1
|
Liu L, Hakhverdyan M, Wallgren P, Vanneste K, Fu Q, Lucas P, Blanchard Y, de Graaf M, Oude Munnink BB, van Boheemen S, Bossers A, Hulst M, Van Borm S. An interlaboratory proficiency test using metagenomic sequencing as a diagnostic tool for the detection of RNA viruses in swine fecal material. Microbiol Spectr 2024; 12:e0420823. [PMID: 39162509 PMCID: PMC11448438 DOI: 10.1128/spectrum.04208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
Metagenomic shotgun sequencing (mNGS) can serve as a generic molecular diagnostic tool. An mNGS proficiency test (PT) was performed in six European veterinary and public health laboratories to detect porcine astroviruses in fecal material and the extracted RNA. While different mNGS workflows for the generation of mNGS data were used in the different laboratories, the bioinformatic analysis was standardized using a metagenomic read classifier as well as read mapping to selected astroviral reference genomes to assess the semiquantitative representation of astrovirus species mixtures. All participants successfully identified and classified most of the viral reads to the two dominant species. The normalized read counts obtained by aligning reads to astrovirus reference genomes by Bowtie2 were in line with Kraken read classification counts. Moreover, participants performed well in terms of repeatability when the fecal sample was tested in duplicate. However, the normalized read counts per detected astrovirus species differed substantially between participants, which was related to the different laboratory methods used for data generation. Further modeling of the mNGS data indicated the importance of selecting appropriate reference data for mNGS read classification. As virus- or sample-specific biases may apply, caution is needed when extrapolating this swine feces-based PT for the detection of other RNA viruses or using different sample types. The suitability of experimental design to a given pathogen/sample matrix combination, quality assurance, interpretation, and follow-up investigation remain critical factors for the diagnostic interpretation of mNGS results. IMPORTANCE Metagenomic shotgun sequencing (mNGS) is a generic molecular diagnostic method, involving laboratory preparation of samples, sequencing, bioinformatic analysis of millions of short sequences, and interpretation of the results. In this paper, we investigated the performance of mNGS on the detection of porcine astroviruses, a model for RNA viruses in a pig fecal material, among six European veterinary and public health laboratories. We showed that different methods for data generation affect mNGS performance among participants and that the selection of reference genomes is crucial for read classification. Follow-up investigation remains a critical factor for the diagnostic interpretation of mNGS results. The paper contributes to potential improvements of mNGS as a diagnostic tool in clinical settings.
Collapse
Affiliation(s)
- Lihong Liu
- Department of Microbiology, Swedish Veterinary Agency, Uppsala, Sweden
| | | | - Per Wallgren
- Department of Animal Health and Antimicrobial Strategies, Swedish Veterinary Agency, Uppsala, Sweden
| | - Kevin Vanneste
- Department of Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Qiang Fu
- Department of Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Pierrick Lucas
- Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
| | - Yannick Blanchard
- Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bas B Oude Munnink
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sander van Boheemen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alex Bossers
- Department of Epidemiology, Bioinformatics and Animal models, Wageningen BioVeterinary Research, Wageningen University & Research, Lelystad, the Netherlands
| | - Marcel Hulst
- Department of Epidemiology, Bioinformatics and Animal models, Wageningen BioVeterinary Research, Wageningen University & Research, Lelystad, the Netherlands
| | - Steven Van Borm
- Department of Avian Virology and Immunology, Sciensano, Ukkel, Belgium
| |
Collapse
|
2
|
Spatz S, Afonso CL. Non-Targeted RNA Sequencing: Towards the Development of Universal Clinical Diagnosis Methods for Human and Veterinary Infectious Diseases. Vet Sci 2024; 11:239. [PMID: 38921986 PMCID: PMC11209166 DOI: 10.3390/vetsci11060239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Metagenomics offers the potential to replace and simplify classical methods used in the clinical diagnosis of human and veterinary infectious diseases. Metagenomics boasts a high pathogen discovery rate and high specificity, advantages absent in most classical approaches. However, its widespread adoption in clinical settings is still pending, with a slow transition from research to routine use. While longer turnaround times and higher costs were once concerns, these issues are currently being addressed by automation, better chemistries, improved sequencing platforms, better databases, and automated bioinformatics analysis. However, many technical options and steps, each producing highly variable outcomes, have reduced the technology's operational value, discouraging its implementation in diagnostic labs. We present a case for utilizing non-targeted RNA sequencing (NT-RNA-seq) as an ideal metagenomics method for the detection of infectious disease-causing agents in humans and animals. Additionally, to create operational value, we propose to identify best practices for the "core" of steps that are invariably shared among many human and veterinary protocols. Reference materials, sequencing procedures, and bioinformatics standards should accelerate the validation processes necessary for the widespread adoption of this technology. Best practices could be determined through "implementation research" by a consortium of interested institutions working on common samples.
Collapse
Affiliation(s)
- Stephen Spatz
- Southeast Poultry Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 934 College Station Road, Athens, GA 30605, USA;
| | | |
Collapse
|
3
|
Da Silva AG, Bach E, Ellwanger JH, Chies JAB. Tips and tools to obtain and assess mosquito viromes. Arch Microbiol 2024; 206:132. [PMID: 38436750 DOI: 10.1007/s00203-023-03813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 03/05/2024]
Abstract
Due to their vectorial capacity, mosquitoes (Diptera: Culicidae) receive special attention from health authorities and entomologists. These cosmopolitan insects are responsible for the transmission of many viral diseases, such as dengue and yellow fever, causing huge impacts on human health and justifying the intensification of research focused on mosquito-borne diseases. In this context, the study of the virome of mosquitoes can contribute to anticipate the emergence and/or the reemergence of infectious diseases. The assessment of mosquito viromes also contributes to the surveillance of a wide variety of viruses found in these insects, allowing the early detection of pathogens with public health importance. However, the study of mosquito viromes can be challenging due to the number and complexities of steps involved in this type of research. Therefore, this article aims to describe, in a straightforward and simplified way, the steps necessary for obtention and assessment of mosquito viromes. In brief, this article explores: the capture and preservation of specimens; sampling strategies; treatment of samples before DNA/RNA extraction; extraction methodologies; enrichment and purification processes; sequencing choices; and bioinformatics analysis.
