1
|
Zhao CR, Lin LT, Tang JW, Zhang Y, Zhang W, Chen JM, Wei P, Huang T, Wei TC, Mo ML. Development of a colloidal gold immunochromatographic strip for rapid detection of avian coronavirus infectious bronchitis virus. Poult Sci 2024; 103:103648. [PMID: 38574460 PMCID: PMC11004996 DOI: 10.1016/j.psj.2024.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Avian infectious bronchitis virus (IBV) still causes serious economic losses in the poultry industry. Currently, there are multiple prevalent genotypes and serotypes of IBVs. It is imperative to develop a new diagnosis method that is fast, sensitive, specific, simple, and broad-spectrum. A monoclonal hybridoma cell, N2D5, against the IBV N protein was obtained after fusion of myeloma SP2/0 cells with spleen cells isolated from the immunized Balb/c mice. The N2D5 monoclonal antibody (mAb) and the previously prepared mouse polyclonal antibody against the IBV N protein were used to target IBV as a colloidal gold-mAb conjugate and a captured antibody, respectively, in order to develop an immunochromatographic strip. The optimal pH and minimum antibody concentration in the reaction system for colloidal gold-mAb N2D5 conjugation were pH 6.5 and 30 μg/mL, respectively. Common avian pathogens were tested to evaluate the specificity of the strip and no cross-reaction was observed. The sensitivity of the strip for detecting IBV was 10-1.4522 EID50/mL. The strip showed a broad-spectrum cross-reactive capacity for detecting IBV antigens, including multiple IBV genotypes in China and all of the seven serotypes of IBV that are currently prevalent in southern China. Additionally, the result can be observed within 2 min without any equipment. The throat and cloacal swab samples of chickens that were artificially infected with three IBV strains were tested using the developed strip and the qPCR method; the strip test demonstrated a high consistency in detecting IBV via qPCR gene detection. In conclusion, the immunochromatographic strip that was established is rapid, sensitive, specific, simple, practical, and broad-spectrum; additionally, it has the potential to serve as an on-site rapid detection method of IBV and can facilitate the surveillance and control of the disease, especially in resource-limited areas.
Collapse
Affiliation(s)
- Chang-Run Zhao
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Li-Ting Lin
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jin-Wen Tang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Wen Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ji-Ming Chen
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ping Wei
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Teng Huang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Tian-Chao Wei
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Mei-Lan Mo
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China.
| |
Collapse
|
2
|
Wei C, Kuang H, Xu X, Guo L, Qu A, Wu A, Xu C, Liu L. Establishment and application of a gold nanoparticle-based immunochromatographic test strip for the detection of avian leukosis virus P27 antigen in egg white samples. Analyst 2024; 149:2747-2755. [PMID: 38563739 DOI: 10.1039/d4an00180j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Avian leukemia is an infectious tumorous disease of chickens caused by subgroup A of the avian leukemia virus (ALV-A), which mainly causes long-term viremia, slow growth, immune suppression, decreased production performance, multi-tissue tumors, and even death. The infection rate of this disease is very high in chicken herds in China, causing huge economic losses to the poultry industry every year. We successfully expressed the specific antigen protein of ALV (P27) through recombinant protein technology and screened a pair of highly sensitive monoclonal antibodies (mAbs) through mouse immunity, cell fusion, and antibody pairing. Based on this pair of antibodies, we established a dual antibody sandwich ELISA and gold nanoparticle immunochromatographic strip (AuNP-ICS) detection method. In addition, the parameters of the dual antibody sandwich ELISA and AuNP-ICS were optimized under different reaction conditions, which resulted in the minimum detection limits of 0.2 ng mL-1 and 1.53 ng ml-1, respectively. Commonly available ELISA and AuNP-ICS products on the market were compared, and we found that our established immune rapid chromatography had higher sensitivity. This established AuNP-ICS had no cross-reactivity with Influenza A (H1N1), Influenza A (H9N2), respiratory syncytial virus (RSV), varicella-zoster virus (VZV), Listeria monocytogenes listeriolysin (LLO), and Staphylococcal enterotoxin SED or SEC. Finally, the established AuNP-ICS was used to analyze 35 egg samples, and the results showed 5 positive samples and 30 negative samples. The AuNP-ICS rapid detection method established by our group had good specificity, high sensitivity, and convenience, and could be applied to the clinical sample detection of ALV-A.
