1
|
CUEVAS-ROMERO JS, CERRITEÑO-SÁNCHEZ JL, LARA-ROMERO R, VEGA-LÓPEZ MA, RAMÍREZ-ESTUDILLO C, RAMÍREZ-MENDOZA H, BERG M, LÖVGREN-BENGTSSON K. Immunogenicity of a recombinant hemagglutinin neuraminidase-Porcine rubulavirus produced by Escherichia coli of Porcine rubulavirus gives protective immunity of litter after challenge. J Vet Med Sci 2022; 84:1595-1604. [PMID: 36273875 PMCID: PMC9791230 DOI: 10.1292/jvms.22-0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Porcine rubulavirus (PRV) is a contagious virus that affects the Mexican swine industry. This work aimed to evaluate the immunogenicity of an recombinant hemagglutinin neuraminidase-Porcine rubulavirus (rHN-PorPV) candidate vaccine on pregnant sows, and the protective efficacy afforded to their 7-day-old suckling piglets against PRV lethal challenge. Three sows were immunized with rHN-PorPV formulated with immune-stimulating complex (ISCOMs) and two sows with rHN-PorPV protein alone as well as a mock-immunized pregnant sow (negative control). Quantitative ELISA detected a high concentration of anti-rHN-PorPV Immunoglobulin G (IgG) antibodies in sow sera after the second dose of vaccine administered on day 14 until farrowing, showing viral-neutralizing and cross-neutralization activity against different variants of PRV. Sera samples from piglets of immunized sows (with or without adjuvant), showed high concentrations of IgG antibodies. As expected, piglets from the negative control sow (n=5), exhibited severe signs of disease and 100% of mortality after PRV challenge study. Conversely, 75% and 87.5% of the piglets born from the rHN-PorPV and the rHN-PorPV-ISCOMs-immunized sows (n=8), survived, respectively, showing milder PRV clinical signs. Our data indicate that rHN-PorPV candidate vaccine produced in Escherichia coli induces efficient humoral response in pregnant sows and that the maternally derived immunity provides high protection to suckling piglets against PRV lethal challenge.
Collapse
Affiliation(s)
- Julieta Sandra CUEVAS-ROMERO
- Centro Nacional de Investigación Disciplinaria en Salud
Animal e Inocuidad, INIFAP, México City, Mexico,Correspondence to: Cuevas-Romero JS: , Centro
Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, INIFAP, KM. 15.5
Carretera México-Toluca. Col, Palo Alto, Cuajimalpa CP, 05110, Ciudad de México,
Mexico
| | | | - Rocío LARA-ROMERO
- Facultad de Estudios Superiores Cuautitlán FESC-UNAM,
Cuautitlán Izcalli, Estado de México, Mexico
| | - Marco Antonio VEGA-LÓPEZ
- Centro de Investigación y Estudios Avanzados del Instituto
Politécnico Nacional, México City, Mexico
| | - Carmen RAMÍREZ-ESTUDILLO
- Centro de Investigación y Estudios Avanzados del Instituto
Politécnico Nacional, México City, Mexico
| | | | - Mikael BERG
- Section of Virology, Department of Biomedical Sciences and
Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala,
Sweden
| | - Karin LÖVGREN-BENGTSSON
- Section of Virology, Department of Biomedical Sciences and
Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala,
Sweden,Isconova AB, Uppsala, Sweden
| |
Collapse
|
2
|
Lara-Romero R, Cerriteño-Sánchez JL, Mendoza-Elvira S, García-Cambrón JB, Castañeda-Montes MA, Pérez-Aguilar JM, Cuevas-Romero JS. Development of Novel Recombinant Antigens of Nucleoprotein and Matrix Proteins of Porcine orthorubulavirus: Antigenicity and Structural Prediction. Viruses 2022; 14:v14091946. [PMID: 36146753 PMCID: PMC9504402 DOI: 10.3390/v14091946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Blue eye disease (BED) is a swine viral infection that affects the pork industry of Mexico. Porcine orthorubulavirus (PRV) is the etiological agent, and the hemagglutinin-neuraminidase protein (HN) is characterized as the best antigen for serological tests, although other structural proteins, including the nucleoprotein (NP) and the matrix (M) protein, have been investigated during the infection of members of the Paramyxoviridae family, generating promising results. Herein, for the first time, we successfully produced and characterized both the NP and M proteins of PRV by using a recombinant strategy in the E. coli heterologous system. The ORF of the NP and M genes were cloned in-frame with the pET-SUMO expression vector. Recombinant proteins proved to be a sensitive target to detect seroconversion at 7 days until 28 days in vaccinated mice (BALB/c) by indirect ELISAs. Immunoreactivity was also tested using porcine serum samples, in which antibodies were recognized from early stages to a persistence of PRV infection, which is indicative that these proteins contain properties similar to native antigens. The predicted tertiary structure showed that both proteins have a conserved structure that resembles those found in others Paramyxovirus. Our results pave the way for developing biotechnological tools based on these proteins for the control and prevention of BED.