Collapse
Affiliation(s)
- Amanda Gonzalez Da Silva
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Evelise Bach
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - Joel Henrique Ellwanger
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Artur Bogo Chies
- Laboratory of Immunobiology and Immunogenetics, Department of Genetics, Postgraduate Program in Genetics and Molecular Biology (PPGBM), Universidade Federal do Rio Grande do Sul (UFRGS), UFRGS. Av. Bento Gonçalves, 9500, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Afonso CL, Afonso AM. Next-Generation Sequencing for the Detection of Microbial Agents in Avian Clinical Samples. Vet Sci 2023; 10:690. [PMID: 38133241 PMCID: PMC10747646 DOI: 10.3390/vetsci10120690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Direct-targeted next-generation sequencing (tNGS), with its undoubtedly superior diagnostic capacity over real-time PCR (RT-PCR), and direct-non-targeted NGS (ntNGS), with its higher capacity to identify and characterize multiple agents, are both likely to become diagnostic methods of choice in the future. tNGS is a rapid and sensitive method for precise characterization of suspected agents. ntNGS, also known as agnostic diagnosis, does not require a hypothesis and has been used to identify unsuspected infections in clinical samples. Implemented in the form of multiplexed total DNA metagenomics or as total RNA sequencing, the approach produces comprehensive and actionable reports that allow semi-quantitative identification of most of the agents present in respiratory, cloacal, and tissue samples. The diagnostic benefits of the use of direct tNGS and ntNGS are high specificity, compatibility with different types of clinical samples (fresh, frozen, FTA cards, and paraffin-embedded), production of nearly complete infection profiles (viruses, bacteria, fungus, and parasites), production of "semi-quantitative" information, direct agent genotyping, and infectious agent mutational information. The achievements of NGS in terms of diagnosing poultry problems are described here, along with future applications. Multiplexing, development of standard operating procedures, robotics, sequencing kits, automated bioinformatics, cloud computing, and artificial intelligence (AI) are disciplines converging toward the use of this technology for active surveillance in poultry farms. Other advances in human and veterinary NGS sequencing are likely to be adaptable to avian species in the future.
Collapse
|
5
|
Evaluation of extraction and enrichment methods for recovery of respiratory RNA viruses in a metagenomics approach. J Virol Methods 2023; 314:114677. [PMID: 36657602 PMCID: PMC10009504 DOI: 10.1016/j.jviromet.2023.114677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
Viral metagenomics is increasingly applied in viral detection and virome characterization. Different extraction and enrichment techniques may be adopted, however, reports on their effective influence on viral recovery is often conflicting. Using a three step enrichment steps, the effect of three extraction kits and the influence of DNase treatment with or without rRNA removal for respiratory RNA virus recovery from nasopharyngeal swab samples was evaluated. The viral cocktail containing six different RNA viruses pooled in equal volume were subjected to the different extraction and enrichment methods, sequenced using the Illumina MiSeq, and analysed using Genome Detective. The PureLink® Viral RNA/DNA Mini Kit (PureLink) was highly efficient with better recovery of all the viral agents in the cocktail. The use of rRNA treatment resulted in increased viral recovery with PureLink and QIAamp® Viral RNA Mini kit, while having comparable recovery rate as DNase only with the QIAamp® MinElute Virus Spin Kit. The observed low reads and genome coverage of some of the viruses could be attributed to their low abundance. Depending on sample matrix, extraction choice and enrichment strategy may influence recovery of respiratory RNA virus in metagenomics studies, therefore individual evaluation and adoption may be necessary for a robust result.
Collapse
|
6
|
Chen Z, Xiong Y, Ma R, Chen P, Duan L, Yang S, Gisèle IU, You L, Xiao D. A novel magnetic fluid for ultra-fast and highly efficient extraction of N1-methylnicotinamide in urine samples. NEW J CHEM 2023. [DOI: 10.1039/d3nj00488k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Among the three pre-treatment materials, Fe3O4@HPMC@DMSA NPs were selected to be the best material and were used to perform MSPE-HPLC-UV.
Collapse
Affiliation(s)
- Zhuhui Chen
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Xiong
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ranran Ma
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Chen
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Le Duan
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Shuying Yang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ineza Urujeni Gisèle
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Linjun You
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China
| | - Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 24 Tongjia Lane, Nanjing 210009, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
7
|
Sandybayev N, Beloussov V, Strochkov V, Solomadin M, Granica J, Yegorov S. Next Generation Sequencing Approaches to Characterize the Respiratory Tract Virome. Microorganisms 2022; 10:microorganisms10122327. [PMID: 36557580 PMCID: PMC9785614 DOI: 10.3390/microorganisms10122327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic and heightened perception of the risk of emerging viral infections have boosted the efforts to better understand the virome or complete repertoire of viruses in health and disease, with a focus on infectious respiratory diseases. Next-generation sequencing (NGS) is widely used to study microorganisms, allowing the elucidation of bacteria and viruses inhabiting different body systems and identifying new pathogens. However, NGS studies suffer from a lack of standardization, in particular, due to various methodological approaches and no single format for processing the results. Here, we review the main methodological approaches and key stages for studies of the human virome, with an emphasis on virome changes during acute respiratory viral infection, with applications for clinical diagnostics and epidemiologic analyses.
