1
|
Balena V, Pradhan SS, Bera BC, Anand T, Sansanwal R, Khetmalis R, Madhwal A, Bernela M, Supriya K, Pavulraj S, Tripathi BN, Virmani N. Double and quadruple deletion mutant of EHV-1 is highly attenuated and induces optimal immune response. Vaccine 2023; 41:1081-1093. [PMID: 36604218 DOI: 10.1016/j.vaccine.2022.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
Equid alphaherpesvirus 1 (EHV-1) infection causes significant health problems in equines. The EHV-1 infection leads to abortion storm in mares, respiratory disease and myeloencephalopathy. Despite the wide use of vaccines, the outbreaks of EHV-1 infections keep occurring globally, suggesting the need for the development of improved vaccines. Gene deletion attenuated mutant viruses could be a good candidate for the development of modified live vaccines. Here, we report the generation of mutant EHV-1 by deleting virulence (glycoprotein E & internal repeat 6; IR6) and immune evasive (pUL43 & pUL56) associated genes either individually or in combinations; and comprehensive evaluation of mutants through in vitro characterization followed by in vivo study in murine model to adjudge the attenuation of the virus and immune responses generated by mutants vis-à-vis wild type (wt) virus. The EHV-1 mutants with deletion of IR6 and gE genes (vToH-DMV) and four genes (i.e., gE, IR6, pUL43 and pUL56) (vToH-QMV) revealed a significant reduction in plaque size with minimal loss in replication efficiency in comparison to the wt virus. Further, in vivo studies showed virus attenuation adjudged through significant reduction in clinical signs, weight loss, gross and histopathological lesions in comparison to wt virus also revealed improved immune responses estimated through serum neutralization and flow cytometric analysis of CD4 + and CD8 + cell populations. Thus it can be concluded that EHV-1 mutants viz. vToH-DMV and vToH-QMV (novel combination) are promising vaccine candidates and qualify to be studied for adjudging the protective efficacy with wt virus challenge.
Collapse
Affiliation(s)
- Venkataramireddy Balena
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125 001, Haryana, India; Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, UP, India
| | - Stephanie S Pradhan
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125 001, Haryana, India; Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, UP, India
| | - B C Bera
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125 001, Haryana, India
| | - Taruna Anand
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125 001, Haryana, India
| | - Rekha Sansanwal
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125 001, Haryana, India
| | - Rhushikesh Khetmalis
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125 001, Haryana, India; Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, UP, India
| | - Aashwina Madhwal
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125 001, Haryana, India; Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, UP, India
| | - Manju Bernela
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125 001, Haryana, India
| | - K Supriya
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125 001, Haryana, India; Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly 243122, UP, India
| | - S Pavulraj
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - B N Tripathi
- Indian Council of Agricultural Research, Krishi Bhawan, New Delhi 110012, India.
| | - Nitin Virmani
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar 125 001, Haryana, India.
| |
Collapse
|
2
|
Sweeny AR, Thomason CA, Carbajal EA, Hansen CB, Graham AL, Pedersen AB. Experimental parasite community perturbation reveals associations between Sin Nombre virus and gastrointestinal nematodes in a rodent reservoir host. Biol Lett 2020; 16:20200604. [PMID: 33353521 PMCID: PMC7775983 DOI: 10.1098/rsbl.2020.0604] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Individuals are often co-infected with several parasite species, yet measuring within-host interactions remains difficult in the wild. Consequently, the impacts of such interactions on host fitness and epidemiology are often unknown. We used anthelmintic drugs to experimentally reduce nematode infection and measured the effects on both nematodes and the important zoonosis Sin Nombre virus (SNV) in its primary reservoir (Peromyscus spp.). Treatment significantly reduced nematode infection, but increased SNV seroprevalence. Furthermore, mice that were co-infected with both nematodes and SNV were in better condition and survived up to four times longer than uninfected or singly infected mice. These results highlight the importance of investigating multiple parasites for understanding interindividual variation and epidemiological dynamics in reservoir populations with zoonotic transmission potential.