Collapse
Affiliation(s)
- Chunhao Wei
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Hua Kuang
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Xinxin Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Lingling Guo
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Aihua Qu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Aihong Wu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Liqiang Liu
- State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
3
|
Qiao D, He Q, Cheng X, Yao Y, Nair V, Shao H, Qin A, Qian K. Regulation of Avian Leukosis Virus Subgroup J Replication by Wnt/β-Catenin Signaling Pathway. Viruses 2021; 13:v13101968. [PMID: 34696398 PMCID: PMC8539648 DOI: 10.3390/v13101968] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Wnt/β-catenin signaling is a highly conserved pathway related to a variety of biological processes in different cells. The regulation of replication of various viruses by Wnt/β-catenin signaling pathway has been reported. However, the interaction between the Wnt/β-catenin pathway and avian leukosis virus is unknown. In the present study, we investigated the effect of modulating the Wnt/β-catenin pathway during avian leukosis virus subgroup J (ALV-J) infection. The activation of the Wnt/β-catenin pathway by GSK-3 inhibitor increased ALV-J mRNA, viral protein expression, and virus production in CEF cells. This increase was suppressed by iCRT14, one of the specific inhibitors of the Wnt/β-catenin signaling pathway. Moreover, treatment with iCRT14 reduced virus titer and viral gene expression significantly in CEF and LMH cells in a dose-dependent manner. Inhibition Wnt/β-catenin signaling pathway by knockdown of β-catenin reduced virus proliferation in CEF cells also. Collectively, these results suggested that the status of Wnt/β-catenin signaling pathway modulated ALV-J replication. These studies extend our understanding of the role of Wnt/β-catenin signaling pathway in ALV-J replication and make a new contribution to understanding the virus–host interactions of avian leukosis virus.
Collapse
Affiliation(s)
- Dandan Qiao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- School of Animal Engineering, Xuzhou Vocational College of Bioengineering, Xuzhou 221006, China
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
| | - Qian He
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
| | - Xiaowei Cheng
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Surrey GU24 0NF, UK; (Y.Y.); (V.N.)
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence for Research on Avian Diseases, Pirbright, Surrey GU24 0NF, UK; (Y.Y.); (V.N.)
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China; (D.Q.); (Q.H.); (X.C.); (H.S.); (A.Q.)
- Jiangsu Key Lab of Preventive Veterinary Medicine, Yangzhou University, No. 48 East Wenhui Road, Yangzhou 225009, China
- The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-514-8797-9017; Fax: 86-514-8797-9217
| |
Collapse
|
4
|
Li T, Xie J, Yao X, Zhang J, Li C, Ren D, Li L, Xie Q, Shao H, Qin A, Ye J. The tyrosine phosphatase SHP-2 dephosphorylated by ALV-J via its Env efficiently promotes ALV-J replication. Virulence 2021; 12:1721-1731. [PMID: 34167452 PMCID: PMC8237968 DOI: 10.1080/21505594.2021.1939952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) generally induces hemangioma, myeloid leukosis, and immunosuppression in chickens, causing significant poultry industry economic losses worldwide. The unusual env gene of ALV-J, with low homology to other subgroups of ALVs, is associated with its unique pathogenesis. However, the exact molecular basis for the pathogenesis and oncogenesis of ALV-J is still not fully understood. In this study, ALV-J infection and the overexpression of Env could efficiently downregulate the phosphorylation of SHP-2 (pSHP-2) in vitro and in vivo. The membrane-spanning domain (MSD) in Env Gp37 was the functional domain responsible for pSHP-2 downregulation. Moreover, the overexpression of SHP-2 could effectively promote the replication of ALV-J, whereas knockout or allosteric inhibition of SHP-2 could inhibit ALV-J replication. In addition, the knockout of endogenous chicken SHP-2 could significantly increase the proliferation ability of DF-1 cells. All these data demonstrate that SHP-2 dephosphorylated by ALV-J Env could efficiently promote ALV-J replication, highlighting the important role of SHP-2 in the pathogenesis of ALV-J and providing a new target for developing antiviral drugs against ALV-J.