Collapse
Affiliation(s)
- Nurlan Sandybayev
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
- Correspondence: ; Tel.: +7-778312-2058
| | - Vyacheslav Beloussov
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
- Molecular Genetics Laboratory TreeGene, Almaty 050009, Kazakhstan
| | - Vitaliy Strochkov
- Kazakhstan-Japan Innovation Center, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
| | - Maxim Solomadin
- School of Pharmacy, Karaganda Medical University, Karaganda 100000, Kazakhstan
| | - Joanna Granica
- Molecular Genetics Laboratory TreeGene, Almaty 050009, Kazakhstan
| | - Sergey Yegorov
- Michael G. DeGroote Institute for Infectious Disease Research, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4LB, Canada
| |
Collapse
|
8
|
Fomsgaard AS, Rasmussen M, Spiess K, Fomsgaard A, Belsham GJ, Fonager J. Improvements in metagenomic virus detection by simple pretreatment methods. JOURNAL OF CLINICAL VIROLOGY PLUS 2022; 2:100120. [PMID: 36945677 PMCID: PMC10024160 DOI: 10.1016/j.jcvp.2022.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/26/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022] Open
Abstract
Early detection of pathogens at the point of care helps reduce the threats to human and animal health from emerging pathogens. Initially, the disease-causing agent will be unknown and needs to be identified; this often requires specific laboratory facilities. Here we describe the development of an unbiased detection assay for RNA and DNA viruses using metagenomic Nanopore sequencing and simple methods that can be transferred into a field setting. Human clinical samples containing the RNA virus SARS-CoV-2 or the DNA viruses human papillomavirus (HPV) and molluscum contagiosum virus (MCV) were used as a test of concept. Firstly, the virus detection potential was optimized by investigating different pretreatments for reducing non-viral nucleic acid components. DNase I pretreatment followed by filtration increased the proportion of SARS-CoV-2 sequenced reads > 500-fold compared with no pretreatments. This was sufficient to achieve virus detection with high confidence and allowed variant identification. Next, we tested individual SARS-CoV-2 samples with various viral loads (measured as CT-values determined by RT-qPCR). Lastly, we tested the assay on clinical samples containing the DNA virus HPV and co-infection with MCV to show the assay's detection potential for DNA viruses. This protocol is fast (same day results). We hope to apply this method in other settings for point of care detection of virus pathogens, thus eliminating the need for transport of infectious samples, cold storage and a specialized laboratory.
Collapse
Affiliation(s)
- Anna S. Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| | - Morten Rasmussen
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| | - Katja Spiess
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| | - Anders Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| | - Jannik Fonager
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, DK-2300 Copenhagen, Denmark
| |
Collapse
|
9
|
Comprehensive Evaluation of RNA and DNA Viromic Methods Based on Species Richness and Abundance Analyses Using Marmot Rectal Samples. mSystems 2022; 7:e0043022. [PMID: 35862817 PMCID: PMC9426427 DOI: 10.1128/msystems.00430-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Viral metagenomics is the most powerful tool to profile viromic composition for a given sample. Different viromic methods, including amplification-free ones, have been developed, but choosing them for different purposes requires comprehensive benchmarks. Here, we assessed the performance of four routinely used methods, i.e., multiple displacement amplification (MDA), direct metagenomic sequencing (MTG), sequence-independent single-primer amplification (SIA), and metatranscriptomic sequencing (MTT), using marmot rectal samples as the templates spiked with five known viruses of different genome types. The obtained clean data were differently contaminated by host and bacterial genomes, resulting in MDA having the most, with ~72.1%, but MTT had only ~7.5% data, useful for follow-up viromic analysis. MDA showed a broader spectrum with higher efficiency to profile the DNA virome, and MTT captured almost all RNA viruses with extraordinary sensitivity; hence, they are advisable in richness-based viromic studies. MTG was weak in capturing single-stranded DNA viruses, and SIA could detect both RNA and DNA viruses but with high randomness. Due to biases to certain types of viruses, the four methods caused different alterations to species abundance compared to the initial virus composition. SIA and MDA introduced greater stochastic errors to relative abundances of species, genus, and family taxa, whereas the two amplification-free methods were more tolerant toward such errors and thus are recommendable in abundance-based analyses. In addition, genus taxon is a compromising analytic level that ensures technically supported and biologically and/or ecologically meaningful viromic conclusions. IMPORTANCE Viral metagenomics can be roughly divided into species richness-based studies and species abundance-based analyses. Viromic methods with different principles have been developed, but rational selection of these techniques according to different purposes requires comprehensive understanding of their properties. By assessing the four most widely used methods using template samples, we found that multiple displacement amplification (MDA) and metatranscriptomic sequencing (MTT) are advisable for species richness-based viromic studies, as they show excellent efficiency to detect DNA and RNA viruses. Meanwhile, metagenomic sequencing (MTG) and MTT are more compatible with stochastic errors of methods introduced into relative abundance of viromic taxa and hence are rational choices in species abundance-based analyses. This study also highlights that MTG needs to tackle host genome contamination and ameliorate the capacity to detect single-stranded DNA viruses in the future, and the MTT method requires an improvement in bacterial rRNA depletion prior to library preparation.
