1
|
Applications and Caveats on the Utilization of DNA-Specific Probes in Cell-Based Assays. Methods Mol Biol 2017. [PMID: 29082483 DOI: 10.1007/978-1-4939-7357-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
To perform cell-based assays using fluorescence as the readout there is a fundamental need to identify individual cellular objects. In the majority of cases this requires the addition of a DNA dye or so-called nuclear counterstain and these have become integral to assay design. End-point assays can use live or fixed cells and thus it is beneficial if such reagents are cell membrane-permeant.Further, membrane-permeant DNA dyes can open new opportunities in dynamic real time assays with caveats according to the impact of their interaction with the chromatin in live cells. As cell-based assays offer information on the in vitro toxicity of treatments, cell viability has become a basic readout and cell membrane-impermeant fluorescent DNA-specific dyes can provide this information.In the case of both nuclear counterstaining and viability reporting, it is beneficial if the DNA dyes employed are suitably spectrally separated to permit multi-color experimental design. Methods will be described for these two important assay readouts.
Collapse
|
2
|
Joshi P, Lee MY. High Content Imaging (HCI) on Miniaturized Three-Dimensional (3D) Cell Cultures. BIOSENSORS 2015; 5:768-90. [PMID: 26694477 PMCID: PMC4697144 DOI: 10.3390/bios5040768] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/26/2022]
Abstract
High content imaging (HCI) is a multiplexed cell staining assay developed for better understanding of complex biological functions and mechanisms of drug action, and it has become an important tool for toxicity and efficacy screening of drug candidates. Conventional HCI assays have been carried out on two-dimensional (2D) cell monolayer cultures, which in turn limit predictability of drug toxicity/efficacy in vivo; thus, there has been an urgent need to perform HCI assays on three-dimensional (3D) cell cultures. Although 3D cell cultures better mimic in vivo microenvironments of human tissues and provide an in-depth understanding of the morphological and functional features of tissues, they are also limited by having relatively low throughput and thus are not amenable to high-throughput screening (HTS). One attempt of making 3D cell culture amenable for HTS is to utilize miniaturized cell culture platforms. This review aims to highlight miniaturized 3D cell culture platforms compatible with current HCI technology.
Collapse
Affiliation(s)
- Pranav Joshi
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street Cleveland, Ohio, OH 44115-2214, USA.
| | - Moo-Yeal Lee
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street Cleveland, Ohio, OH 44115-2214, USA.
| |
Collapse
|
3
|
Singh S, Carpenter AE, Genovesio A. Increasing the Content of High-Content Screening: An Overview. ACTA ACUST UNITED AC 2014; 19:640-50. [PMID: 24710339 PMCID: PMC4230961 DOI: 10.1177/1087057114528537] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/31/2013] [Indexed: 01/17/2023]
Abstract
Target-based high-throughput screening (HTS) has recently been critiqued for its relatively poor yield compared to phenotypic screening approaches. One type of phenotypic screening, image-based high-content screening (HCS), has been seen as particularly promising. In this article, we assess whether HCS is as high content as it can be. We analyze HCS publications and find that although the number of HCS experiments published each year continues to grow steadily, the information content lags behind. We find that a majority of high-content screens published so far (60−80%) made use of only one or two image-based features measured from each sample and disregarded the distribution of those features among each cell population. We discuss several potential explanations, focusing on the hypothesis that data analysis traditions are to blame. This includes practical problems related to managing large and multidimensional HCS data sets as well as the adoption of assay quality statistics from HTS to HCS. Both may have led to the simplification or systematic rejection of assays carrying complex and valuable phenotypic information. We predict that advanced data analysis methods that enable full multiparametric data to be harvested for entire cell populations will enable HCS to finally reach its potential.
Collapse
Affiliation(s)
- Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Auguste Genovesio
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA École Normale Supérieure, 45, Rue d'Ulm, 75005 Paris
| |
Collapse
|
4
|
Wang Z, Wu L, Cheng X, Liu S, Li B, Li H, Kang F, Wang J, Xia H, Ping C, Nassal M, Sun D. Replication-competent infectious hepatitis B virus vectors carrying substantially sized transgenes by redesigned viral polymerase translation. PLoS One 2013; 8:e60306. [PMID: 23589756 PMCID: PMC3615001 DOI: 10.1371/journal.pone.0060306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/25/2013] [Indexed: 12/13/2022] Open
Abstract
Viral vectors are engineered virus variants able to deliver nonviral genetic information into cells, usually by the same routes as the parental viruses. For several virus families, replication-competent vectors carrying reporter genes have become invaluable tools for easy and quantitative monitoring of replication and infection, and thus also for identifying antivirals and virus susceptible cells. For hepatitis B virus (HBV), a small enveloped DNA virus causing B-type hepatitis, such vectors are not available because insertions into its tiny 3.2 kb genome almost inevitably affect essential replication elements. HBV replicates by reverse transcription of the pregenomic (pg) RNA which is also required as bicistronic mRNA for the capsid (core) protein and the reverse transcriptase (Pol); their open reading frames (ORFs) overlap by some 150 basepairs. Translation of the downstream Pol ORF does not involve a conventional internal ribosome entry site (IRES). We reasoned that duplicating the overlap region and providing artificial IRES control for translation of both Pol and an in-between inserted transgene might yield a functional tricistronic pgRNA, without interfering with envelope protein expression. As IRESs we used a 22 nucleotide element termed Rbm3 IRES to minimize genome size increase. Model plasmids confirmed its activity even in tricistronic arrangements. Analogous plasmids for complete HBV genomes carrying 399 bp and 720 bp transgenes for blasticidin resistance (BsdR) and humanized Renilla green fluorescent protein (hrGFP) produced core and envelope proteins like wild-type HBV; while the hrGFP vector replicated poorly, the BsdR vector generated around 40% as much replicative DNA as wild-type HBV. Both vectors, however, formed enveloped virions which were infectious for HBV-susceptible HepaRG cells. Because numerous reporter and effector genes with sizes of around 500 bp or less are available, the new HBV vectors should become highly useful tools to better understand, and combat, this important pathogen.