Collapse
Affiliation(s)
- Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jing Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaohui Yao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Zhang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chunping Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dan Ren
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Luyuan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Yang F, Li Y, Jin X, Xu Q, Cheng F, Wang X. Immunosensor-based rapid quantitative detection of Newcastle disease virus antibodies using innovative gold immunochromatographic assay. J Appl Microbiol 2020; 129:1751-1757. [PMID: 32365426 DOI: 10.1111/jam.14688] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/14/2020] [Accepted: 04/27/2020] [Indexed: 11/29/2022]
Abstract
AIMS A novel quantitative method for rapid Newcastle disease virus (NDV) antibody detection was developed based on an innovative gold immunochromatographic assay with a quantitative immunosensor. METHODS AND RESULTS NDV antibody-detecting test strips containing a two-reaction system and double-test lines (T1, T2) were prepared. The test results were judged according to the signal ratio between the test and control lines as measured by the quantitative immunosensor. The minimum detection limit of the test strips for NDV antibodies was 22 titres. In addition, the assay was highly specific because only NDV antibodies produced visible test lines on the strip. The clinical application of the strips was tested by detecting NDV antibodies in 506 serum samples collected from chickens. The results showed a coincidence of 92·49% with those of the haemagglutination inhibition assay. CONCLUSIONS The strips were successfully prepared and showed high specificity towards NDV, sensitivity and stability. SIGNIFICANCE AND IMPACT OF THE STUDY This study describes a new method for detection of NDV antibody and provides a reference basis for rapid and quantitative monitoring of NDV antibodies. This new method overcomes the limitation of the existing colloidal gold immunochromatography, which only produces qualitative or semi-quantitative results.
Collapse
Affiliation(s)
- F Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, P.R. China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P.R. China
| | - Y Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, P.R. China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P.R. China
| | - X Jin
- Hubei Provincial Institute of Veterinary Drug Control, Wuhan, P.R. China
| | - Q Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P.R. China
| | - F Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P.R. China
| | - X Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, P.R. China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
6
|
Wang H, Guan J, Liu X, Shi Y, Wu Q, Luo M, Zhu Y, Wang Z, Wang L, Pan Y. Rapid detection of avian leukosis virus using a fluorescent microsphere immunochromatographic test strip assay. Poult Sci 2020; 98:6492-6496. [PMID: 31553793 PMCID: PMC8913972 DOI: 10.3382/ps/pez547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/09/2019] [Indexed: 01/23/2023] Open
Abstract
We developed a rapid fluorescent microsphere immunochromatographic test strip (FM-ICTS) assay for the quantitative detection of avian leukosis virus (ALV). A monoclonal antibody specific for the ALV major capsid protein encoded by the gag gene was coupled to label fluorescent microspheres. ALV antibodies were coated on a nitrocellulose membrane to prepare a test line for sample detection. The fluorescence signals of the test and control lines can be read either visually by exposure to UV light or using a fluorescence analyzer. ALV could be detected quantitatively using the ratio of fluorescence signals of the test and control lines (T/C). The assay threshold was determined as a T/C value of 0.0606. The fitting curve equation was established between 1 and 2,048 ng/mL P27 protein with an r2 value of 0.9998. The assay showed no cross reactivity with Newcastle disease virus, infectious laryngotracheitis virus, infectious bronchitis virus, Marek's disease virus, infectious bursal disease, Reoviridae virus, or avian influenza virus. The repeatability was satisfactory with an overall average CV of 8.65%. The Kappa coefficient between a commercial ELISA kit was 0.7031 using clinical chicken meconium samples. Thus, a simple, rapid, sensitive, and specific fluorescent microsphere immunochromatographic test strip was developed based on specific anti-capsid protein p27 monoclonal antibodies.
