements to guide the staging and treatment of unresectable HCC. Since the previous version of these statements, considerable additions have been made to the recommendations on use of targeted therapies and immunotherapies because of the large volume of new evidence. Conclusions Our consensus statements offer guidance on how to select HCC patients for surgical or non-surgical treatment and for choosing among non-surgical modalities for patients who are not candidates for resection. In particular, there is a need for more evidence to aid physicians in the selection of second-line systemic therapies, as currently most data are limited to patients with disease progression on first-line sorafenib.
Collapse
Affiliation(s)
- Tan-To Cheung
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Simon Chun-Ho Yu
- Department of Imaging & Interventional Radiology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen L. Chan
- State Key Laboratory of Translational Oncology and Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronnie T. P. Poon
- Department of Surgery, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Philip Kwok
- Department of Radiology and Imaging, Queen Elizabeth Hospital, Hong Kong, China
| | - Ann-Shing Lee
- Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong, China
| | - Anna Tai
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Derek Tam
- Department of Surgery, United Christian Hospital, Hong Kong, China
| | | | - Tak-Wing Lai
- Department of Surgery, Princess Margaret Hospital, Hong Kong, China
| | - Nam-Hung Chia
- Department of Surgery, Queen Elizabeth Hospital, Hong Kong, China
| | - Ada Law
- Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Tracy Shum
- Department of Clinical Oncology, Princess Margaret Hospital, Hong Kong, China
| | - Yim-Kwan Lam
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, China
| | - Vince Lau
- Department of Radiology, Queen Mary Hospital, Hong Kong, China
| | - Victor Lee
- Department of Clinical Oncology, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Charing Chong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chung-Ngai Tang
- Department of Surgery, Pamela Youde Nethersole Eastern Hospital, Hong Kong, China
| | - Thomas Yau
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Fidelman N, Atreya CE, Griffith M, Milloy MA, Carnevale J, Cinar P, Venook AP, Van Loon K. Phase I prospective trial of TAS-102 (trifluridine and tipiracil) and radioembolization with 90Y resin microspheres for chemo-refractory colorectal liver metastases. BMC Cancer 2022; 22:1307. [PMID: 36514060 DOI: 10.1186/s12885-022-10401-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Extrahepatic disease progression limits clinical efficacy of Yttrium-90 (90Y) radioembolization (TARE) for patients with chemotherapy-refractory metastatic colorectal cancer (mCRC). Trifluridine and tipiracil (TAS-102) has overall survival benefit for patients with refractory mCRC and may be a radiosensitizer. METHODS Sequential lobar TARE using 90Y resin microspheres in combination with TAS-102 in 28-day cycles were used to treat adult patients with bilobar liver-dominant chemo-refractory mCRC according to 3 + 3 dose escalation design with a 12-patient dose expansion cohort. Study objectives were to establish safety and determine maximum tolerated dose (MTD) of TAS-102 in combination with TARE. RESULTS A total of 21 patients (14 women, 7 men) with median age of 60 years were enrolled. No dose limiting toxicities were observed. Treatment related severe adverse events included cytopenias (10 patients, 48%) and radioembolization-induced liver disease (2 patients, 10%). Disease control rate in the liver lobes treated with TARE was 100%. Best observed radiographic responses were partial response for 4 patients (19%) and stable disease for 12 patients (57%). CONCLUSIONS The combination of TAS-102 and TARE for patients with liver-dominant mCRC is safe and consistently achieves disease control within the liver. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT02602327 (first posted 11/11/2015).
Collapse
Affiliation(s)
| | | | | | | | | | - Pelin Cinar
- University of California, San Francisco, USA
| | | | | |
Collapse
|
12
|
Sharma NK, Kappadath SC, Chuong M, Folkert M, Gibbs P, Jabbour SK, Jeyarajah DR, Kennedy A, Liu D, Meyer JE, Mikell J, Patel RS, Yang G, Mourtada F. The American Brachytherapy Society consensus statement for permanent implant brachytherapy using Yttrium-90 microsphere radioembolization for liver tumors. Brachytherapy 2022; 21:569-591. [PMID: 35599080 PMCID: PMC10868645 DOI: 10.1016/j.brachy.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/25/2022] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE To develop a multidisciplinary consensus for high quality multidisciplinary implementation of brachytherapy using Yttrium-90 (90Y) microspheres transarterial radioembolization (90Y TARE) for primary and metastatic cancers in the liver. METHODS AND MATERIALS Members of the American Brachytherapy Society (ABS) and colleagues with multidisciplinary expertise in liver tumor therapy formulated guidelines for 90Y TARE for unresectable primary liver malignancies and unresectable metastatic cancer to the liver. The consensus is provided on the most recent literature and clinical experience. RESULTS The ABS strongly recommends the use of 90Y microsphere brachytherapy for the definitive/palliative treatment of unresectable liver cancer when recommended by the multidisciplinary team. A quality management program must be implemented at the start of 90Y TARE program development and follow-up data should be tracked for efficacy and toxicity. Patient-specific dosimetry optimized for treatment intent is recommended when conducting 90Y TARE. Implementation in patients on systemic therapy should account for factors that may enhance treatment related toxicity without delaying treatment inappropriately. Further management and salvage therapy options including retreatment with 90Y TARE should be carefully considered. CONCLUSIONS ABS consensus for implementing a safe 90Y TARE program for liver cancer in the multidisciplinary setting is presented. It builds on previous guidelines to include recommendations for appropriate implementation based on current literature and practices in experienced centers. Practitioners and cooperative groups are encouraged to use this document as a guide to formulate their clinical practices and to adopt the most recent dose reporting policies that are critical for a unified outcome analysis of future effectiveness studies.
Collapse
Affiliation(s)
- Navesh K Sharma
- Department of Radiation Oncology, Penn State Hershey School of Medicine, Hershey, PA
| | - S Cheenu Kappadath
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX
| | - Michael Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL
| | - Michael Folkert
- Northwell Health Cancer Institute, Radiation Medicine at the Center for Advanced Medicine, New Hyde Park, NY
| | - Peter Gibbs
- Personalised Oncology Division, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - Salma K Jabbour
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | | | | | - David Liu
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | - Rahul S Patel
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Gary Yang
- Loma Linda University, Loma Linda, CA
| | - Firas Mourtada
- Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE; Department of Radiation Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA.
| |
Collapse
|
13
|
Trans-arterial Radioembolization Dosimetry in 2022. Cardiovasc Intervent Radiol 2022; 45:1608-1621. [PMID: 35982334 DOI: 10.1007/s00270-022-03215-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/26/2022] [Indexed: 11/02/2022]
Abstract
Trans-arterial radioembolization is currently performed using 90Y-loaded glass or resin microspheres and also using 166Ho-loaded microspheres. The goal of this review is to present dosimetry and radiobiology concepts, the different dosimetry approaches available (simulation-based dosimetry and post-treatment dosimetry), main confounding factors as main clinical dosimetry results provided during the last decade for both hepatocellular carcinoma (HCC) and metastases of colorectal carcinoma (mCRC). Based on the different number of microspheres or different isotope used, radiobiology of the three devices is different, meaning that tumouricidal doses and maximal tolerated doses are different. Tumouricidal doses described for HCCs were 100-120 grays (Gy) with 90Y resin microspheres and 205 Gy with 90Y glass microspheres. For mCRC, it is 39-60 with 90Y resin microspheres, 139 Gy with 90Y glass microspheres and 90 Gy with 166Ho microspheres. An impact of tumoural doses with overall survival has also been reported. Personalised dosimetry has been developed and is now recommended by several international expert groups. Level-one evidence of the major impact of personalised dosimetry on response and overall survival in HCC is now available, bringing a new standard approach for TARE in clinical practice as well as for trial design.
Collapse
|
14
|
Reeves HL, Reicher J, Priona G, Manas DM, Littler P. Selective internal radiation therapy (SIRT) for hepatocellular carcinoma (HCC): informing clinical practice for multidisciplinary teams in England. Frontline Gastroenterol 2022; 14:45-51. [PMID: 36561784 PMCID: PMC9763643 DOI: 10.1136/flgastro-2022-102137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Objective Hepatocellular carcinoma (HCC) deaths are rising alarmingly. Many patients are unsuitable for available therapies. Poor response rates further hamper outcomes for those that are. Selective internal radiation therapy (SIRT) offers hope, although which patients benefit over standard approaches remains unclear. Design/method As a quality/service improvement, we audited consecutive patients treated with SIRT (2015-2020) by the Newcastle upon Tyne Hospitals National Health Service Foundation Trust HCC multidisciplinary team. Indications, Barcelona clinic liver cancer (BCLC) stage, treatment response, subsequent therapies and survival at 30 September 2021 were assessed. Results Fifty-one patients received SIRT. Thirty-day mortality was zero. Three months partial response, stable disease and progressive disease on imaging were 50%, 22% and 28%, respectively. Overall median survival was 21 months. There were four subgroups: (1) BCLC-B: HCC>7 cm too large for transarterial chemoembolisation (TACE) alone (n=21); (2) BCLC-B: HCC progressed post TACE (n=7); (3) BCLC-C: HCC with any combination of large tumour burden, branch portal vein thrombosis, non-hepatitis C virus aetiology (n=16); (4) BCLC-C: sorafenib inappropriate (n=7). In group 1, 5/21 (23.8%) of patients were downstaged to resection, 33% received subsequent medical therapies and median survival was >40 months. In BCLC-B patients treated second line (group 2), median survival was 14.2 months. In BCLC-C, median survival was 20.2 months for group 3 and 4.2 months for group 4. Conclusion SIRT outcomes for advanced HCC, often bridging patients with adverse predictive factors to subsequent surgery or medical therapies, were encouraging. A role after TACE or for BCLC-C patients requires further assessment.