Collapse
Affiliation(s)
- Zihua Wang
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
- The Third Military Medical University, Chongqing, PR China
| | - Li Wu
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Xin Cheng
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Shizhu Liu
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Baosheng Li
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Haijun Li
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Fubiao Kang
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Junping Wang
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Huan Xia
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Caiyan Ping
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
| | - Michael Nassal
- University Hospital Freiburg, Internal Medicine II/Molecular Biology, Freiburg, Germany
- * E-mail: (DS); (MN)
| | - Dianxing Sun
- The Liver Disease Diagnosis and Treatment Center of PLA, Bethune International Peace Hospital, Shijiazhuang, PR China
- * E-mail: (DS); (MN)
| |
Collapse
|
5
|
Shedding light on filovirus infection with high-content imaging. Viruses 2012; 4:1354-71. [PMID: 23012631 PMCID: PMC3446768 DOI: 10.3390/v4081354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 12/14/2022] Open
Abstract
Microscopy has been instrumental in the discovery and characterization of microorganisms. Major advances in high-throughput fluorescence microscopy and automated, high-content image analysis tools are paving the way to the systematic and quantitative study of the molecular properties of cellular systems, both at the population and at the single-cell level. High-Content Imaging (HCI) has been used to characterize host-virus interactions in genome-wide reverse genetic screens and to identify novel cellular factors implicated in the binding, entry, replication and egress of several pathogenic viruses. Here we present an overview of the most significant applications of HCI in the context of the cell biology of filovirus infection. HCI assays have been recently implemented to quantitatively study filoviruses in cell culture, employing either infectious viruses in a BSL-4 environment or surrogate genetic systems in a BSL-2 environment. These assays are becoming instrumental for small molecule and siRNA screens aimed at the discovery of both cellular therapeutic targets and of compounds with anti-viral properties. We discuss the current practical constraints limiting the implementation of high-throughput biology in a BSL-4 environment, and propose possible solutions to safely perform high-content, high-throughput filovirus infection assays. Finally, we discuss possible novel applications of HCI in the context of filovirus research with particular emphasis on the identification of possible cellular biomarkers of virus infection.
Collapse
|
6
|
Edward R. Red/far-red fluorescing DNA-specific anthraquinones for nucl:cyto segmentation and viability reporting in cell-based assays. Methods Enzymol 2012; 505:23-45. [PMID: 22289446 DOI: 10.1016/b978-0-12-388448-0.00010-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The advent and wide use of image-based, high-content screening assay formats demands reliable solutions for cellular compartment segmentation to track critical events-for example, those reported by GFP fusions within cell cycle control pathways, signaling pathways, protein translocations, and those associated with drug-induced toxicity such as mitochondrial membrane depolarization, plasma membrane permeabilization, and reactive oxygen species. To meet this need, a series of nuclear/cytoplasmic discriminating probes has been developed: the supravital dyes DRAQ5™ and CyTRAK Orange™ and most recently the viability dye DRAQ7™. These are all spectrally compatible with GFP reporters offering new solutions in imaging and cytometry. As red/far-red emitting dyes, they provide convenient fluorescent emission signatures which are spectrally separated from the majority of commonly used reporter proteins (e.g., eGFP, YFP, mRFP), and a wide range of fluorescent tags such as Alexafluor 488, fluorescein, and Cy2 and fluorescent functional probes used to report cell health status or demark organellar structures. In addition, they are not excited by UV wavelengths thus avoiding complications of the frequently seen pharmacophore UV-autofluorescence in drug discovery. Conversely, their preferential red excitation reduces interference by biological sample autofluorescence. High water solubility and high-affinity DNA-binding properties provide a convenient means of stoichiometrically labeling cell nuclei in live cells without the aid of DMSO and can equally be used for fixed cells. Powerfully, they permit the simultaneous and differential labeling of both nuclear and cytoplasmic compartments in live and fixed cells to clearly render the precise location of cell boundaries which may be beneficial for quantitative expression measurements, cell-cell interactions, and most recently compound in vitro toxicology testing. In one case, DRAQ7™, the core structure has been chemically derivatized to render it intact-cell-membrane impermeant. This far-red viability dye can be more widely combined with other fluorescent reporters to reveal temporally separated events and shows negligible cytotoxicity as determined by sensitive bioassays.
Collapse
Affiliation(s)
- Roy Edward
- Biostatus Ltd, Shepshed, Leicestershire, United Kingdom
| |
Collapse
|
7
|
Brodin P, Christophe T. High-content screening in infectious diseases. Curr Opin Chem Biol 2011; 15:534-9. [DOI: 10.1016/j.cbpa.2011.05.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/13/2011] [Accepted: 05/23/2011] [Indexed: 11/28/2022]
|