Collapse
|
10
|
Kolundžija S, Cheng DQ, Lauro FM. RNA Viruses in Aquatic Ecosystems through the Lens of Ecological Genomics and Transcriptomics. Viruses 2022; 14:702. [PMID: 35458432 PMCID: PMC9029791 DOI: 10.3390/v14040702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Massive amounts of data from nucleic acid sequencing have changed our perspective about diversity and dynamics of marine viral communities. Here, we summarize recent metatranscriptomic and metaviromic studies targeting predominantly RNA viral communities. The analysis of RNA viromes reaffirms the abundance of lytic (+) ssRNA viruses of the order Picornavirales, but also reveals other (+) ssRNA viruses, including RNA bacteriophages, as important constituents of extracellular RNA viral communities. Sequencing of dsRNA suggests unknown diversity of dsRNA viruses. Environmental metatranscriptomes capture the dynamics of ssDNA, dsDNA, ssRNA, and dsRNA viruses simultaneously, unravelling the full complexity of viral dynamics in the marine environment. RNA viruses are prevalent in large size fractions of environmental metatranscriptomes, actively infect marine unicellular eukaryotes larger than 3 µm, and can outnumber bacteriophages during phytoplankton blooms. DNA and RNA viruses change abundance on hourly timescales, implying viral control on a daily temporal basis. Metatranscriptomes of cultured protists host a diverse community of ssRNA and dsRNA viruses, often with multipartite genomes and possibly persistent intracellular lifestyles. We posit that RNA viral communities might be more diverse and complex than formerly anticipated and that the influence they exert on community composition and global carbon flows in aquatic ecosystems may be underestimated.
Collapse
Affiliation(s)
- Sandra Kolundžija
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Dong-Qiang Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| | - Federico M. Lauro
- Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| |
Collapse
|
11
|
Direct sequencing of measles virus complete genomes in the midst of a large-scale outbreak. PLoS One 2021; 16:e0255663. [PMID: 34506497 PMCID: PMC8432851 DOI: 10.1371/journal.pone.0255663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 07/21/2021] [Indexed: 11/19/2022] Open
Abstract
Measles outbreaks escalated globally despite worldwide elimination efforts. Molecular epidemiological investigations utilizing partial measles virus (MeV) genomes are challenged by reduction in global genotypes and low evolutionary rates. Greater resolution was reached using MeV complete genomes, however time and costs limit the application to numerous samples. We developed an approach to unbiasedly sequence complete MeV genomes directly from patient urine samples. Samples were enriched for MeV using filtration or nucleases and the minimal number of sequence reads to allocate per sample based on its MeV content was assessed using in-silico reduction of sequencing depth. Application of limited-resource sequencing to treated MeV-positive samples demonstrated that 1–5 million sequences for samples with high/medium MeV quantities and 10–15 million sequences for samples with lower MeV quantities are sufficient to obtain >98% MeV genome coverage and over X50 average depth. This approach enables real-time high-resolution molecular epidemiological investigations of large-scale MeV outbreaks.
Collapse
|
12
|
Happi AN, Ogunsanya OA, Oguzie JU, Oluniyi PE, Olono AS, Heeney JL, Happi CT. Microbial metagenomic approach uncovers the first rabbit haemorrhagic disease virus genome in Sub-Saharan Africa. Sci Rep 2021; 11:13689. [PMID: 34210997 PMCID: PMC8249450 DOI: 10.1038/s41598-021-91961-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 05/07/2021] [Indexed: 01/22/2023] Open
Abstract
Rabbit Haemorrhagic Disease (RHD) causes high morbidity and mortality in rabbits and hares. Here, we report the first genomic characterization of lagovirus GI.2 virus in domestic rabbits from sub-Saharan Africa. We used an unbiased microbial metagenomic Next Generation Sequencing (mNGS) approach to diagnose the pathogen causing the suspected outbreak of RHD in Ibadan, Nigeria. The liver, spleen, and lung samples of five rabbits from an outbreak in 2 farms were analyzed. The mNGS revealed one full and two partial RHDV2 genomes on both farms. Phylogenetic analysis showed close clustering with RHDV2 lineages from Europe (98.6% similarity with RHDV2 in the Netherlands, and 99.1 to 100% identity with RHDV2 in Germany), suggesting potential importation. Subsequently, all the samples were confirmed by RHDV virus-specific RT-PCR targeting the VP60 gene with the expected band size of 398 bp for the five rabbits sampled. Our findings highlight the need for increased genomic surveillance of RHDV2 to track its origin, understand its diversity and to inform public health policy in Nigeria, and Sub-Saharan Africa.
Collapse
Affiliation(s)
- Anise N Happi
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria. .,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria.
| | - Olusola A Ogunsanya
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria.,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Judith U Oguzie
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria.,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Paul E Oluniyi
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria.,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Alhaji S Olono
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria.,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria
| | - Jonathan L Heeney
- Lab of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Christian T Happi
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, Ede, Nigeria. .,African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer's University, Ede, Osun State, Nigeria.