Collapse
Affiliation(s)
- Helen L Reeves
- Newcastle University Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, Tyne and Wear, UK
- Liver Unit, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - John Reicher
- Radiology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Georgia Priona
- Radiology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Derek M Manas
- Surgery, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Peter Littler
- Radiology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Selective internal radiation therapy in older patients with hepatocellular carcinoma: a retrospective analysis. Eur J Gastroenterol Hepatol 2022; 34:417-421. [PMID: 34284416 DOI: 10.1097/meg.0000000000002255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Selective internal radiation therapy (SIRT) is applied to hepatocellular carcinoma (HCC), a disease with increased incidence in the elderly. However, SIRT has rarely been specifically studied in elderly population. The aim of this study was to investigate efficacy and safety of SIRT in elderly HCC patients. METHODS We studied retrospectively data from patients treated with SIRT for HCC. Clinical and laboratory data were retrieved. We used 70-years old as threshold between younger and elderly populations, to compare outcomes. RESULTS A total of 222 patients treated with SIRT for HCC were studied, of which 134 patients were younger and 88 older. Median overall survival (OS) was not significantly different between younger and elderly group: 15.6 months (95% CI, 11.7-19.5) and 14.8 months (95% CI, 9.4-20.3) (P = 0.86). Age was not associated with OS in multivariable analysis, with a Hazard ratio of 1.09 (95% CI, 0.82-1.45, P = 0.55). Results of progression-free survival and responses were also similar in both groups. Toxicities were similar between the two groups, including the occurrence of radioembolization-induced liver disease (11.5 vs. 11.4%, P = 0.97). CONCLUSION SIRT appears to be a well-tolerated treatment with the same efficacy in elderly compared to younger patients in HCC. Our study is the first to study its impact with glass microspheres. This warrants confirmation in large prospective studies.
Collapse
|
16
|
d’Abadie P, Walrand S, Lhommel R, Hesse M, Borbath I, Jamar F. Optimization of the Clinical Effectiveness of Radioembolization in Hepatocellular Carcinoma with Dosimetry and Patient-Selection Criteria. Curr Oncol 2022; 29:2422-2434. [PMID: 35448170 PMCID: PMC9024927 DOI: 10.3390/curroncol29040196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Selective internal radiation therapy (SIRT) is part of the treatment strategy for hepatocellular carcinoma (HCC). Strong clinical data demonstrated the effectiveness of this therapy in HCC with a significant improvement in patient outcomes. Recent studies demonstrated a strong correlation between the tumor response and the patient outcome when the tumor-absorbed dose was assessed by nuclear medicine imaging. Dosimetry plays a key role in predicting the clinical response and can be optimized using a personalized method of activity planning (multi-compartmental dosimetry). This paper reviews the main clinical results of SIRT in HCC and emphasizes the central role of dosimetry for improving it effectiveness. Moreover, some patient and tumor characteristics predict a worse outcome, and toxicity related to SIRT treatment of advanced HCC patient selection based on the performance status, liver function, tumor characteristics, and tumor targeting using technetium-99m macro-aggregated albumin scintigraphy can significantly improve the clinical performance of SIRT.
Collapse
Affiliation(s)
- Philippe d’Abadie
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.W.); (R.L.); (M.H.); (F.J.)
- Correspondence: ; Tel.: +32-2764-7944
| | - Stephan Walrand
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.W.); (R.L.); (M.H.); (F.J.)
| | - Renaud Lhommel
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.W.); (R.L.); (M.H.); (F.J.)
| | - Michel Hesse
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.W.); (R.L.); (M.H.); (F.J.)
| | - Ivan Borbath
- Department of Gastroenterology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - François Jamar
- Department of Nuclear Medicine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, 1200 Brussels, Belgium; (S.W.); (R.L.); (M.H.); (F.J.)
| |
Collapse
|
17
|
Mahvash A, Chartier S, Turco M, Habib P, Griffith S, Brown S, Kappadath SC. A prospective, multicenter, open-label, single-arm clinical trial design to evaluate the safety and efficacy of 90Y resin microspheres for the treatment of unresectable HCC: the DOORwaY90 (Duration Of Objective Response with arterial Ytrrium-90) study. BMC Gastroenterol 2022; 22:151. [PMID: 35346070 PMCID: PMC8962126 DOI: 10.1186/s12876-022-02204-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/09/2022] [Indexed: 01/10/2023] Open
Abstract
Background Selective internal radiation therapy (SIRT) with yttrium-90 (90Y) resin microspheres is an established locoregional treatment option for unresectable hepatocellular carcinoma (HCC), which delivers a lethal dose of radiation to hepatic tumors, while sparing surrounding healthy tissue. DOORwaY90 is a prospective, multicenter, open-label, single arm study, designed to evaluate the safety and effectiveness of 90Y resin microspheres as first-line treatment in patients with unresectable/unablatable HCC. It is unique in that it is the first study with resin microspheres to utilize a personalized 90Y dosimetry approach, and independent review for treatment planning and response assessment.
Methods Eligibility criteria include unresectable/unablatable HCC, Barcelona Clinic Liver Cancer stage A, B1, B2, or C with a maximal single tumor diameter of ≤ 8 cm, and a sum of maximal tumor diameters of ≤ 12 cm, and at least one tumor ≥ 2 cm (long axis) per localized, modified Response Evaluation Criteria in Solid Tumors. Partition model dosimetry is used to determine the optimal dose; the target mean dose to tumor is ≥ 150 Gy. Patients are assessed at baseline and at regular intervals up until 12 months of treatment for response rates, safety, and quality of life (QoL). Post-treatment dosimetry is used to assess dose delivered to tumor and consider if retreatment is necessary. The co-primary endpoints are best objective response rate and duration of response. Secondary endpoints include grade ≥ 3 toxicity, QoL, and incidence of liver resection and transplantation post SIRT. Target recruitment is 100 patients. Discussion The results of this trial should provide further information on the potential use of SIRT with 90Y resin microspheres as first-line therapy for unresectable HCC. Trial registration Clinicaltrials.gov; NCT04736121; date of 1st registration, January 27, 2021, https://clinicaltrials.gov/ct2/show/NCT04736121. Supplementary Information The online version contains supplementary material available at 10.1186/s12876-022-02204-1.
Collapse
|
18
|
Guiu B, Garin E, Allimant C, Edeline J, Salem R. TARE in Hepatocellular Carcinoma: From the Right to the Left of BCLC. Cardiovasc Intervent Radiol 2022; 45:1599-1607. [PMID: 35149884 DOI: 10.1007/s00270-022-03072-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/23/2022] [Indexed: 02/06/2023]
Abstract
The Barcelona Clinic Liver Cancer (BCLC) system is the most commonly used staging system for hepatocellular carcinoma (HCC) in Western countries. BCLC aims to categorize patients into five stages with different prognoses and to allocate treatment according to these stages based on the best possible contemporary evidence. Transarterial radioembolization (TARE) has recently entered at the left of the BCLC algorithm (i.e., BCLC 0-A), mainly because of negative phase III trials in BCLC C stage. TARE has shown a steady increase in nationwide studies over the past 20 years and has even been adopted in some tertiary centers as the primary HCC treatment across all BCLC stages. We aimed to review the history of TARE in HCC, starting from advanced HCC and gradually expanding to earlier stages at the left of the BCLC system.
Collapse
Affiliation(s)
- Boris Guiu
- Department of Radiology, St-Eloi University Hospital, 80 Avenue Augustin Fliche, 34295, Montpellier, France.