Collapse
Affiliation(s)
- Huanan Wang
- Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianchi Guan
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou 510640, China
| | - Xiangnan Liu
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou 510640, China.,Guangzhou Veterinary Biotechnology Co.Ltd, Guangzhou 510000, China
| | - Yue Shi
- Beijing Senkang Biotech Development Co., Ltd, Beijing 101400, China
| | - Qiwen Wu
- Guangzhou Veterinary Biotechnology Co.Ltd, Guangzhou 510000, China
| | - Mengzhen Luo
- Guangzhou Veterinary Biotechnology Co.Ltd, Guangzhou 510000, China
| | - Yujun Zhu
- Guangzhou Bozhi Biotechnology Co.Ltd, Guangzhou 510000, China
| | - Zizengchen Wang
- Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lefeng Wang
- Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine and College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Pan
- Guangzhou Veterinary Biotechnology Co.Ltd, Guangzhou 510000, China
| |
Collapse
|
7
|
Yan ZY, Li HM, Wang CC, Qiu J, Pan Y, Zhang D, Hu W, Guo HJ. Preparation of a new monoclonal antibody against subgroup A of avian leukosis virus and identifying its antigenic epitope. Int J Biol Macromol 2019; 156:1234-1242. [PMID: 31759029 DOI: 10.1016/j.ijbiomac.2019.11.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 11/26/2022]
Abstract
This study focuses on preparing the monoclonal antibody (MAb) against subgroup A of avian leukosis virus (ALV-A) and identifying its antigenic epitope. The ALV-A gp85 gene with a size of 1005bp was amplified and expressed into a recombinant protein with a size of 46KD in E.coli. The products expressed after purification were inoculated into BALB/c mice for preparing antibody-secreting splenic lymphocytes and further obtaining hybridoma cells. Finally, one new hybridoma cell (A18GH) secreting MAb against ALV-A was screened, and the MAb was able to detect ALV-A/K strains in an indirect immunofluorescence assay (IFA), but not ALV-B/J strains. A total of 14 overlapping truncated ALV-A gp85 protein segments were expressed and eight peptides containing different antigenic amino acids were artificially synthesized for analyzing the antigenic epitope of the MAb using a western blot or an ELISA, and the results indicate that the antigenic epitope consists of seven amino acids within the 146-ATRFLLR -152 region of the ALV-A gp85 protein. A biological information analysis shows that the antigenic epitope has a high antigenic index and develops a curved linear spatial structure. Further, its 7 amino acids are completely within the 17 representative ALV-A strains, 4 are within the 11 ALV-K strains, and fewer are within the ALV-B/J/E strains. This study will significantly assist in a further understanding of the protein structure and function of ALV-A, and in the establishment of specific ALV-A detection methods.
Collapse
Affiliation(s)
- Ze-Yi Yan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hong-Mei Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Cheng-Cheng Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Jianhua Qiu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Yao Pan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Dandan Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Weiguo Hu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Hui-Jun Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China; College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
8
|
Zhou X, Wang L, Shen A, Shen X, Xu M, Qian K, Shao H, Yao Y, Nair V, Ye J, Qin A. Detection of ALV p27 in cloacal swabs and virus isolation medium by sELISA. BMC Vet Res 2019; 15:383. [PMID: 31666067 PMCID: PMC6822435 DOI: 10.1186/s12917-019-2150-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Avian leukosis (AL), which is caused by avian leukosis virus (ALV), has led to substantial economic losses in the poultry industry. The kit used to detect all ALV-positive chickens in breeder flocks is very important for efficiently controlling AL. However, a new emerging ALV subtype is currently a severe challenge in the poultry industry. RESULTS In this paper, we compared different enzyme-linked immunosorbent assay (ELISA) kits for detecting p27 of ALV in the same batch of meconium samples. Different positive samples were further analyzed by PCR or virus isolation. The results showed that 36 positive samples among the 1812 chicken meconium samples could be detected by a sandwich ELISA (sELISA) kit, but only 17 positive samples could be identified by a commercial kit. To verify this result, cloacal swabs and viruses isolated from the positive chickens (2 days old) were used to detect the presence of p27. The results showed that the positive rate of p27 was 100% for the swabs and 40% for virus isolation. Surprisingly, PCR and sequence analysis revealed that the env gene of ALV in these positive samples belonged to the novel subgroup K (ALV-K). CONCLUSION These data not only demonstrate the relatively high sensitivity of the sELISA kit but also highlight the challenge of controlling ALV-K.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Lin Wang
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Anning Shen
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Xi Shen
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Moru Xu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Key Lab of Zoonosis, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Hongxia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Key Lab of Zoonosis, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Yongxiu Yao
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Jianqiang Ye
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Key Lab of Zoonosis, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Key Lab of Zoonosis, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.