Collapse
Affiliation(s)
- Amy R Sweeny
- Institute of Evolutionary Biology and Centre of Infection, School of Biological Sciences, Kings Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, UK
| | - Courtney A Thomason
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.,Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Edwin A Carbajal
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Christina B Hansen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Andrea L Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Amy B Pedersen
- Institute of Evolutionary Biology and Centre of Infection, School of Biological Sciences, Kings Buildings, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, UK
| |
Collapse
|
3
|
Intramuscular Immunization of Mice with the Live-Attenuated Herpes Simplex Virus 1 Vaccine Strain VC2 Expressing Equine Herpesvirus 1 (EHV-1) Glycoprotein D Generates Anti-EHV-1 Immune Responses in Mice. J Virol 2017; 91:JVI.02445-16. [PMID: 28404844 DOI: 10.1128/jvi.02445-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 03/14/2017] [Indexed: 11/20/2022] Open
Abstract
Vaccination remains the best option to combat equine herpesvirus 1 (EHV-1) infection, and several different strategies of vaccination have been investigated and developed over the past few decades. Herein, we report that the live-attenuated herpes simplex virus 1 (HSV-1) VC2 vaccine strain, which has been shown to be unable to enter into neurons and establish latency in mice, can be utilized as a vector for the heterologous expression of EHV-1 glycoprotein D (gD) and that the intramuscular immunization of mice results in strong antiviral humoral and cellular immune responses. The VC2-EHV-1-gD recombinant virus was constructed by inserting an EHV-1 gD expression cassette under the control of the cytomegalovirus immediate early promoter into the VC2 vector in place of the HSV-1 thymidine kinase (UL23) gene. The vaccines were introduced into mice through intramuscular injection. Vaccination with both the VC2-EHV-1-gD vaccine and the commercially available vaccine Vetera EHVXP 1/4 (Vetera; Boehringer Ingelheim Vetmedica) resulted in the production of neutralizing antibodies, the levels of which were significantly higher in comparison to those in VC2- and mock-vaccinated animals (P < 0.01 or P < 0.001). Analysis of EHV-1-reactive IgG subtypes demonstrated that vaccination with the VC2-EHV-1-gD vaccine stimulated robust IgG1 and IgG2a antibodies after three vaccinations (P < 0.001). Interestingly, Vetera-vaccinated mice produced significantly higher levels of IgM than mice in the other groups before and after challenge (P < 0.01 or P < 0.05). Vaccination with VC2-EHV-1-gD stimulated strong cellular immune responses, characterized by the upregulation of both interferon- and tumor necrosis factor-positive CD4+ T cells and CD8+ T cells. Overall, the data suggest that the HSV-1 VC2 vaccine strain may be used as a viral vector for the vaccination of horses as well as, potentially, for the vaccination of other economically important animals.IMPORTANCE A novel virus-vectored VC2-EHV-1-gD vaccine was constructed using the live-attenuated HSV-1 VC2 vaccine strain. This vaccine stimulated strong humoral and cellular immune responses in mice, suggesting that it could protect horses against EHV-1 infection.
Collapse
|
4
|
Hantavirus immunology of rodent reservoirs: current status and future directions. Viruses 2014; 6:1317-35. [PMID: 24638205 PMCID: PMC3970152 DOI: 10.3390/v6031317] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 12/22/2022] Open
Abstract
Hantaviruses are hosted by rodents, insectivores and bats. Several rodent-borne hantaviruses cause two diseases that share many features in humans, hemorrhagic fever with renal syndrome in Eurasia or hantavirus cardiopulmonary syndrome in the Americas. It is thought that the immune response plays a significant contributory role in these diseases. However, in reservoir hosts that have been closely examined, little or no pathology occurs and infection is persistent despite evidence of adaptive immune responses. Because most hantavirus reservoirs are not model organisms, it is difficult to conduct meaningful experiments that might shed light on how the viruses evade sterilizing immune responses and why immunopathology does not occur. Despite these limitations, recent advances in instrumentation and bioinformatics will have a dramatic impact on understanding reservoir host responses to hantaviruses by employing a systems biology approach to identify important pathways that mediate virus/reservoir relationships.
Collapse
|
5
|
Sanada T, Kariwa H, Saasa N, Yoshikawa K, Seto T, Morozov VG, Tkachenko EA, Ivanov LI, Yoshimatsu K, Arikawa J, Yoshii K, Takashima I. Development of a diagnostic method applicable to various serotypes of hantavirus infection in rodents. J Vet Med Sci 2012; 74:1237-42. [PMID: 22673703 DOI: 10.1292/jvms.12-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antigenic diversity among different hantaviruses requires a variety of reagents for diagnosis of hantavirus infection. To develop a diagnostic method applicable to various hantavirus infections with a single set of reagents, we developed an enzyme-linked immunosorbent assay (ELISA) using recombinant nucleocapsid proteins of three hantaviruses, Amur, Hokkaido, and Sin Nombre viruses. This novel cocktail antigen-based ELISA enabled detection of antibodies against Hantaan, Seoul, Amur, Puumala, and Sin Nombre viruses in immunized laboratory animals. In wild rodent species, including Apodemus, Rattus, and Myodes, our ELISA detected antibodies against hantaviruses with high sensitivity and specificity. These data suggest that our novel diagnostic ELISA is a useful tool for screening hantavirus infections and could be effectively utilized for serological surveillance and quarantine purposes.
Collapse
Affiliation(s)
- Takahiro Sanada
- Laboratory of Public Health, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Bego MG, Keyes LR, Maciejewski J, St Jeor SC. Human cytomegalovirus latency-associated protein LUNA is expressed during HCMV infections in vivo. Arch Virol 2011; 156:1847-51. [PMID: 21625978 DOI: 10.1007/s00705-011-1027-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/09/2011] [Indexed: 10/18/2022]
Abstract
Human cytomegalovirus (HCMV) latency is poorly understood. We previously described a novel HCMV latency-associated transcript, UL81-82ast, coding for a protein designated LUNA (latency unique natural antigen). The aim of this study was to confirm the presence of LUNA in HCMV-seropositive donors. Standard co-immunoprecipitation and ELISA assays were used to detect antibodies against the LUNA protein in the sera of HCMV-seropositive donors. Specific antibodies against LUNA were detected in all HCMV-seropositive donors but in none of the seronegative donors. These data confirm that LUNA is expressed during in vivo infections and is capable of eliciting an immune response.
Collapse
Affiliation(s)
- Mariana G Bego
- Institut de recherches cliniques de Montréal, 110, avenue des Pins Ouest, Montreal, QC, H2W 1R7, Canada
| | | | | | | |
Collapse
|