| | - Etienne Garin
- Department of Nuclear Medicine, Centre de Lutte Contre le Cancer Eugène Marquis, 35000, Rennes, France
| | - Carole Allimant
- Department of Radiology, St-Eloi University Hospital, 80 Avenue Augustin Fliche, 34295, Montpellier, France
| | - Julien Edeline
- Department of Oncology, Centre de Lutte Contre le Cancer Eugène Marquis, 35000, Rennes, France
| | - Riad Salem
- Section of Interventional Radiology, Department of Radiology, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
19
|
Veenstra EB, Ruiter SJS, de Haas RJ, Bokkers RPH, de Jong KP, Noordzij W. Post-treatment three-dimensional voxel-based dosimetry after Yttrium-90 resin microsphere radioembolization in HCC. EJNMMI Res 2022; 12:9. [PMID: 35122166 PMCID: PMC8816978 DOI: 10.1186/s13550-022-00879-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/03/2022] [Indexed: 11/11/2022] Open
Abstract
Background Post-therapy [90Y] PET/CT-based dosimetry is currently recommended to validate treatment planning as [99mTc] MAA SPECT/CT is often a poor predictor of subsequent actual [90Y] absorbed dose. Treatment planning software became available allowing 3D voxel dosimetry offering tumour-absorbed dose distributions and dose-volume histograms (DVH). We aim to assess dose–response effects in post-therapy [90Y] PET/CT dosimetry in SIRT-treated HCC patients for predicting overall and progression-free survival (OS and PFS) and four-month follow-up tumour response (mRECIST). Tumour-absorbed dose and mean percentage of the tumour volume (V) receiving ≥ 100, 150, 200, or 250 Gy and mean minimum absorbed dose (D) delivered to 30%, 50%, 70%, and 90% of tumour volume were calculated from DVH’s. Depending on the mean tumour -absorbed dose, treated lesions were assigned to a < 120 Gy or ≥ 120 Gy group. Results Thirty patients received 36 SIRT treatments, totalling 43 lesions. Median tumour-absorbed dose was significantly different between the ≥ 120 Gy (n = 28, 207 Gy, IQR 154–311 Gy) and < 120 Gy group (n = 15, 62 Gy, IQR 49–97 Gy, p <0 .01). Disease control (DC) was found more frequently in the ≥ 120 Gy group (79%) compared to < 120 Gy (53%). Mean tumour-absorbed dose optimal cut-off predicting DC was 131 Gy. Tumour control probability was 54% (95% CI 52–54%) for a mean tumour-absorbed dose of 120 Gy and 90% (95% CI 87–92%) for 284 Gy. Only D30 was significantly different between DC and progressive disease (p = 0.04). For the ≥ 120 Gy group, median OS and PFS were longer (median OS 33 months, [range 8–33 months] and median PFS 23 months [range 4–33 months]) than the < 120 Gy group (median OS 17 months, [range 5–33 months] and median PFS 13 months [range 1–33 months]) (p < 0.01 and p = 0.03, respectively). Conclusions Higher 3D voxel-based tumour-absorbed dose in patients with HCC is associated with four-month DC and longer OS and PFS. DVHs in [90Y] SIRT could play a role in evaluative dosimetry.
Collapse
Affiliation(s)
- Emile B Veenstra
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
| | - Simeon J S Ruiter
- Department of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robbert J de Haas
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Reinoud P H Bokkers
- Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Koert P de Jong
- Department of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
20
|
Gulec SA, McGoron AJ. Radiomicrosphere Dosimetry: Principles and Current State of the Art. Semin Nucl Med 2022; 52:215-228. [DOI: 10.1053/j.semnuclmed.2021.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Nuclear Medicine Therapy in primary liver cancers. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
22
|
Yoo MY, Paeng JC, Kim HC, Lee MS, Lee JS, Lee DS, Kang KW, Cheon GJ. Efficacy of voxel-based dosimetry map for predicting response to trans-arterial radioembolization therapy for hepatocellular carcinoma: a pilot study. Nucl Med Commun 2021; 42:1396-1403. [PMID: 34392298 DOI: 10.1097/mnm.0000000000001471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Typical clinical dosimetry models for trans-arterial radioembolization (TARE) assume uniform dose distribution in each tissue compartment. We performed simple voxel-based dosimetry using post-treatment 90Y PET following TARE with 90Y-resin microspheres and investigated its prognostic value in a pilot cohort. METHOD Ten patients with 14 hepatocellular carcinoma lesions who underwent TARE with 90Y-resin microspheres were retrospectively included. The partition model-based expected target tumor dose (TDp) was calculated using a pretreatment 99mTc-macroaggregated albumin scan. From post-treatment 90Y-microsphere PET and voxel-wise S-value kernels, voxel-based dose maps were produced and the absorbed dose of each lesion (TDv) was calculated. Heterogeneity of intratumoral absorbed doses was assessed using the SD and coefficient of variation of voxel doses. The response of each lesion was determined based on contrast-enhanced MRI or CT, or both. Lesion responses were classified as local control success or failure. Prognostic values of dosimetry parameters and clinicopathological factors were evaluated in terms of progression-free survival (PFS) of each lesion. RESULTS TDv was significantly different between local control success and failure groups, whereas tumor size, TDp and intratumoral dose heterogeneity were not. Univariate survival analysis identified serum aspartate transaminase level ≥40 IU/L, tumor size ≥66 mm and TDv <81 Gy as significant prognostic factors for PFS. However, only TDv was an independent predictive factor in the multivariate analysis (P = 0.022). There was a significant correlation between TDv and PFS (P = 0.009; r = 0.669). CONCLUSIONS In TARE, voxel-based dose index TDv can be estimated on post-treatment 90Y PET using a simple method. TDv was a more effective prognostic factor for TARE than TDp and clinicopathologic factors in this pilot study. Further studies are warranted on the role of voxel-based dose and dose distribution in TARE.
Collapse
Affiliation(s)
- Min Young Yoo
- Departments of Nuclear Medicine, Chungbuk National University Hospital, Cheongju
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital
| | - Hyo-Cheol Kim
- Department of Radiology, Seoul National University Hospital
| | - Min Sun Lee
- Department of Nuclear Medicine, Seoul National University Hospital
- Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul
- Nuclear Emergency and Environmental Protection Division, Korea Atomic Energy Research Institute, Daejeon
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University Hospital
- Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul
- Department of Biomedical Sciences, Seoul National University College of Medicine
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University Hospital
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University Hospital
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University Hospital
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
23
|
Hesse M, d'Abadie P, Lhommel R, Jamar F, Walrand S. Yttrium-90 TOF-PET-Based EUD Predicts Response Post Liver Radioembolizations Using Recommended Manufacturer FDG Reconstruction Parameters. Front Oncol 2021; 11:592529. [PMID: 34676157 PMCID: PMC8523947 DOI: 10.3389/fonc.2021.592529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Explaining why 90Y TOF-PET based equivalent uniform dose (EUD) using recommended manufacturer FDG reconstruction parameters has been shown to predict response. Methods The hot rods insert of a Jaszczak deluxe phantom was partially filled with a 2.65 GBq 90Y - 300ml DTPA water solution resulting in a 100 Gy mean absorbed dose in the 6 sectors. A two bed 20min/position acquisition was performed on a 550ps- and on a 320ps- TOF-PET/CT and reconstructed with recommended manufacturer FDG reconstruction parameters, without and with additional filtering. The whole procedure was repeated on both PET after adding 300ml of water (50Gy setup). The phantom was acquired again after decay by a factor of 10 (5Gy setup), but with 200min per bed position. For comparison, the phantom was also acquired with 18F activity corresponding to a clinical FDG whole body acquisition. Results The 100Gy-setup provided a hot rod sectors image almost as good as the 18F phantom. However, despite acquisition time compensation, the 5Gy-setup provides much lower quality imaging. TOF-PET based sectors EUDs for the three large rod sectors agreed with the actual EUDs computed with a radiosensitivity of 0.021Gy-1 well in the range observed in external beam radiotherapy (EBRT), i.e. 0.01-0.04Gy-1. This agreement explains the reunification of the dose-response relationships of the glass and resin spheres in HCC using the TOF-PET based EUD. Additional filtering reduced the EUDs agreement quality. Conclusions Recommended manufacturer FDG reconstruction parameters are suitable in TOF-PET post 90Y liver radioembolization for accurate tumour EUD computation. The present results rule out the use of low specific activity phantom studies to optimize reconstruction parameters.
Collapse
Affiliation(s)
- Michel Hesse
- Nuclear Medicine, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Philipe d'Abadie
- Nuclear Medicine, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Renaud Lhommel
- Nuclear Medicine, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Francois Jamar
- Nuclear Medicine, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Stephan Walrand
- Nuclear Medicine, Cliniques universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
24
|
Lakhoo J, Perez TH, Borgmann AJ, Brown DB. Lobar Radioembolization for Intermediate and Advanced Hepatocellular Carcinoma: Retrospective and Prospective Data. Semin Intervent Radiol 2021; 38:412-418. [PMID: 34629707 DOI: 10.1055/s-0041-1733903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Historically, outcomes reporting for radioembolization with yttrium-90 ( 90 Y) of hepatocellular carcinoma has included patients across the range of Barcelona Clinic Liver Cancer (BCLC) stages. With the potential for curative radiation segmentectomy for BCLC 0/A patients and evolution of systemic therapy for BCLC C patients, focused review by group is of increasing interest. In this review, we report on efficacy of 90 Y in patients with intermediate (BCLC B) and advanced (BCLC C) hepatocellular carcinoma as well as expected toxicities. Additionally, we review existing trials comparing 90 Y to transarterial chemoembolization and systemic treatments in these patient groups and outline future studies.