| |
Collapse
|
9
|
Mu X, Xu M, Zhu S, Xiao W, Shen X, Qin A. Geese not susceptible to virulent subgroup J avian leukosis virus isolated from chickens. Avian Pathol 2019; 49:29-35. [PMID: 31429308 DOI: 10.1080/03079457.2019.1657559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To determine whether geese are susceptible to infection by avian leukosis virus (ALV), 702 serum samples from domestic and foreign goose breeds were screened for p27 antigen as well as being inoculated into DF-1 cell cultures to isolate ALV. Although 5.7% of samples were positive for p27 antigen, reactivity appeared to be non-specific because no ALV was detected in the corresponding DF-1 cultures. To further determine whether geese are susceptible to ALV-J isolated from chickens, ALV-J strain JS09GY7 was artificially inoculated into 10-day-old goose embryos, with one-day-old hatched goslings then screened for p27 antigen and the presence of ALV. In all cases, the results of both tests were negative. Liver tissues from the 1-day-old goslings were screened using a polymerase chain reaction-based assay, which failed to amplify ALV-J gene fragments from any of the samples. Further, no histopathological damage was observed in the liver tissues. ALV-J was further inoculated intraperitoneally into one-day-old goslings, with cloacal swabs samples and plasma samples then collected every 5 days for 30 days. All samples were again negative for the presence of p27 antigen and ALV, and liver tissues from the challenged geese showed no histopathological damage and were negative for the presence of ALV-J gene fragments. Furthermore, p27 antigen detection, PCR-based screening, and indirect immunofluorescence assays were all negative following the infection of goose embryo fibroblasts with ALV-J. Together, these results confirm that virulent chicken-derived ALV-J strains cannot infect geese, and that p27 antigen detection in goose serum is susceptible to non-specific interference.
Collapse
Affiliation(s)
- Xiaohui Mu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, People's Republic of China
| | - Moru Xu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | - Shanyuan Zhu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, People's Republic of China
| | - Wenhua Xiao
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, People's Republic of China
| | - Xi Shen
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | - Aijian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
10
|
Li T, Xie J, Liang G, Ren D, Sun S, Lv L, Xie Q, Shao H, Gao W, Qin A, Ye J. Co-infection of vvMDV with multiple subgroups of avian leukosis viruses in indigenous chicken flocks in China. BMC Vet Res 2019; 15:288. [PMID: 31409367 PMCID: PMC6691527 DOI: 10.1186/s12917-019-2041-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In China, although the ALV eradication program and the MD vaccination strategy greatly reduce the disease burdens caused by the infection of ALV and MDV, the frequent emergence of novel ALV-K or vvMDV in the vaccinated chicken flock challenges the current control strategies for both diseases. RESULTS In Guangdong Province, an indigenous chicken flock was infected with neoplastic disease. Hematoxylin-eosin staining of the tissues showed the typical characteristics of MDV and classical ALV infection. The PCR and sequencing data demonstrated that the identified MDV was clustered into a very virulent MDV strain endemic in domestic chickens in China. Moreover, subgroups ALV-A and ALV-K were efficiently recovered from two samples. The full genome sequence revealed that the ALV-K isolate was phylogenetically close to the ALV TW3593 isolate from Taiwan Province. CONCLUSIONS A co-infection of vvMDV with multiple ALV subgroups emerged in a chicken flock with neoplastic disease in Guangdong Province. The co-infection with different subgroups of ALV with vvMDV in one chicken flock poses the risk for the emergence of novel ALVs and heavily burdens the control strategy for MDV.