| |
Collapse
|
13
|
Waweru JW, de Laurent Z, Kamau E, Mohammed KS, Gicheru E, Mutunga M, Kibet C, Kinyua J, Nokes DJ, Sande C, Githinji G. Enrichment approach for unbiased sequencing of respiratory syncytial virus directly from clinical samples. Wellcome Open Res 2021; 6:99. [PMID: 38779569 PMCID: PMC11109592 DOI: 10.12688/wellcomeopenres.16756.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 05/25/2024] Open
Abstract
Background: Nasopharyngeal samples contain higher quantities of bacterial and host nucleic acids relative to viruses; presenting challenges during virus metagenomics sequencing, which underpins agnostic sequencing protocols. We aimed to develop a viral enrichment protocol for unbiased whole-genome sequencing of respiratory syncytial virus (RSV) from nasopharyngeal samples using the Oxford Nanopore Technology (ONT) MinION platform. Methods: We assessed two protocols using RSV positive samples. Protocol 1 involved physical pre-treatment of samples by centrifugal processing before RNA extraction, while Protocol 2 entailed direct RNA extraction without prior enrichment. Concentrates from Protocol 1 and RNA extracts from Protocol 2 were each divided into two fractions; one was DNase treated while the other was not. RNA was then extracted from both concentrate fractions per sample and RNA from both protocols converted to cDNA, which was then amplified using the tagged Endoh primers through Sequence-Independent Single-Primer Amplification (SISPA) approach, a library prepared, and sequencing done. Statistical significance during analysis was tested using the Wilcoxon signed-rank test. Results: DNase-treated fractions from both protocols recorded significantly reduced host and bacterial contamination unlike the untreated fractions (in each protocol p<0.01). Additionally, DNase treatment after RNA extraction (Protocol 2) enhanced host and bacterial read reduction compared to when done before (Protocol 1). However, neither protocol yielded whole RSV genomes. Sequenced reads mapped to parts of the nucleoprotein (N gene) and polymerase complex (L gene) from Protocol 1 and 2, respectively. Conclusions: DNase treatment was most effective in reducing host and bacterial contamination, but its effectiveness improved if done after RNA extraction than before. We attribute the incomplete genome segments to amplification biases resulting from the use of short length random sequence (6 bases) in tagged Endoh primers. Increasing the length of the random nucleotides from six hexamers to nine or 12 in future studies may reduce the coverage biases.
Collapse
Affiliation(s)
- Jacqueline Wahura Waweru
- Epidemiology and Demographics, KEMRI Wellcome Trust Research Programme, Kilifi, KENYA, 237-80108, Kenya
- Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya, 62000-00200, Kenya
| | - Zaydah de Laurent
- Epidemiology and Demographics, KEMRI Wellcome Trust Research Programme, Kilifi, KENYA, 237-80108, Kenya
| | - Everlyn Kamau
- Epidemiology and Demographics, KEMRI Wellcome Trust Research Programme, Kilifi, KENYA, 237-80108, Kenya
| | - Khadija Said Mohammed
- Epidemiology and Demographics, KEMRI Wellcome Trust Research Programme, Kilifi, KENYA, 237-80108, Kenya
| | - Elijah Gicheru
- Epidemiology and Demographics, KEMRI Wellcome Trust Research Programme, Kilifi, KENYA, 237-80108, Kenya
| | - Martin Mutunga
- Epidemiology and Demographics, KEMRI Wellcome Trust Research Programme, Kilifi, KENYA, 237-80108, Kenya
| | - Caleb Kibet
- Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya, 62000-00200, Kenya
| | - Johnson Kinyua
- Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya, 62000-00200, Kenya
| | - D. James Nokes
- Epidemiology and Demographics, KEMRI Wellcome Trust Research Programme, Kilifi, KENYA, 237-80108, Kenya
| | - Charles Sande
- Epidemiology and Demographics, KEMRI Wellcome Trust Research Programme, Kilifi, KENYA, 237-80108, Kenya
| | - George Githinji
- Epidemiology and Demographics, KEMRI Wellcome Trust Research Programme, Kilifi, KENYA, 237-80108, Kenya
- Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya, 195-80108, Kenya
| |
Collapse
|
14
|
Folgueiras-González A, van den Braak R, Deijs M, van der Hoek L, de Groof A. A Versatile Processing Workflow to Enable Pathogen Detection in Clinical Samples from Organs Using VIDISCA. Diagnostics (Basel) 2021; 11:diagnostics11050791. [PMID: 33925752 PMCID: PMC8145099 DOI: 10.3390/diagnostics11050791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
In recent years, refined molecular methods coupled with powerful high throughput sequencing technologies have increased the potential of virus discovery in clinical samples. However, host genetic material remains a complicating factor that interferes with discovery of novel viruses in solid tissue samples as the relative abundance of the virus material is low. Physical enrichment processing methods, although usually complicated, labor-intensive, and costly, have proven to be successful for improving sensitivity of virus detection in complex samples. In order to further increase detectability, we studied the application of fast and simple high-throughput virus enrichment methods on tissue homogenates. Probe sonication in high EDTA concentrations, organic extraction with Vertrel™ XF, or a combination of both, were applied prior to chromatography-like enrichment using Capto™ Core 700 resin, after which effects on virus detection sensitivity by the VIDISCA method were determined. Sonication in the presence of high concentrations of EDTA showed the best performance with an increased proportion of viral reads, up to 9.4 times, yet minimal effect on the host background signal. When this sonication procedure in high EDTA concentrations was followed by organic extraction with Vertrel™ XF and two rounds of core bead chromatography enrichment, an increase up to 10.5 times in the proportion of viral reads in the processed samples was achieved, with reduction of host background sequencing. We present a simple and semi-high-throughput method that can be used to enrich homogenized tissue samples for viral reads.
Collapse
Affiliation(s)
- Alba Folgueiras-González
- Department Discovery & Technology, MSD Animal Health, Wim de Körverstraat 35, P.O. Box 31, 5830 AA Boxmeer, The Netherlands; (A.F.-G.); (R.v.d.B.)
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.D.); (L.v.d.H.)
| | - Robin van den Braak
- Department Discovery & Technology, MSD Animal Health, Wim de Körverstraat 35, P.O. Box 31, 5830 AA Boxmeer, The Netherlands; (A.F.-G.); (R.v.d.B.)
| | - Martin Deijs
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.D.); (L.v.d.H.)