Collapse
Affiliation(s)
- Janesh Lakhoo
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thomas H Perez
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anthony J Borgmann
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel B Brown
- Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
25
|
Plachouris D, Tzolas I, Gatos I, Papadimitroulas P, Spyridonidis T, Apostolopoulos D, Papathanasiou N, Visvikis D, Plachouri KM, Hazle JD, Kagadis GC. A deep-learning-based prediction model for the biodistribution of 90 Y microspheres in liver radioembolization. Med Phys 2021; 48:7427-7438. [PMID: 34628667 DOI: 10.1002/mp.15270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Radioembolization with 90 Y microspheres is a treatment approach for liver cancer. Currently, employed dosimetric calculations exhibit low accuracy, lacking consideration of individual patient, and tissue characteristics. PURPOSE The purpose of the present study was to employ deep learning (DL) algorithms to differentiate patterns of pretreatment distribution of 99m Tc-macroaggregated albumin on SPECT/CT and post-treatment distribution of 90 Y microspheres on PET/CT and to accurately predict how the 90 Y-microspheres will be distributed in the liver tissue by radioembolization therapy. METHODS Data for 19 patients with liver cancer (10 with hepatocellular carcinoma, 5 with intrahepatic cholangiocarcinoma, 4 with liver metastases) who underwent radioembolization with 90 Y microspheres were used for the DL training. We developed a 3D voxel-based variation of the Pix2Pix model, which is a special type of conditional GANs designed to perform image-to-image translation. SPECT and CT scans along with the clinical target volume for each patient were used as inputs, as were their corresponding post-treatment PET scans. The real and predicted absorbed PET doses for the tumor and the whole liver area were compared. Our model was evaluated using the leave-one-out method, and the dose calculations were measured using a tissue-specific dose voxel kernel. RESULTS The comparison of the real and predicted PET/CT scans showed an average absorbed dose difference of 5.42% ± 19.31% and 0.44% ± 1.64% for the tumor and the liver area, respectively. The average absorbed dose differences were 7.98 ± 31.39 Gy and 0.03 ± 0.25 Gy for the tumor and the non-tumor liver parenchyma, respectively. Our model had a general tendency to underpredict the dosimetric results; the largest differences were noticed in one case, where the model underestimated the dose to the tumor area by 56.75% or 72.82 Gy. CONCLUSIONS The proposed deep-learning-based pretreatment planning method for liver radioembolization accurately predicted 90 Y microsphere biodistribution. Its combination with a rapid and accurate 3D dosimetry method will render it clinically suitable and could improve patient-specific pretreatment planning.
Collapse
Affiliation(s)
- Dimitris Plachouris
- Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece
| | - Ioannis Tzolas
- School of Electrical and Computer Engineering, University of Patras, Rion, Greece
| | - Ilias Gatos
- Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece
| | - Panagiotis Papadimitroulas
- Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece.,R&D Department, Bioemission Technology Solutions, Athens, Greece
| | - Trifon Spyridonidis
- Department of Nuclear Medicine, School of Medicine, University of Patras, Rion, Greece
| | | | | | | | | | - John D Hazle
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - George C Kagadis
- Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece.,Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
26
|
Sarwar A, Ali A, Ljuboja D, Weinstein JL, Shenoy-Bhangle AS, Nasser IA, Morrow MK, Faintuch S, Curry MP, Bullock AJ, Ahmed M. Neoadjuvant Yttrium-90 Transarterial Radioembolization with Resin Microspheres Prescribed Using the Medical Internal Radiation Dose Model for Intrahepatic Cholangiocarcinoma. J Vasc Interv Radiol 2021; 32:1560-1568. [PMID: 34454031 DOI: 10.1016/j.jvir.2021.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/09/2021] [Accepted: 08/14/2021] [Indexed: 01/06/2023] Open
Abstract
PURPOSE To evaluate outcomes of patients with intrahepatic cholangiocarcinoma (iCCA) undergoing neoadjuvant yttrium-90 (90Y) transarterial radioembolization (TARE) with resin microspheres prescribed using the Medical Internal Radiation Dose (MIRD) model. MATERIALS AND METHODS This retrospective institutional review board-approved study included 37 patients with iCCA treated with 90Y-TARE from October 2015 to September 2020. The primary outcome was overall survival (OS) from 90Y-TARE. The secondary outcomes were progression-free survival (PFS), Response Evaluation Criteria In Solid Tumors 1.1 imaging response, and downstaging to resection. Patients with tumor proximity to the middle hepatic vein (<1 cm) and/or insufficient future liver remnant were treated with neoadjuvant intent (n = 21). Patients were censored at the time of surgery or at the last follow-up for the Kaplan-Meier survival analysis. RESULTS For 31 patients (69 years; interquartile range, 64-74 years; 20 men [65%]) included in the study, the first-line therapy was 90Y-TARE for 23 (74%) patients. Imaging assessment at 6 months showed a disease control rate of 86%. The median PFS was 5.4 months (95% confidence interval [CI], 3-not reached). The PFS was higher after first-line 90Y-TARE (7.4 months [95% CI, 5.3-not reached]) than that after subsequent 90Y-TARE (2.7 months [95% CI, 2-not reached]) (P = .007). The median OS was 22 months (95% CI, 7.3-not reached). The 1- and 2-year OS rates were 60% (95% CI, 41%-86%) and 40% (95% CI, 19.5%-81%). In patients treated with neoadjuvant intent, 11 of 21 patients (52%) underwent resections. The resection margins were R0 and R1 in 8 (73%) and 3 (27%) of 11 patients, respectively. On histological review in 10 patients, necrosis of ≥90% tumor was achieved in 7 of 10 patients (70%). CONCLUSIONS First-line 90Y-TARE prescribed using the MIRD model as neoadjuvant therapy for iCCA results in good survival outcome and R0 resection for unresectable patients.
Collapse
Affiliation(s)
- Ammar Sarwar
- Division of Vascular and Interventional Radiology, Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts.
| | - Aamir Ali
- Division of Vascular and Interventional Radiology, Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Damir Ljuboja
- Division of Vascular and Interventional Radiology, Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jeffrey L Weinstein
- Division of Vascular and Interventional Radiology, Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Anuradha S Shenoy-Bhangle
- Division of Abdominal Imaging, Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Imad A Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Matthew K Morrow
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Salomao Faintuch
- Division of Vascular and Interventional Radiology, Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Michael P Curry
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Andrea J Bullock
- Division of Hematology and Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Muneeb Ahmed
- Division of Vascular and Interventional Radiology, Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
27
|
Cheng B, Sethi I, Villalobos A, Wagstaff W, Schuster DM, Bercu Z, Brandon D, Kokabi N. Determination of tumour dose response threshold and implication on survival in patients with HCC treated with Y90 radiation segmentectomy: a simple semi-quantitative analysis. Nucl Med Commun 2021; 42:892-898. [PMID: 33795611 DOI: 10.1097/mnm.0000000000001420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the relationship between Yttrium-90 (Y90) tumour dose and response rate in patients with hepatocellular carcinoma (HCC) who undergo Y90 radiation segmentectomy (Y90-RS) and to determine implication on overall survival (OS). MATERIALS AND METHODS Post Y90-RS Bremsstrahlung single-photon emission computed tomography/CT of 105 HCC patients with 110 treatments performed with glass microspheres was retrospectively analysed. The dose-volume histogram of the targeted tumour was determined with commercially available dosimetry software. Tumour response at 3 months was evaluated using modified Response Evaluation Criteria in Solid Tumours. Tumour dose thresholds associated with the objective response with 80% specificity were then used to evaluate implication on OS using Kaplan-Meier estimation and log-rank analysis. RESULTS Tumour dose thresholds to predict objective response with 80% specificity were the following: maximum tumour dose (748 Gy), mean tumour dose (568 Gy), minimum tumour dose of 30% tumour volume (608 Gy), minimum tumour dose of 50% tumour volume (565 Gy), minimum tumour dose of 70% tumour volume (464 Gy) and minimum tumour dose of 100% tumour volume (213 Gy). These parameters all significantly predicted tumour response with areas under the ROC curve of >0.6. Mean tumour dose of ≥250 Gy predicted median OS of 43.67 vs. 17.87 months for others (P = 0.026). Minimum dose ≥180 Gy to 100% of tumour volume predicted median OS of 44.93 vs. 35.87 months for others (P = 0.043). CONCLUSION In patients with HCC undergoing Y90-RS, mean tumour dose ≥250 Gy and minimum tumour dose of ≥180 Gy to 100% of tumour volume are both significantly correlated with higher objective tumour response and prolonged survival.
Collapse
Affiliation(s)
| | - Ila Sethi
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences
| | - Alex Villalobos
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William Wagstaff
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David M Schuster
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences
| | - Zachary Bercu
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David Brandon
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences
| | - Nima Kokabi
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Kwee SA, Wong LL, Sato MM, Acoba JD, Rho YS, Srivastava A, Landsittel DP. Transarterial Radioembolization for Hepatocellular Carcinoma with Major Vascular Invasion: A Nationwide Propensity Score-Matched Analysis with Target Trial Emulation. J Vasc Interv Radiol 2021; 32:1258-1266.e6. [PMID: 34242775 DOI: 10.1016/j.jvir.2021.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To examine National Cancer Database (NCDB) data to comparatively evaluate overall survival (OS) between patients undergoing transarterial radioembolization (TARE) and those undergoing systemic therapy for hepatocellular carcinoma with major vascular invasion (HCC-MVI). METHODS One thousand five hundred fourteen patients with HCC-MVI undergoing first-line TARE or systemic therapy were identified from the NCDB. OS was compared using propensity score-matched Cox regression and landmark analysis. Efficacy was also compared within a target trial framework. RESULTS TARE usage doubled between 2010 and 2015. Intervals before treatment were longer for TARE than for systemic therapy (mean [median], 66.5 [60] days vs 46.8 (35) days, respectively, P < .0001). In propensity-score-matched and landmark-time-adjusted analyses, TARE was found to be associated with a hazard ratio of 0.74 (95 % CI, 0.60-0.91; P = .005) and median OS of 7.1 months (95 % CI, 5.0-10.5) versus 4.9 months (95 % CI, 3.9-6.5) for systemically treated patients. In an emulated target trial involving 236 patients with unilobular HCC-MVI, a low number of comorbidities, creatinine levels <2.0 mg/dL, bilirubin levels <2.0 mg/dL, and international normalized ratio <1.7, TARE was found to be associated with a hazard ratio of 0.57 (95 % CI, 0.39-0.83; P = .004) and a median OS of 12.9 months (95 % CI, 7.6-19.2) versus 6.5 months (95 % CI, 3.6-11.1) for the systemic therapy arm. CONCLUSIONS In propensity-score-matched analyses involving pragmatic and target trial HCC-MVI cohorts, TARE was found to be associated with significant survival benefits compared with systemic therapy. Although not a substitute for prospective trials, these findings suggest that the increasing use of TARE for HCC-MVI is accompanied by improved OS. Further trials of TARE in patients with HCC-MVI are needed, especially to compare with newer systemic therapies.