Collapse
Affiliation(s)
- Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jing Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Guangcheng Liang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Dan Ren
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shu Sun
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lu Lv
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wei Gao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, No. 12 East Wenhui Road, Yangzhou, Jiangsu, 225009, People's Republic of China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
11
|
Hu W, Yan Z, Li H, Qiu J, Zhang D, Li P, Pan Y, Guo H. Development of a new colloidal gold immunochromatographic strip for rapid detecting subgroup A of avian leukosis virus using colloidal gold nanoparticles. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Chen J, Zhao Z, Chen Y, Zhang J, Yan L, Zheng X, Liao M, Cao W. Development and application of a SYBR green real-time PCR for detection of the emerging avian leukosis virus subgroup K. Poult Sci 2018; 97:2568-2574. [PMID: 29617900 PMCID: PMC6016701 DOI: 10.3382/ps/pey086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 12/23/2022] Open
Abstract
Avian leukosis virus subgroup K (ALV-K) is an emerging ALV tumor virus of chickens. We developed a SYBR green-based real-time polymerase chain reaction (PCR) assay for the rapid and economical detection of ALV-K in chicken flocks. The assay was specific for ALV-K and did not cross-react with other ALV subgroup or avian influenza virus, Newcastle disease virus, or Marek's Disease virus. The method was 100 times more sensitive than conventional PCR and 10 times more sensitive than the enzyme-linked immunosorbent assay (ELISA) for the P27 antigen. The assay was also more sensitive than conventional PCR in tests of 86 clinical plasma samples. DF-1 tissue culture cells infected with 1 TCID50 ALV-K particle were identified as negative using ELISA but tested positive with the real-time PCR method. The viral loads in organs and tissues in infected chickens were highest in kidney, lungs, and glandular stomach, and these results matched ELISA findings.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Zijun Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Yangyijun Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Jie Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Lifu Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Xiaocui Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture.,South China Collaborative Innovation Center for Prevention and Control of Poultry Infectious Diseases and Safety of Poultry Products, Guangzhou, People's Republic of China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, People's Republic of China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, People's Republic of China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture.,South China Collaborative Innovation Center for Prevention and Control of Poultry Infectious Diseases and Safety of Poultry Products, Guangzhou, People's Republic of China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, People's Republic of China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, People's Republic of China
| |
Collapse
|
13
|
Li T, Xie J, Lv L, Sun S, Dong X, Xie Q, Liang G, Xia C, Shao H, Qin A, Ye J. A chicken liver cell line efficiently supports the replication of ALV-J possibly through its high level viral receptor and efficient protein expression system. Vet Res 2018; 49:41. [PMID: 29720272 PMCID: PMC5932828 DOI: 10.1186/s13567-018-0537-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/03/2018] [Indexed: 02/01/2023] Open
Abstract
In this study, we identified a chicken liver cell line (LMH) which could strongly support the replication of ALV-J (Subgroup J of avian leukosis virus) with high viral titer. Notably, ALV-J was efficiently detected by ELISA in LMH cells 1 day before DF1 cells. In comparison with DF1 cells, LMH cells not only expressed higher levels of ALV-J receptor chNHE-1, but also possessed a more efficient protein expression system for foreign genes. Thus, LMH cells could be a novel tool to shorten the ALV-J eradication approach and accelerate studies on the pathogenesis and oncogenesis of ALV-J.