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC Location AMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.D.); (L.v.d.H.)
| | - Ad de Groof
- Department Discovery & Technology, MSD Animal Health, Wim de Körverstraat 35, P.O. Box 31, 5830 AA Boxmeer, The Netherlands; (A.F.-G.); (R.v.d.B.)
- Correspondence:
| |
Collapse
|
15
|
Gil P, Dupuy V, Koual R, Exbrayat A, Loire E, Fall AG, Gimonneau G, Biteye B, Talla Seck M, Rakotoarivony I, Marie A, Frances B, Lambert G, Reveillaud J, Balenghien T, Garros C, Albina E, Eloit M, Gutierrez S. A library preparation optimized for metagenomics of RNA viruses. Mol Ecol Resour 2021; 21:1788-1807. [PMID: 33713395 DOI: 10.1111/1755-0998.13378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 11/28/2022]
Abstract
Our understanding of the viral communities associated to animals has not yet reached the level attained on the bacteriome. This situation is due to, among others, technical challenges in adapting metagenomics using high-throughput sequencing to the study of RNA viromes in animals. Although important developments have been achieved in most steps of viral metagenomics, there is yet a key step that has received little attention: the library preparation. This situation differs from bacteriome studies in which developments in library preparation have largely contributed to the democratisation of metagenomics. Here, we present a library preparation optimized for metagenomics of RNA viruses from insect vectors of viral diseases. The library design allows a simple PCR-based preparation, such as those routinely used in bacterial metabarcoding, that is adapted to shotgun sequencing as required in viral metagenomics. We first optimized our library preparation using mock viral communities and then validated a full metagenomic approach incorporating our preparation in two pilot studies with field-caught insect vectors; one including a comparison with a published metagenomic protocol. Our approach provided a fold increase in virus-like sequences compared to other studies, and nearly-full genomes from new virus species. Moreover, our results suggested conserved trends in virome composition within a population of a mosquito species. Finally, the sensitivity of our approach was compared to a commercial diagnostic PCR for the detection of an arbovirus in field-caught insect vectors. Our approach could facilitate studies on viral communities from animals and the democratization of metagenomics in community ecology of viruses.
Collapse
Affiliation(s)
- Patricia Gil
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Virginie Dupuy
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Rachid Koual
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Antoni Exbrayat
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Etienne Loire
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Assane G Fall
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, Senegal
| | - Geoffrey Gimonneau
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France.,Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, Senegal
| | - Biram Biteye
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, Senegal
| | - Momar Talla Seck
- Laboratoire National de l'Elevage et de Recherches Vétérinaires, Institut Sénégalais de Recherches Agricoles (ISRA), Dakar-Hann, Senegal
| | - Ignace Rakotoarivony
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | | | | | | | - Julie Reveillaud
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France
| | - Thomas Balenghien
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Claire Garros
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Emmanuel Albina
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Paris, France.,The OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Institut Pasteur, Paris, France.,École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Serafin Gutierrez
- ASTRE, Cirad, INRAE, University of Montpellier, Montpellier, France.,Cirad, UMR ASTRE, Montpellier, F-34398, France
| |
Collapse
|
16
|
Deep viral blood metagenomics reveals extensive anellovirus diversity in healthy humans. Sci Rep 2021; 11:6921. [PMID: 33767340 PMCID: PMC7994813 DOI: 10.1038/s41598-021-86427-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/15/2021] [Indexed: 02/08/2023] Open
Abstract
Human blood metagenomics has revealed the presence of different types of viruses in apparently healthy subjects. By far, anelloviruses constitute the viral family that is more frequently found in human blood, although amplification biases and contaminations pose a major challenge in this field. To investigate this further, we subjected pooled plasma samples from 120 healthy donors in Spain to high-speed centrifugation, RNA and DNA extraction, random amplification, and massive parallel sequencing. Our results confirm the extensive presence of anelloviruses in such samples, which represented nearly 97% of the total viral sequence reads obtained. We assembled 114 different viral genomes belonging to this family, revealing remarkable diversity. Phylogenetic analysis of ORF1 suggested 28 potentially novel anellovirus species, 24 of which were validated by Sanger sequencing to discard artifacts. These findings underscore the importance of implementing more efficient purification procedures that enrich the viral fraction as an essential step in virome studies and question the suggested pathological role of anelloviruses.
Collapse
|
17
|
Fitzpatrick AH, Rupnik A, O'Shea H, Crispie F, Keaveney S, Cotter P. High Throughput Sequencing for the Detection and Characterization of RNA Viruses. Front Microbiol 2021; 12:621719. [PMID: 33692767 PMCID: PMC7938315 DOI: 10.3389/fmicb.2021.621719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
This review aims to assess and recommend approaches for targeted and agnostic High Throughput Sequencing of RNA viruses in a variety of sample matrices. HTS also referred to as deep sequencing, next generation sequencing and third generation sequencing; has much to offer to the field of environmental virology as its increased sequencing depth circumvents issues with cloning environmental isolates for Sanger sequencing. That said however, it is important to consider the challenges and biases that method choice can impart to sequencing results. Here, methodology choices from RNA extraction, reverse transcription to library preparation are compared based on their impact on the detection or characterization of RNA viruses.