Collapse
Affiliation(s)
- Rocío Lara-Romero
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Km 15.5 Carretera México-Toluca, Palo Alto, Cuajimalpa, Ciudad de México 05110, Mexico
- Posgrado en Ciencias de la Producción y de la Salud Animal, Facultad de Estudios Superiores Cuautitlán, Estado de México, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Luis Cerriteño-Sánchez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Km 15.5 Carretera México-Toluca, Palo Alto, Cuajimalpa, Ciudad de México 05110, Mexico
| | - Susana Mendoza-Elvira
- Posgrado en Ciencias de la Producción y de la Salud Animal, Facultad de Estudios Superiores Cuautitlán, Estado de México, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - José Bryan García-Cambrón
- Maestría en Biología Experimental, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Ciudad de México 09089, Mexico
| | - María Azucena Castañeda-Montes
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Km 15.5 Carretera México-Toluca, Palo Alto, Cuajimalpa, Ciudad de México 05110, Mexico
- Posgrado en Ciencias de la Producción y de la Salud Animal, Facultad de Estudios Superiores Cuautitlán, Estado de México, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | - Julieta Sandra Cuevas-Romero
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Km 15.5 Carretera México-Toluca, Palo Alto, Cuajimalpa, Ciudad de México 05110, Mexico
- Correspondence: ; Tel.: +52-(55)-38718700 (ext. 80312)
| |
Collapse
|
3
|
Wang D, Qiu L, Wu X, Wei H, Xu F. Evaluation of kudzu root extract-induced hepatotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:321-6. [PMID: 26545459 DOI: 10.1016/j.jep.2015.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/15/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kudzu root, the root of Pueraria lobata (Willd.) Ohwi, has been used as food and medicine for centuries, but few studies indicate that kudzu root may cause liver damage. AIM OF STUDY We studied the hepatotoxicity of kudzu root extract in mice, HepG2 cells and mice hepatocytes. MATERIALS AND METHODS Mice were administrated with kudzu root extract (10mg/day) for 4 weeks, and then the biochemical analysis and histopathological changes were carried out. To explore the potential mechanism by which kudzu root extract-induced hepatotoxicity, HepG2 cells and mice hepatocytes were co-cultured with kudzu root extract or puerarin, which is a kudzu root isoflavone, for 2h. RESULTS The increase of serum ALT and AST and histopathological changes in treated mice revealed that kudzu root extract was hepatotoxic. The increase of LDH leakage for HepG2 cells and mice hepatocytes further confirmed hepatotoxicity of kudzu root extract. Kudzu root extract and puerarin significantly up-regulated Mt1 mRNA involved in the acute phase response and Bax which is crucial for apoptosis. Gclc, Nrf2 and Ho-1 mRNA expressions did not change in treatment group. CONCLUSIONS Kudzu root extract may be hepatotoxic and caution may be required for its use.
Collapse
Affiliation(s)
- Dengyuan Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Liang Qiu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Xiaoli Wu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Hua Wei
- Jiangxi OAI Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Feng Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
4
|
Cuevas-Romero JS, Blomström AL, Berg M. Molecular and epidemiological studies of Porcine rubulavirus infection - an overview. Infect Ecol Epidemiol 2015; 5:29602. [PMID: 26584829 PMCID: PMC4653323 DOI: 10.3402/iee.v5.29602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 11/27/2022] Open
Abstract
Porcine rubulavirus-La Piedad-Michoacan-Mexico virus (PorPV-LPMV) was identified as the causative agent of a viral disease that emerged spontaneously in Mexican swine in the 1980s. Since the report of the initial outbreak of the disease, only one full-length genome from a strain isolated in 1984 (PorPV-LPMV/1984) has been sequenced; sequence data are scarce from other isolates. The genetic variation of this virus that has spread throughout the main endemic region of Mexico is almost a complete mystery. The development of molecular techniques for improved diagnostics and to investigate the persistence, molecular epidemiology, and the possible reservoirs of PorPV are needed. Together, this will provide greater knowledge regarding the molecular genetic changes and useful data to establish new strategies in the control of this virus in Mexico.