Collapse
Affiliation(s)
- Sandi A Kwee
- Queen's Medical Center, Honolulu, Hawaii; Clinical and Translational Science Section, Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii.
| | - Linda L Wong
- Clinical and Translational Science Section, Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | | | - Jared D Acoba
- Queen's Medical Center, Honolulu, Hawaii; Clinical and Translational Science Section, Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | | | - Avantika Srivastava
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Douglas P Landsittel
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
Kurilova I, Bendet A, Fung EK, Petre EN, Humm JL, Boas FE, Crane CH, Kemeny N, Kingham TP, Cercek A, D'Angelica MI, Beets-Tan RGH, Sofocleous CT. Radiation segmentectomy of hepatic metastases with Y-90 glass microspheres. Abdom Radiol (NY) 2021; 46:3428-3436. [PMID: 33606062 DOI: 10.1007/s00261-021-02956-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To evaluate safety and efficacy of radiation segmentectomy (RS) with 90Y glass microspheres in patients with limited metastatic liver disease not amenable to resection or percutaneous ablation. METHODS Patients with ≤ 3 tumors treated with RS from 6/2015 to 12/2017 were included. Target tumor radiation dose was > 190 Gy based on medical internal radiation dose (MIRD) dosimetry. Tumor response, local tumor progression (LTP), LTP-free survival (LTPFS) and disease progression rate in the treated segment were defined using Choi and RECIST 1.1 criteria. Toxicities were evaluated using modified SIR criteria. RESULTS Ten patients with 14 tumors underwent 12 RS. Median tumor size was 3 cm (range 1.4-5.6). Median follow-up was 17.8 months (range 1.6-37.3). Response rates per Choi and RECIST 1.1 criteria were 8/8 (100%) and 4/9 (44%), respectively. Overall LTP rate was 3/14 (21%) during the study period. One-, two- and three-year LTPFS was 83%, 83% and 69%, respectively. Median LTPFS was not reached. Disease progression rate in the treated segment was 6/18 (33%). Median overall survival was 41.5 months (IQR 16.7-41.5). Median delivered tumor radiation dose was 293 Gy (range 163-1303). One major complication was recorded in a patient post-Whipple procedure who suffered anaphylactic reaction to prophylactic cefotetan and liver abscess in RS region 6.5 months post-RS. All patients were alive on last follow-up. CONCLUSION RS of ≤ 3 hepatic segments can safely provide a 2-year local tumor control rate of 83% in selected patients with limited metastatic liver disease and limited treatment options. Optimal dosimetry methodology requires further investigation.
Collapse
Affiliation(s)
- I Kurilova
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - A Bendet
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - E K Fung
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - E N Petre
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - J L Humm
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - F E Boas
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - C H Crane
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - N Kemeny
- Department of Gastrointestinal Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - T P Kingham
- Hepatopancreatobiliary Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - A Cercek
- Department of Gastrointestinal Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - M I D'Angelica
- Hepatopancreatobiliary Service, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - R G H Beets-Tan
- Department of Radiology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - C T Sofocleous
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
30
|
Hepatobiliary Scintigraphy and Glass 90Y Radioembolization with Personalized Dosimetry: Dynamic Changes in Treated and Nontreated Liver. Diagnostics (Basel) 2021; 11:diagnostics11060931. [PMID: 34064296 PMCID: PMC8224303 DOI: 10.3390/diagnostics11060931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/25/2022] Open
Abstract
Background: The functional changes that occur over time in the liver following 90Y-radioembolization (RE) using personalized dosimetry (PD) remain to be investigated. Methods: November 2016–October 2019: we retrospectively included hepatocellular carcinoma (HCC) patients treated by 90Y-glass RE using PD, who underwent hepatobiliary scintigraphy (HBS) at baseline and at 15 days, 1, 2, 3, and 6 months after RE. Results: There were 16 patients with unilobar disease (100%) included, and 64 HBS were performed. Whole liver function significantly decreased over time. The loss was maximal at 2 weeks: −32% (p = 0.002) and remained below baseline at 1 (−15%; p = 0.002), 2 (−25%; p < 0.001), and 3 months (−16%; p = 0.027). No radioembolization-induced liver disease was observed. Treated liver function strongly decreased to reach −64% (p < 0.001) at 2 months. Nontreated liver function decreased at 2 weeks (−21%; p = 0.027) and remained below baseline before reaching +20% (p = 0.002) and +59% (p < 0.001) at 3 and 6 months, respectively. Volumetric and functional changes exhibited parallel evolutions in the treated livers (p = 0.01) but independent evolutions in the nontreated livers (p = 0.08). Conclusion: RE using PD induces significant regional changes in liver function over time. As early as 15 days following RE, both the treated and nontreated livers showed a decreased function. Nontreated liver function recovered after 3 months and greatly increased afterwards.
Collapse
|
31
|
Elsayed M, Loya M, Galt J, Schuster DM, Bercu ZL, Newsome J, Brandon D, Benenati S, Behbahani K, Duszak R, Sethi I, Kokabi N. Same day yttrium-90 radioembolization with single photon emission computed tomography/computed tomography: An opportunity to improve care during the COVID-19 pandemic and beyond. World J Gastrointest Oncol 2021; 13:440-452. [PMID: 34040704 PMCID: PMC8131908 DOI: 10.4251/wjgo.v13.i5.440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/21/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has made it more challenging for patients to undergo yttrium-90 (Y-90) radioembolization (RE). Same day Y-90 RE provides an opportunity to minimize logistical challenges and infection risk associated with COVID-19, thus improving patient access.
AIM To describe the use of same day Y-90 RE with routine single photon emission computed tomography/computed tomography (SPECT/CT) in order to optimize therapy.
METHODS All patients were selected for Y-90 RE through a multidisciplinary tumor board, and were screened and tested for COVID-19 infection per institutional protocol. A same day procedure was developed, consisting of angiography, imaging, and Y-90 resin particle delivery. Routine SPECT/CT after technetium-99m macroaggregated albumin (Tc-99m MAA) administration was performed for assessment of arterial supply, personalized dosimetry, and extrahepatic activity. Post-treatment Y-90 bremsstrahlung SPECT/CT was performed for confirmation of particle delivery, by utilization of energy windowing to limit signal from previously administered Tc-99m MAA particles.
RESULTS A total of 14 patients underwent same day Y-90 RE between March and June 2020. Mean lung shunt fraction was 6.13% (range 3.5%-13.1%). Y-90 RE was performed for a single lesion in 7 patients, while the remaining 7 patients had treatment of multifocal lesions. The largest lesion measured 8.3 cm. All patients tolerated the procedure well and were discharged the same day.
CONCLUSION Same day Y-90 RE with resin-based microspheres is feasible, and provides an opportunity to mitigate infection risk and logistical challenges associated with the COVID-19 pandemic and beyond. We recommend consideration of SPECT/CT, especially among patients with complex malignancies, for the potential to improve outcomes and eligibility of patients to undergo same day Y-90 RE.
Collapse
Affiliation(s)
- Mohammad Elsayed
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Mohammad Loya
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - James Galt
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - David M Schuster
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Zachary L Bercu
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Janice Newsome
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - David Brandon
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Sonia Benenati
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Keywan Behbahani
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Richard Duszak
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Ila Sethi
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Nima Kokabi
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA 30322, United States
| |
Collapse
|
32
|
Roosen J, Klaassen NJM, Westlund Gotby LEL, Overduin CG, Verheij M, Konijnenberg MW, Nijsen JFW. To 1000 Gy and back again: a systematic review on dose-response evaluation in selective internal radiation therapy for primary and secondary liver cancer. Eur J Nucl Med Mol Imaging 2021; 48:3776-3790. [PMID: 33839892 PMCID: PMC8484215 DOI: 10.1007/s00259-021-05340-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/25/2021] [Indexed: 12/21/2022]
Abstract
Purpose To systematically review all current evidence into the dose-response relation of yttrium-90 and holmium-166 selective internal radiation therapy (SIRT) in primary and secondary liver cancer. Methods A standardized search was performed in PubMed (MEDLINE), Embase, and the Cochrane Library in order to identify all published articles on dose-response evaluation in SIRT. In order to limit the results, all articles that investigated SIRT in combination with other therapy modalities (such as chemotherapy) were excluded. Results A total of 3038 records were identified of which 487 were screened based on the full text. Ultimately, 37 studies were included for narrative analysis. Meta-analysis could not be performed due to the large heterogeneity in study and reporting designs. Out of 37 studies, 30 reported a ‘mean dose threshold’ that needs to be achieved in order to expect a response. This threshold appears to be higher for hepatocellular carcinoma (HCC, 100–250 Gy) than for colorectal cancer metastases (CRC, 40–60 Gy). Reported thresholds tend to be lower for resin microspheres than when glass microspheres are used. Conclusion Although the existing evidence demonstrates a dose-response relationship in SIRT for both primary liver tumours and liver metastases, many pieces of the puzzle are still missing, hampering the definition of standardized dose thresholds. Nonetheless, most current evidence points towards a target mean dose of 100–250 Gy for HCC and 40–60 Gy for CRC. The field would greatly benefit from a reporting standard and prospective studies designed to elucidate the dose-response relation in different tumour types. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05340-0.