Collapse
Affiliation(s)
- Amy H. Fitzpatrick
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- Shellfish Microbiology, Marine Institute, Oranmore, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Helen O'Shea
- Biological Sciences, Munster Technological University, Cork, Ireland
| | - Fiona Crispie
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | | | - Paul Cotter
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
18
|
|
19
|
Comparative Metagenomics of Palearctic and Neotropical Avian Cloacal Viromes Reveal Geographic Bias in Virus Discovery. Microorganisms 2020; 8:microorganisms8121869. [PMID: 33256173 PMCID: PMC7761369 DOI: 10.3390/microorganisms8121869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 01/11/2023] Open
Abstract
Our understanding about viruses carried by wild animals is still scarce. The viral diversity of wildlife may be best described with discovery-driven approaches to the study of viral diversity that broaden research efforts towards non-canonical hosts and remote geographic regions. Birds have been key organisms in the transmission of viruses causing important diseases, and wild birds are threatened by viral spillovers associated with human activities. However, our knowledge of the avian virome may be biased towards poultry and highly pathogenic diseases. We describe and compare the fecal virome of two passerine-dominated bird assemblages sampled in a remote Neotropical rainforest in French Guiana (Nouragues Natural Reserve) and a Mediterranean forest in central Spain (La Herrería). We used metagenomic data to quantify the degree of functional and genetic novelty of viruses recovered by examining if the similarity of the contigs we obtained to reference sequences differed between both locations. In general, contigs from Nouragues were significantly less similar to viruses in databases than contigs from La Herrería using Blastn but not for Blastx, suggesting that pristine regions harbor a yet unknown viral diversity with genetically more singular viruses than more studied areas. Additionally, we describe putative novel viruses of the families Picornaviridae, Reoviridae and Hepeviridae. These results highlight the importance of wild animals and remote regions as sources of novel viruses that substantially broaden the current knowledge of the global diversity of viruses.
Collapse
|
20
|
Federici S, Nobs SP, Elinav E. Phages and their potential to modulate the microbiome and immunity. Cell Mol Immunol 2020; 18:889-904. [PMID: 32901128 DOI: 10.1038/s41423-020-00532-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages (hence termed phages) are viruses that target bacteria and have long been considered as potential future treatments against antibiotic-resistant bacterial infection. However, the molecular nature of phage interactions with bacteria and the human host has remained elusive for decades, limiting their therapeutic application. While many phages and their functional repertoires remain unknown, the advent of next-generation sequencing has increasingly enabled researchers to decode new lytic and lysogenic mechanisms by which they attack and destroy bacteria. Furthermore, the last decade has witnessed a renewed interest in the utilization of phages as therapeutic vectors and as a means of targeting pathogenic or commensal bacteria or inducing immunomodulation. Importantly, the narrow host range, immense antibacterial repertoire, and ease of manipulating phages may potentially allow for their use as targeted modulators of pathogenic, commensal and pathobiont members of the microbiome, thereby impacting mammalian physiology and immunity along mucosal surfaces in health and in microbiome-associated diseases. In this review, we aim to highlight recent advances in phage biology and how a mechanistic understanding of phage-bacteria-host interactions may facilitate the development of novel phage-based therapeutics. We provide an overview of the challenges of the therapeutic use of phages and how these could be addressed for future use of phages as specific modulators of the human microbiome in a variety of infectious and noncommunicable human diseases.
Collapse
Affiliation(s)
- Sara Federici
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Samuel P Nobs
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel. .,Cancer-Microbiome Division Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
21
|
Van Borm S, Fu Q, Winand R, Vanneste K, Hakhverdyan M, Höper D, Vandenbussche F. Evaluation of a commercial exogenous internal process control for diagnostic RNA virus metagenomics from different animal clinical samples. J Virol Methods 2020; 283:113916. [PMID: 32574649 DOI: 10.1016/j.jviromet.2020.113916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Metagenomic next generation sequencing (mNGS) is increasingly recognized as an important complementary tool to targeted human and animal infectious disease diagnostics. It is, however, sensitive to biases and errors that are currently not systematically evaluated by the implementation of quality controls (QC) for the diagnostic use of mNGS. We evaluated a commercial reagent (Mengovirus extraction control kit, CeraamTools, bioMérieux) as an exogenous internal control for mNGS. It validates the integrity of reagents and workflow, the efficient isolation of viral nucleic acids and the absence of inhibitors in individual samples (verified using a specific qRT-PCR). Moreover, it validates the efficient generation of viral sequence data in individual samples (verified by normalized mengoviral read counts in the metagenomic analysis). We show that when using a completely random metagenomics workflow: (1) Mengovirus RNA can be reproducibly detected in different animal sample types (swine feces and sera, wild bird cloacal swabs), except for tissue samples (swine lung); (2) the Mengovirus control kit does not contain other contaminating viruses that may affect metagenomic experiments (using a cutoff of minimum 1 Kraken classified read per million (RPM)); (3) the addition of 2.17 × 106Mengovirus copies/mL of sample does not affect the virome composition of pig fecal samples or wild bird cloacal swab samples; (4) Mengovirus Cq values (using as cutoff the upper limit of the 99 % confidence interval of Cq values for a given sample matrix) allow the identification of samples with poor viral RNA extraction or high inhibitor load; (5) Mengovirus normalized read counts (cutoff RPM > 1) allow the identification of samples where the viral sequences are outcompeted by host or bacterial target sequences in the random metagenomic workflow. The implementation of two QC testing points, a first one after RNA extraction (Mengoviral qRT-PCR) and a second one after metagenomic data analysis provide valuable information for the validation of individual samples and results. Their implementation in addition to external controls validating runs or experiments should be carefully considered for a given sample type and workflow.