Collapse
Affiliation(s)
- Julieta Sandra Cuevas-Romero
- Centro Nacional de Investigaciones Disciplinarias en Microbiología Animal, INIFAP, México City, Mexico.,Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden;
| | - Anne-Lie Blomström
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mikael Berg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Pisanelli G, Laurent-Rolle M, Manicassamy B, Belicha-Villanueva A, Morrison J, Lozano-Dubernard B, Castro-Peralta F, Iovane G, García-Sastre A. La Piedad Michoacán Mexico Virus V protein antagonizes type I interferon response by binding STAT2 protein and preventing STATs nuclear translocation. Virus Res 2015; 213:11-22. [PMID: 26546155 DOI: 10.1016/j.virusres.2015.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/24/2022]
Abstract
La Piedad Michoacán Mexico Virus (LPMV) is a member of the Rubulavirus genus within the Paramyxoviridae family. LPMV is the etiologic agent of "blue eye disease", causing a significant disease burden in swine in Mexico with long-term implications for the agricultural industry. This virus mainly affects piglets and is characterized by meningoencephalitis and respiratory distress. It also affects adult pigs, causing reduced fertility and abortions in females, and orchitis and epididymitis in males. Viruses of the Paramyxoviridae family evade the innate immune response by targeting components of the interferon (IFN) signaling pathway. The V protein, expressed by most paramyxoviruses, is a well-characterized IFN signaling antagonist. Until now, there were no reports on the role of the LPMV-V protein in inhibiting the IFN response. In this study we demonstrate that LPMV-V protein antagonizes type I but not type II IFN signaling by binding STAT2, a component of the type I IFN cascade. Our results indicate that the last 18 amino acids of LPMV-V protein are required for binding to STAT2 in human and swine cells. While LPMV-V protein does not affect the protein levels of STAT1 or STAT2, it does prevent the IFN-induced phosphorylation and nuclear translocation of STAT1 and STAT2 thereby inhibiting cellular responses to IFN α/β.
Collapse
Affiliation(s)
- Giuseppe Pisanelli
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Maudry Laurent-Rolle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Balaji Manicassamy
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Alan Belicha-Villanueva
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Juliet Morrison
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Bernardo Lozano-Dubernard
- Departamento de Investigación y Desarrollo, Laboratorio Avi-Mex, SA de CV, Bartolache 1862, Colonia del Valle, D.F. México 01900, Mexico
| | - Felipa Castro-Peralta
- Departamento de Investigación y Desarrollo, Laboratorio Avi-Mex, SA de CV, Bartolache 1862, Colonia del Valle, D.F. México 01900, Mexico
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States; Department of Medicine, Division of Infectious Disease, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States.
| |
Collapse
|
6
|
Cuevas-Romero S, Hernández-Baumgarten E, Kennedy S, Hernández-Jáuregui P, Berg M, Moreno-López J. Long-term RNA persistence of porcine rubulavirus (PorPV-LPMV) after an outbreak of a natural infection: the detection of viral mRNA in sentinel pigs suggests viral transmission. Virus Res 2014; 188:155-61. [PMID: 24768705 DOI: 10.1016/j.virusres.2014.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 11/30/2022]
Abstract
The persistence of porcine rubulavirus (PorPV-LPMV) in five pigs that had survived an outbreak of a natural infection was determined. After the resolution of the outbreak, each animal was housed in an isolation pen together with one sentinel pig. Approximately every 2 months thereafter one group of animals was euthanized and tissue samples taken for virological and serological analysis. Infectious virus was not isolated from any samples; antibodies to PorPV-LPMV were detected in convalescent pigs by virus neutralisation test and blocking ELISA but not in sentinel pigs. PorPV-LPMV mRNA of the nucleoprotein (NP) and phosphoprotein (P) genes was detected by a nested polymerase chain reaction (nPCR) in samples of trigeminal and optic nerves, cervical spinal cord, tonsils, salivary gland, lung and pancreas from convalescent pigs. mRNA was also detected in the midbrain, corpus callosum, or olfactory bulb in four out of five pigs by nRT-PCR, this result was confirmed by the sequencing of a 260bp PCR product of P gene region. The highest average viral copies/μg of total RNA occurred in the olfactory bulb and pancreas tissues of convalescent pigs and midbrain, tonsil and pancreas of sentinel pigs housed with the convalescent pigs. Satellitosis and gliosis of the midbrain, olfactory bulb, corpus callosum, medulla oblongata or choroid plexus were microscopically observed in four convalescent pigs. The control pig remained negative in all tests. The results indicate that PorPV-LPMV mRNA persists and induces a durable humoral immune response in pigs that have recovered from a natural infection. After a possible reactivation of the virus, it was transmitted to sentinel pigs in contact with the convalescent pigs.
Collapse
Affiliation(s)
- S Cuevas-Romero
- Division of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden; Centro Nacional de Investigación Disciplinaria en Microbiología Animal, INIFAP, Mexico DF, Mexico.
| | - E Hernández-Baumgarten
- Facultad de Estudios Superiores Cuautitlán (FES-C), Universidad Nacional Autónoma de México (UNAM), Mexico
| | - S Kennedy
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stoney Road, Stormont, Belfast, Northern Ireland, United Kingdom
| | | | - M Berg
- Division of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J Moreno-López
- Division of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|