Collapse
Affiliation(s)
- Joey Roosen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nienke J M Klaassen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lovisa E L Westlund Gotby
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christiaan G Overduin
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel Verheij
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark W Konijnenberg
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J Frank W Nijsen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
33
|
Rodríguez-Fraile M, Ezponda A, Grisanti F, Morán V, Calvo M, Berián P, de la Cuesta AM, Sancho L, Iñarrairaegui M, Sangro B, Bilbao JI. The joint use of 99mTc-MAA-SPECT/CT and cone-beam CT optimizes radioembolization planning. EJNMMI Res 2021; 11:23. [PMID: 33661428 PMCID: PMC7933314 DOI: 10.1186/s13550-021-00764-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose To determine which imaging method used during radioembolization (RE) work-up: contrast-enhanced computed tomography (CECT), 99mTc-MAA-SPECT/CT or cone beam-CT (CBCT), more accurately predicts the final target volume (TgV) as well as the influence that each modality has in the dosimetric calculation. Methods TgVs from 99mTc-MAA-SPECT/CT, CECT and CBCT were consecutively obtained in 24 patients treated with RE and compared with 90Y PET/CT TgV. Using the TgVs estimated by each imaging modality and a fictitious activity of 1 GBq, the corresponding absorbed doses by tumor and non-tumoral parenchyma were calculated for each patient. The absorbed doses for each modality were compared with the ones obtained using 90Y PET/CT TgV. Results 99mTc-MAA-SPECT/CT predicted 90Y PET/CT TgV better than CBCT or CECT, even for selective or superselective administrations. Likewise, 99mTc-MAA-SPECT/CT showed dosimetric values more similar to those obtained with 90Y PET/CT. Nevertheless, CBCT provided essential information for RE planning, such as ensuring the total coverage of the tumor and, in cases with more than one feeding artery, splitting the activity according to the volume of tumor perfused by each artery. Conclusion The joint use of 99mTc-MAA-SPECT/CT and CBCT optimizes dosimetric planning for RE procedures, enabling a more accurate personalized approach.
Collapse
Affiliation(s)
| | - Ana Ezponda
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Fabiana Grisanti
- Nuclear Medicine Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Verónica Morán
- Medical Physics Department, Clínica Universidad de Navarra, Madrid, Spain
| | - Marta Calvo
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pablo Berián
- Radiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Lidia Sancho
- Nuclear Medicine Department, Clínica Universidad de Navarra, Madrid, Spain
| | - Mercedes Iñarrairaegui
- Department of Internal Medicine-Hepatology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Bruno Sangro
- Department of Internal Medicine-Hepatology, Clínica Universidad de Navarra, Pamplona, Spain
| | | |
Collapse
|
34
|
Plachouris D, Mountris KA, Papadimitroulas P, Spyridonidis T, Katsanos K, Apostolopoulos D, Papathanasiou N, Hazle JD, Visvikis D, Kagadis GC. Clinical Evaluation of a Three-Dimensional Internal Dosimetry Technique for Liver Radioembolization with 90Y Microspheres Using Dose Voxel Kernels. Cancer Biother Radiopharm 2021; 36:809-819. [PMID: 33656372 DOI: 10.1089/cbr.2020.4554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: The purpose of this study was to develop a rapid, reliable, and efficient tool for three-dimensional (3D) dosimetry treatment planning and post-treatment evaluation of liver radioembolization with 90Y microspheres, using tissue-specific dose voxel kernels (DVKs) that can be used in everyday clinical practice. Materials and Methods: Two tissue-specific DVKs for 90Y were calculated through Monte Carlo (MC) simulations. DVKs for the liver and lungs were generated, and the dose distribution was compared with direct MC simulations. A method was developed to produce a 3D dose map by convolving the calculated DVKs with the activity biodistribution derived from clinical single-photon emission computed tomography (SPECT) or positron emission tomography (PET) images. Image registration for the SPECT or PET images with the corresponding computed tomography scans was performed before dosimetry calculation. The authors first compared the DVK convolution dosimetry with a direct full MC simulation on an XCAT anthropomorphic phantom. They then tested it in 25 individual clinical cases of patients who underwent 90Y therapy. All MC simulations were carried out using the GATE MC toolkit. Results: Comparison of the measured absorbed dose using tissue-specific DVKs and direct MC simulation on 25 patients revealed a mean difference of 1.07% ± 1.43% for the liver and 1.03% ± 1.21% for the tumor tissue, respectively. The largest difference between DVK convolution and full MC dosimetry was observed for the lung tissue (10.16% ± 1.20%). The DVK statistical uncertainty was <0.75% for both media. Conclusions: This semiautomatic algorithm is capable of performing rapid, accurate, and efficient 3D dosimetry. The proposed method considers tissue and activity heterogeneity using tissue-specific DVKs. Furthermore, this method provides results in <1 min, making it suitable for everyday clinical practice.
Collapse
Affiliation(s)
- Dimitris Plachouris
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece
| | - Konstantinos A Mountris
- Department of Electrical Engineering, Aragon Institute of Engineering Research, IIS Aragon, University of Zaragoza, Zaragoza, Spain
| | | | - Trifon Spyridonidis
- Department of Nuclear Medicine, School of Medicine, University of Patras, Rion, Greece
| | | | | | | | - John D Hazle
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - George C Kagadis
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Rion, Greece.,Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
35
|
Selective Internal Radiation Therapy for Hepatocellular Carcinoma Across the Barcelona Clinic Liver Cancer Stages. Dig Dis Sci 2021; 66:899-911. [PMID: 32281043 DOI: 10.1007/s10620-020-06245-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/29/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the second most common lethal cancer, and there is a need for effective therapies. Selective internal radiation therapy (SIRT) has been increasingly used, but is not supported by guidelines due to a lack of solid evidence. AIMS Determine the efficacy and safety of SIRT in HCC across the Barcelona Clinic Liver Cancer (BCLC) stages A, B, and C. METHODS Consecutive patients that received SIRT between 2006 and 2016 at two centers in Canada were evaluated. RESULTS We analyzed 132 patients, 12 (9%), 62 (47%), and 58 (44%) belonged to BCLC stages A, B, and C; mean age was 61.2 (SD ± 9.2), and 89% were male. Median survival was 12.4 months (95% CI 9.6-16.6), and it was different across the stages: 59.7 (95% CI NA), 12.8 (95% CI 10.2-17.5), and 9.3 months (95% CI 5.9-11.8) in BCLC A, B, and C, respectively (p = 0.009). Independent factors associated with survival were previous HCC treatment (HR 2.01, 95% CI 1.23-3.27, p = 0.005), bi-lobar disease (HR 2.25, 95% CI 1.30-3.89, p = 0.003), ascites (HR 1.77, 95% CI 0.99-3.13, p = 0.05), neutrophil-to-lymphocyte ratio (HR 1.11, 95% CI 1.02-1.20, p = 0.01), Albumin-Bilirubin (ALBI) grade-3 (HR 2.69, 95% CI 1.22-5.92, p = 0.01), tumor thrombus (HR 2.95, 95% CI 1.65-5.24, p < 0.001), and disease control rate (HR 0.62, 95% CI 0.39-0.96, p = 0.03). Forty-four (33%) patients developed severe adverse events, and ALBI-3 was associated with higher risk of these events. CONCLUSIONS SIRT has the potential to be used across the BCLC stages in cases with preserved liver function. When using it as a rescue treatment, one should consider variables reflecting liver function, HCC extension, and systemic inflammation, which are associated with mortality.