Collapse
Affiliation(s)
- Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jing Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lu Lv
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shu Sun
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaomei Dong
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Guangcheng Liang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chichao Xia
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China. .,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Institute of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
14
|
Qian K, Kong ZR, Zhang J, Cheng XW, Wu ZY, Gu CX, Shao HX, Qin AJ. Baicalin is an inhibitor of subgroup J avian leukosis virus infection. Virus Res 2018; 248:63-70. [PMID: 29481814 DOI: 10.1016/j.virusres.2018.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 01/02/2023]
Abstract
Avian leukosis virus subgroup J (ALV-J) can cause great economic losses to the poultry industry worldwide. Baicalin, one of the flavonoids present in S.baicalensis Georgi, has been shown to have antiviral activities. To investigate whether baicalin has antiviral effects on the infection of ALV-J in DF-1 cells, the cells were treated with baicalin at different time points. We found that baicalin could inhibit viral mRNA, protein levels and overall virus infection in a dose- and time-dependent manner using a variety of assays. Baicalin specifically targeted virus internalization and reduced the infectivity of ALV-J particles, but had no effect on the levels of major ALV-J receptor and virus binding to DF-1 cells. Collectively, these results suggest that baicalin might have potential to be developed as a novel antiviral agent for ALV-J infection.
Collapse
Affiliation(s)
- Kun Qian
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Lab of Zoonosis, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.
| | - Zheng-Ru Kong
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Jie Zhang
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Xiao-Wei Cheng
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Zong-Yi Wu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Cheng-Xi Gu
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Hong-Xia Shao
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| | - Ai-Jian Qin
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-innovation Centre for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Jiangsu Key Lab of Zoonosis, No. 12 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
15
|
Zhang Y, Xiao W, Kong H, Cheng J, Yan X, Zhang M, Wang Q, Qu H, Zhao Y. A Highly Sensitive Immunochromatographic Strip Test for Rapid and Quantitative Detection of Saikosaponin d. Molecules 2018; 23:molecules23020338. [PMID: 29415494 PMCID: PMC6017486 DOI: 10.3390/molecules23020338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 01/13/2023] Open
Abstract
A quantitative lateral-flow immunoassay using gold nanoparticles (AuNPs) conjugated with a monoclonal antibody (MAb) against saikosaponin d (SSd) was developed for the analysis of SSd. The AuNPs were prepared in our laboratory. The AuNPs were polyhedral, with an average diameter of approximately 18 nm. We used the conjugation between AuNPs and MAbs against SSd to prepare immunochromatographic strips (ICSs). For the quantitative experiment, the strips with the test results were scanned using a membrane strip reader, and a detection curve (regression equation, y = -0.113ln(x) + 1.5451, R² = 0.983), representing the averages of the scanned data, was obtained. This curve was linear from 96 ng/mL to 150 μg/mL, and the IC50 value was 10.39 μg/mL. In this study, we bring the concept ofPOCT (point-of-care testing) to the measurement of TCM compounds, and this is the first report of quantitative detection of SSd by an ICS.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., 58 Jiangning Industrial Park Kangyuan Road, Lianyungang, Jiangsu, 210000, China.
| | - Hui Kong
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China.
| | - Jinjun Cheng
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China.
| | - Xin Yan
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China.
| | - Meiling Zhang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China.
| | - Qingguo Wang
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China.
| | - Huihua Qu
- Centre of Scientific Experiment, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China.
| | - Yan Zhao
- School of Basic Medical Sciences, Beijing University of Chinese Medicine, 11 Beisanhuandong Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
16
|
Khairy WOA, Wang L, Tian X, Ye J, Qian K, Shao H, Qin A. Identification of a novel linear B-cell epitope in the p27 of Avian leukosis virus. Virus Res 2017; 238:253-257. [PMID: 28698047 DOI: 10.1016/j.virusres.2017.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/18/2022]
Abstract
Avian leukosis virus (ALV) is an avian oncogenic retrovirus that can induce virus-associated neoplasia and causes great economic loss in poultry industry. It is known that the capsid antigen p27 is the group-specific antigen that is highly conserved among all ALV subgroups, and is the most abundant immunogenic viral protein. In the present study, five overlapping fragments (GST- p27-F1/2, GST- p27-F2-1/2/3) of ALV-p27 were subjected to Western blotting analysis using a monoclonal antibody (5D3) against ALV-p27 to identify the epitope. The result showed that the epitope recognized by 5D3 is located within 173-240 amino acid of the ALV-p27 protein. For precise mapping of this epitope, a set of overlapping peptides were synthesized. Indirect enzyme linked immunosorbent assay (ELISA) revealed that 193CFRQKSQPDI202 motif was the minimal fragment recognized by 5D3, so this motif represented a linear B-cell epitope of ALV-p27. Homology analysis indicated that 5D3 defined epitope is highly conserved among ALV strains. The identified epitope might be useful in clinical applications and as a tool for further study of the structure and function of ALV-p27.