Collapse
|
36
|
Diagnostic and prognostic value of 99mTc-MAA SPECT/CT for treatment planning of 90Y-resin microsphere radioembolization for hepatocellular carcinoma: comparison with planar image. Sci Rep 2021; 11:3207. [PMID: 33547398 PMCID: PMC7864932 DOI: 10.1038/s41598-021-82887-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
99mTc-macroaggregated albumin (MAA) imaging is performed before transarterial radioembolization (TARE), in which SPECT/CT is presumed more precise than planar image. However, additive role of SPECT/CT has not been well established. Thirty-four consecutive hepatocellular carcinoma patients of intermediate and advanced stages who underwent 90Y-microsphere TARE were recruited. On pre-treatment planning scan using 99mTc-MAA, image characteristics and absorbed dose for target tumors calculated by partition model methods were estimated on planar image and SPECT/CT, respectively. The measurements were repeated on post-treatment 90Y PET/CT, as the reference standard. Treatment response was assessed and predictive values of image parameters were analyzed. The image characteristics including heterogeneity, necrosis and thrombosis uptake were better delineated on SPECT/CT than planar scan. The agreement and correlation of TNr between SPECT/CT and PET/CT were stronger than those between planar scan and PET/CT. Tumor dose estimated on 99mTc-MAA SPECT/CT was more effective than planar image for prediction of treatment response, with cutoff value 125 Gy (sensitivity of 86% and specificity of 75%). In conclusion, 99mTc-MAA SPECT/CT is more closely correlated with post-treatment 90Y PET/CT, and is more effective for predicting treatment response than planar scan. SPECT/CT is superior to planar image in simulation before 90Y TARE.
Collapse
|
37
|
Abstract
Radiopharmaceutical therapy (RPT) has grown rapidly over the last decade for treatment of numerous cancer types. Dosimetric guidance, as with other radiotherapy modalities, has benefitted patients by reducing the incidence of side effects and improving overall survival in populations treated under this paradigm. Development of tools and techniques for dosimetry-guided therapy is ongoing, with numerous the Food and Drug Administration-cleared products reaching the U.S. market in 2019. Safe use of commercial dosimetry platforms requires a deep understanding of the underlying physical principles and thoroughly vetted input data. Likewise, interpretation of dosimetry results relies on an understanding of radiobiological principles, and the principles of uncertainty propagation. In this article, we review strategies commonly employed for dosimetry-guided RPT - including quantitative imaging, dose calculation methods, and modeling of dose across time-points. Additionally, we review recent literature evidence (2013-2020) demonstrating the efficacy of personalized RPT.
Collapse
Affiliation(s)
| | - Robert F Hobbs
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
38
|
Ghosn M, Derbel H, Kharrat R, Oubaya N, Mulé S, Chalaye J, Regnault H, Amaddeo G, Itti E, Luciani A, Kobeiter H, Tacher V. Prediction of overall survival in patients with hepatocellular carcinoma treated with Y-90 radioembolization by imaging response criteria. Diagn Interv Imaging 2020; 102:35-44. [PMID: 33012693 DOI: 10.1016/j.diii.2020.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the potential of imaging criteria in predicting overall survival of patients with hepatocellular carcinoma (HCC) after a first transcatheter arterial yttrium-90 radioembolization (TARE) MATERIALS AND METHODS: From October 2013 to July 2017, 37 patients with HCC were retrospectively included. There were 34 men and 3 women with a mean age of 60.5±10.2 (SD) years (range: 32.7-78.9 years). Twenty-five patients (68%) were Barcelona Clinic Liver Cancer (BCLC) C and 12 (32%) were BCLC B. Twenty-four primary index tumors (65%) were>5cm. Three radiologists evaluated tumor response on pre- and 4-7 months post-TARE magnetic resonance imaging or computed tomography examinations, using Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, modified RECIST (mRECIST), European Association for Study of the Liver (EASL), volumetric RECIST (vRECIST), quantitative EASL (qEASL) and the Liver Imaging Reporting and Data System treatment response algorithm. Kaplan-Meier survival curves were used to compare responders and non-responders for each criterion. Univariate and multivariate Cox proportional hazard ratio (HR) analysis were used to identify covariates associated with overall survival. Fleiss kappa test was used to assess interobserver agreement. RESULTS At multivariate analysis, RECIST 1.1 (HR: 0.26; 95% confidence interval [95% CI]: 0.09-0.75; P=0.01), mRECIST (HR: 0.22; 95% CI: 0.08-0.59; P=0.003), EASL (HR: 0.22; 95% CI: 0.07-0.63; P=0.005), and qEASL (HR: 0.30; 95% CI: 0.12-0.80; P=0.02) showed a significant difference in overall survival between responders and nonresponders. RECIST 1.1 had the highest interobserver reproducibility. CONCLUSION RECIST and mRECIST seem to be the best compromise between reproducibility and ability to predict overall survival in patients with HCC treated with TARE.
Collapse
Affiliation(s)
- M Ghosn
- Department of Medical Imaging, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France.
| | - H Derbel
- Department of Medical Imaging, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France; Unité Inserm 955, équipe 18, IMRB, University of Paris Est Créteil, 94010 Créteil, France
| | - R Kharrat
- Department of Medical Imaging, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France
| | - N Oubaya
- Public Health Department, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France
| | - S Mulé
- Department of Medical Imaging, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France; Unité Inserm 955, équipe 18, IMRB, University of Paris Est Créteil, 94010 Créteil, France
| | - J Chalaye
- Department of Nuclear Medicine, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris, 51, avenue du-Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France
| | - H Regnault
- Department of Hepatology, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France; Unité Inserm 955, équipe 18, IMRB, University of Paris Est Créteil, 94010 Créteil, France
| | - G Amaddeo
- Department of Hepatology, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France; Unité Inserm 955, équipe 18, IMRB, University of Paris Est Créteil, 94010 Créteil, France
| | - E Itti
- Department of Nuclear Medicine, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris, 51, avenue du-Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France
| | - A Luciani
- Department of Medical Imaging, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France; Unité Inserm 955, équipe 18, IMRB, University of Paris Est Créteil, 94010 Créteil, France
| | - H Kobeiter
- Department of Medical Imaging, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France; Unité Inserm 955, Équipe 8, IMRB, University of Paris Est Créteil, 94010 Créteil, France
| | - V Tacher
- Department of Medical Imaging, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris, 51, avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil, France; Unité Inserm 955, équipe 18, IMRB, University of Paris Est Créteil, 94010 Créteil, France
| |
Collapse
|
39
|
Sofocleous CT, Vasiniotis Kamarinos N. Tumor Radiation–absorbed Dose: The Missing Link in Radioembolization. Radiology 2020; 296:685-686. [DOI: 10.1148/radiol.2020202354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Constantinos T. Sofocleous
- From the Division of Interventional Oncology, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| | - Nikiforos Vasiniotis Kamarinos
- From the Division of Interventional Oncology, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| |
Collapse
|
40
|
Personalised Dosimetry in Radioembolisation for HCC: Impact on Clinical Outcome and on Trial Design. Cancers (Basel) 2020; 12:cancers12061557. [PMID: 32545572 PMCID: PMC7353030 DOI: 10.3390/cancers12061557] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022] Open
Abstract
Selective internal radiation therapy (SIRT) of hepatocellular carcinoma (HCC) has been used for many years, usually without any specific dosimetry endpoint. Despite good clinical results in early phase studies or in cohort studies, three randomized trials in locally advanced HCC available failed to demonstrate any improvement of overall overall survival (OS) in comparison with sorafenib. In recent years, many studies have evaluated the dosimetry of SIRT using either a simulation-based dosimetry (macroaggregated albumin (MAA)-based) or a post-therapy-based one (90Y-based). The goal of this review is to present the dosimetry concept, tools available, its limitations, and main clinical results described for HCC patients treated with 90Y-loaded resin or glass microspheres. With MAA-based dosimetry, the threshold tumor doses allowing for a response were between 100 and 210 Gy for resin microspheres and between 205 and 257 Gy for glass microspheres. The significant impact of the tumor dose on OS was reported with both devices. The correlation between 90Y-based dosimetry and response was also reported. Regarding the safety, preliminary results are available for both products but with a larger range of normal liver doses values correlated with liver toxicities due to numerous confounding factors. Based on those results, international expert group recommendations for personalized dosimetry have been provided for both devices. The clinical impact of personalized dosimetry has been recently confirmed in a multicenter randomized study demonstrating a doubling of the response rate and an OS of 150% while using personalized dosimetry. Even if technical dosimetry improvements are still under investigation, the use of personalized dosimetry has to be generalized for both clinical practice and trial design.
Collapse
|
41
|
Mikell JK, Dewaraja YK, Owen D. Transarterial Radioembolization for Hepatocellular Carcinoma and Hepatic Metastases: Clinical Aspects and Dosimetry Models. Semin Radiat Oncol 2020; 30:68-76. [PMID: 31727302 DOI: 10.1016/j.semradonc.2019.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transarterial radioembolization (TARE) with Yttrium-90 (90Y) microspheres is a liver-directed therapy for primary and metastatic disease. This manuscript provides a review of the clinical literature on TARE indications and efficacy with overviews of patient-selection and toxicity. Current dosimetry models used in practice are safe, relatively simple, and easy for clinicians to use. Planning currently relies on the imperfect surrogate, 99mTc macroaggregated albumin. Post-therapy quantitative imaging (90Y SPECT/CT or 90Y PET/CT) of microspheres can be used to calculate the macroscopic in vivo absorbed dose distribution. Similar to the evolution of other brachytherapy dose calculations, TARE is moving toward more patient-specific dosimetry that includes calculating and reporting nonuniform dose distributions throughout tumors and normal uninvolved liver.
Collapse
Affiliation(s)
- Justin K Mikell
- Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, MI.
| | - Yuni K Dewaraja
- Department of Radiology, University of Michigan Medical Center, Ann Arbor, MI
| | - Dawn Owen
- Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, MI
| |
Collapse
|
42
|
Piron L, Cassinotto C, Guiu B. [Interventional radiology of liver tumors]. Presse Med 2019; 48:1156-1168. [PMID: 31672452 DOI: 10.1016/j.lpm.2019.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/02/2019] [Indexed: 02/08/2023] Open
Abstract
Interventional radiology (IR) has considerably grown since the 90s and has currently a central position in the management of patients suffering from cancer. The aim of this paper is to describe the principle, indications, technique and results of three common hepatic oncologic IR procedures: preoperative portal vein embolization, transarterial chemoembolization and radioembolization. Portal vein embolization is performed before a right hepatectomy in order to increase the left liver volume and functional capacity to ensure adequate liver function of the future remnant liver and to prevent the post-hepatectomy liver failure. It is a proven, well-tolerated and effective technique, allowing most of patients to undergo surgery. Transarterial chemoembolization consists of an injection of a chemotherapeutic agent and an embolic agent into the hepatic artery to locally act on liver tumors. It is the standard of care for BCLC stage B hepatocellular carcinoma and is also recommended for the liver metastases treatment, mainly from neuroendocrine tumors. Radioembolization is an IR procedure on the rise that consists of the injection into the hepatic artery of Yttrium 90 loaded microparticles, which will preferentially deliver high dose on the tumors, sparing the adjacent hepatic parenchyma. Radioembolization is recommended for the palliative treatment of HCC and for colorectal cancer liver metastases resistant to treatment. It is a very well tolerated intervention which place has yet to be defined in the management of neuroendocrine tumors liver metastases and unresectable cholangiocarcinoma. IR is a constantly evolving discipline with proven techniques playing a major role in the oncological management of liver tumor patients. In oncology, IR is now the 4th patient management linchpin alongside oncology, surgery and radiotherapy.
Collapse
Affiliation(s)
- Lauranne Piron
- CHU Montpellier, University of Montpellier, Saint-Éloi Hospital, Department of Radiology, Montpellier, France.
| | - Christophe Cassinotto
- CHU Montpellier, University of Montpellier, Saint-Éloi Hospital, Department of Radiology, Montpellier, France
| | - Boris Guiu
- CHU Montpellier, University of Montpellier, Saint-Éloi Hospital, Department of Radiology, Montpellier, France
| |
Collapse
|
43
|
Walrand S, Chiesa C, Gabina PM, Chouin N, Gear J, Stokke C, Bernhardt P, Gleisner KS, Strigari L, Konijnenberg M. Re: Tumor Targeting and Three-Dimensional Voxel-Based Dosimetry to Predict Tumor Response, Toxicity, and Survival after Yttrium-90 Resin Microsphere Radioembolization in Hepatocellular Carcinoma. J Vasc Interv Radiol 2019; 30:2047-2048. [PMID: 31676203 DOI: 10.1016/j.jvir.2019.08.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 10/25/2022] Open
Affiliation(s)
- Stephan Walrand
- Nuclear Medicine, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | - Carlo Chiesa
- Nuclear Medicine, Foundation Istituto di Ricovero e Cura a Carattere Scientifico National Tumour Institute Milan, Italy
| | - Pablo Minguez Gabina
- Department of Medical Physics and Radiation Protection, Gurutzeta/Cruces University Hospital Barakaldo, Spain
| | - Nicolas Chouin
- Oniris, Cancers Animaux, Modèle pour la Recherche en Oncologie Comparée, L'Université Nantes Angers Le Mans, Nantes, France
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden Hospital and Institute of Cancer Research, Sutton, United Kingdom
| | - Caroline Stokke
- Department of Diagnostic Physics Oslo University Hospital, Oslo, Norway
| | - Peter Bernhardt
- Department of Radiation Physics, Göteborg University, Sahlgrenska University Hospital Gothenburg, Sweden
| | | | - Lidia Strigari
- Department of Medical Physics, St. Orsola Malpighi University Hospital Bologna, Italy
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
44
|
Chiesa C, Bardiès M, Zaidi H. Voxel‐based dosimetry is superior to mean absorbed dose approach for establishing dose‐effect relationship in targeted radionuclide therapy. Med Phys 2019; 46:5403-5406. [DOI: 10.1002/mp.13851] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- Carlo Chiesa
- Nuclear Medicine Division Foundation IRCCS Istituto Nazionale Tumori 20133Milan Italy
| | - Manuel Bardiès
- Centre de Recherches en Cancérologie de Toulouse Université Paul Sabatier UMR 1037 INSERM Toulouse France
| | | |
Collapse
|
45
|
|
46
|
Intra arterial treatment of hepatocellular carcinoma: Comparison of MELD score variations between radio-embolization and chemo-embolization. Diagn Interv Imaging 2019; 100:689-697. [PMID: 31281074 DOI: 10.1016/j.diii.2019.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/14/2019] [Accepted: 05/23/2019] [Indexed: 01/15/2023]
Abstract
PURPOSE The purpose of this study was to assess liver function deterioration, as assessed using the model for end-stage liver disease (MELD) score variations, following transarterial chemo-embolization (TACE) versus selective internal radiation therapy (SIRT) in patients with unresectable unilobar hepatocellular carcinomas (HCC). PATIENTS AND METHODS We retrospectively evaluated all patients who underwent a single conventional TACE or SIRT procedure in our department from May 2013 to May 2018 for unilobar unresectable HCC. A total of 86 patients (76 men, 20 women; mean age, 65.5 years) were included. There were 63 patients in the TACE group [56 men, 7 women; mean age, 65.1±9.6 (SD) years] and 23 patients in the SIRT group [20 men, 3 women; mean age, 70±9.2 (SD) years]. Delta MELD, defined as post treatment minus pre-treatment MELD score, was considered for liver function deterioration and compared between patients who underwent single lobar treatment of SIRT versus TACE. RESULTS Patients in SIRT group had significant higher tumor burden, alpha-fetoprotein serum level, and rates of macroscopic vessel invasion. Mean pre-treatment MELD scores did not differ between TACE [mean, 8.41±1.71 (SD); range: 7.24-9.24] and SIRT groups [mean, 8.36±1.74 (SD); range: 7.07-9.21] (P=0.896) as well as Child-Pugh class and albumin-bilirubin (ALBI) grade distribution. However, following treatment, mean DeltaMELD was greater in TACE group (mean, 0.83±1.83 [SD]; range: -0.30--1.31) than in SIRT group (mean, -0.13±1.06 [SD]; range: -0.49-0.32) (P=0.021). At multivariate analysis, SIRT treatment was independently associated with a lower DeltaMELD score than TACE (R=-0.955 [-1.68; -0.406]; P=0.017;). CONCLUSION Whereas performed in patients with higher tumor burden, SIRT resulted in lower degrees of liver function worsening as assessed using MELD score variations.
Collapse
|
47
|
Saini A, Wallace A, Alzubaidi S, Knuttinen MG, Naidu S, Sheth R, Albadawi H, Oklu R. History and Evolution of Yttrium-90 Radioembolization for Hepatocellular Carcinoma. J Clin Med 2019; 8:jcm8010055. [PMID: 30621040 PMCID: PMC6352151 DOI: 10.3390/jcm8010055] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and affects millions worldwide. Due to the lack of effective systemic therapies for HCC, researchers have been investigating the use of locoregional tumor control with Yttrium-90 (Y90) radioembolization since the 1960s. Following the development of glass and resin Y90 microspheres in the early 1990s, Y90 radioembolization has been shown to be a safe and efficacious treatment for patients with HCC across Barcelona Clinic Liver Cancer (BCLC) stages. By demonstrating durable local control, good long term outcomes, and equivalent if not superior tumor responses and tolerability when compared to alternative therapies including transarterial chemoembolization (TACE) and sorafenib, Y90 radioembolization is being increasingly used in HCC treatment. More recently, investigations into variations in Y90 radioembolization technique including radiation segmentectomy and radiation lobectomy have further expanded its clinical utility. Here, we discuss the history and evolution of Y90 use in HCC. We outline key clinical trials that have established the safety and efficacy of Y90 radioembolization, and also summarize trials comparing its efficacy to existing HCC treatments. We conclude by reviewing the techniques of radiation segmentectomy and lobectomy, and by discussing dosimetry.
Collapse
Affiliation(s)
- Aman Saini
- Division of Vascular and Interventional Radiology, Laboratory for Minimally Invasive Therapeutics, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - Alex Wallace
- Division of Vascular and Interventional Radiology, Laboratory for Minimally Invasive Therapeutics, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - Sadeer Alzubaidi
- Division of Vascular and Interventional Radiology, Laboratory for Minimally Invasive Therapeutics, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - M Grace Knuttinen
- Division of Vascular and Interventional Radiology, Laboratory for Minimally Invasive Therapeutics, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - Sailendra Naidu
- Division of Vascular and Interventional Radiology, Laboratory for Minimally Invasive Therapeutics, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - Rahul Sheth
- Department of Interventional Radiology, MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Hassan Albadawi
- Division of Vascular and Interventional Radiology, Laboratory for Minimally Invasive Therapeutics, Mayo Clinic, Phoenix, AZ 85054, USA.
| | - Rahmi Oklu
- Division of Vascular and Interventional Radiology, Laboratory for Minimally Invasive Therapeutics, Mayo Clinic, Phoenix, AZ 85054, USA.
| |
Collapse
|