Collapse
Affiliation(s)
- Wiaam O A Khairy
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum, Khartoum North 13314, Sudan.
| | - Lin Wang
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China.
| | - Xue Tian
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China.
| | - Jianqiang Ye
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China.
| | - Kun Qian
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China.
| | - Hongxia Shao
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China.
| | - Aijian Qin
- Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China.
| |
Collapse
|
17
|
Novel avian leukosis viruses from domestic chicken breeds in mainland China. Arch Virol 2017; 162:2073-2076. [PMID: 28349354 DOI: 10.1007/s00705-017-3344-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/19/2017] [Indexed: 10/19/2022]
Abstract
Two novel avian leukosis viruses (ALVs) were isolated from 1380 whole blood samples taken from domestic chicken breeds in China. The two ALVs were uniquely different from the env (Envelope) genes of ALV A-J and carried an LTR (long terminal repeat) cluster from ALV-E. Large scale sequence analysis further showed that these ALVs (with different env and LTRs) were recently endemic in domestic chicken breeds in both China and Japan. The emergence of these novel ALVs is challenging the current ALV eradication program, and as such novel ALVs should be monitored in a timely and careful manner to stop their transmission and further recombination in the future.
Collapse
|
18
|
Xie Q, Zhang J, Shao H, Wan Z, Tian X, Yang J, Pang M, Qian K, Gao W, Wang C, Qin A, Ye J. Development of a novel immuno-PCR for detection of avian leukosis virus. J Virol Methods 2016; 236:25-28. [PMID: 27373601 DOI: 10.1016/j.jviromet.2016.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/10/2016] [Accepted: 06/26/2016] [Indexed: 11/29/2022]
Abstract
Avian leukosis virus (ALV) is an important pathogen for various neoplasms, including lymphoid, myeloid, and erythroid neoplasms, and it causes significant economic loss in the poultry industry. Several efficient methods for the detection of ALV have been reported. However, these previously developed approaches are based on either PCR or immunoassays. Here, we used a proximity ligation technique and combined PCR with the immunoassay to develop a novel immuno-PCR (Im-PCR) approach for the detection of ALV. Our data showed that the Im-PCR had high specificity and sensitivity to ALV. The Im-PCR method selectively reacted to ALV but not to the other avian viruses tested. The limit of detection of Im-PCR could reach 0.5 TCID50. Moreover, the results of Im-PCR were in agreement with results from commercial ELISA when the clinical cloaca samples were used for ALV detection. The present results demonstrate that the novel Im-PCR method can be efficiently applied to detect ALV in a clinical setting. Our data also highlight that Im-PCR may have promising applications in the diagnosis of pathogens.
Collapse
Affiliation(s)
- Quan Xie
- Ministry of Education Key Laboratory for Avian Preventive Medicine, and Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China
| | - Jianjun Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou, Jiangsu, PR China
| | - Hongxia Shao
- Ministry of Education Key Laboratory for Avian Preventive Medicine, and Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China
| | - Zhimin Wan
- Ministry of Education Key Laboratory for Avian Preventive Medicine, and Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China
| | - Xiaoyan Tian
- Ministry of Education Key Laboratory for Avian Preventive Medicine, and Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China
| | - Jialiang Yang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Mayun Pang
- Institute of Animal Health Inspection in Wujiang, Suzhou, Jiangsu, PR China
| | - Kun Qian
- Ministry of Education Key Laboratory for Avian Preventive Medicine, and Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China
| | - Wei Gao
- Ministry of Education Key Laboratory for Avian Preventive Medicine, and Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China
| | - Chengming Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China
| | - Aijian Qin
- Ministry of Education Key Laboratory for Avian Preventive Medicine, and Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China.
| | - Jianqiang Ye
- Ministry of Education Key Laboratory for Avian Preventive Medicine, and Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, PR China.
| |
Collapse
|