Collapse
Affiliation(s)
- Steven Van Borm
- Department of Animal Infectious Diseases, Sciensano, Groeselenbergstraat 99, 1180, Brussels, Belgium.
| | - Qiang Fu
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Raf Winand
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | | | - Dirk Höper
- FLI, Friedrich Löffler Institut, Südufer 10, 17493 Greifswald, Germany
| | - Frank Vandenbussche
- Department of Animal Infectious Diseases, Sciensano, Groeselenbergstraat 99, 1180, Brussels, Belgium
| |
Collapse
|
22
|
Batovska J, Mee PT, Lynch SE, Sawbridge TI, Rodoni BC. Sensitivity and specificity of metatranscriptomics as an arbovirus surveillance tool. Sci Rep 2019; 9:19398. [PMID: 31852942 PMCID: PMC6920425 DOI: 10.1038/s41598-019-55741-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/29/2019] [Indexed: 01/30/2023] Open
Abstract
The ability to identify all the viruses within a sample makes metatranscriptomic sequencing an attractive tool to screen mosquitoes for arboviruses. Practical application of this technique, however, requires a clear understanding of its analytical sensitivity and specificity. To assess this, five dilutions (1:1, 1:20, 1:400, 1:8,000 and 1:160,000) of Ross River virus (RRV) and Umatilla virus (UMAV) isolates were spiked into subsamples of a pool of 100 Culex australicus mosquitoes. The 1:1 dilution represented the viral load of one RRV-infected mosquito in a pool of 100 mosquitoes. The subsamples underwent nucleic acid extraction, mosquito-specific ribosomal RNA depletion, and Illumina HiSeq sequencing. The viral load of the subsamples was also measured using reverse transcription droplet digital PCR (RT-ddPCR) and quantitative PCR (RT-qPCR). Metatranscriptomic sequencing detected both RRV and UMAV in the 1:1, 1:20 and 1:400 subsamples. A high specificity was achieved, with 100% of RRV and 99.6% of UMAV assembled contigs correctly identified. Metatranscriptomic sequencing was not as sensitive as RT-qPCR or RT-ddPCR; however, it recovered whole genome information and detected 19 other viruses, including four first detections for Australia. These findings will assist arbovirus surveillance programs in utilising metatranscriptomics in routine surveillance activities to enhance arbovirus detection.
Collapse
Affiliation(s)
- Jana Batovska
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia.
| | - Peter T Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Stacey E Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia.
| | - Tim I Sawbridge
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Brendan C Rodoni
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
23
|
dsRNA-Seq: Identification of Viral Infection by Purifying and Sequencing dsRNA. Viruses 2019; 11:v11100943. [PMID: 31615058 PMCID: PMC6832592 DOI: 10.3390/v11100943] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022] Open
Abstract
RNA viruses are a major source of emerging and re-emerging infectious diseases around the world. We developed a method to identify RNA viruses that is based on the fact that RNA viruses produce double-stranded RNA (dsRNA) while replicating. Purifying and sequencing dsRNA from the total RNA isolated from infected tissue allowed us to recover dsRNA virus sequences and replicated sequences from single-stranded RNA (ssRNA) viruses. We refer to this approach as dsRNA-Seq. By assembling dsRNA sequences into contigs we identified full length or partial RNA viral genomes of varying genome types infecting mammalian culture samples, identified a known viral disease agent in laboratory infected mice, and successfully detected naturally occurring RNA viral infections in reptiles. Here, we show that dsRNA-Seq is a preferable method for identifying viruses in organisms that don’t have sequenced genomes and/or commercially available rRNA depletion reagents. In addition, a significant advantage of this method is the ability to identify replicated viral sequences of ssRNA viruses, which is useful for distinguishing infectious viral agents from potential noninfectious viral particles or contaminants.
Collapse
|
24
|
Chong R, Shi M, Grueber CE, Holmes EC, Hogg CJ, Belov K, Barrs VR. Fecal Viral Diversity of Captive and Wild Tasmanian Devils Characterized Using Virion-Enriched Metagenomics and Metatranscriptomics. J Virol 2019; 93:e00205-19. [PMID: 30867308 PMCID: PMC6532096 DOI: 10.1128/jvi.00205-19 10.1128/jvi.00205-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 08/15/2024] Open
Abstract
The Tasmanian devil is an endangered carnivorous marsupial threatened by devil facial tumor disease (DFTD). While research on DFTD has been extensive, little is known about viruses in devils and whether any are of potential conservation relevance for this endangered species. Using both metagenomics based on virion enrichment and sequence-independent amplification (virion-enriched metagenomics) and metatranscriptomics based on bulk RNA sequencing, we characterized and compared the fecal viromes of captive and wild devils. A total of 54 fecal samples collected from two captive and four wild populations were processed for virome characterization using both approaches. In total, 24 novel marsupial-related viruses, comprising a sapelovirus, astroviruses, rotaviruses, picobirnaviruses, parvoviruses, papillomaviruses, polyomaviruses, and a gammaherpesvirus, were identified, as well as known mammalian pathogens such as rabbit hemorrhagic disease virus 2. Captive devils showed significantly lower viral diversity than wild devils. Comparison of the two virus discovery approaches revealed substantial differences in the number and types of viruses detected, with metatranscriptomics better suited for RNA viruses and virion-enriched metagenomics largely identifying more DNA viruses. Thus, the viral communities revealed by virion-enriched metagenomics and metatranscriptomics were not interchangeable and neither approach was able to detect all viruses present. An integrated approach using both virion-enriched metagenomics and metatranscriptomics constitutes a powerful tool for obtaining a complete overview of both the taxonomic and functional profiles of viral communities within a sample.IMPORTANCE The Tasmanian devil is an iconic Australian marsupial that has suffered an 80% population decline due to a contagious cancer, devil facial tumor disease, along with other threats. Until now, viral discovery in this species has been confined to one gammaherpesvirus (dasyurid herpesvirus 2 [DaHV-2]), for which captivity was identified as a significant risk factor. Our discovery of 24 novel marsupial-associated RNA and DNA viruses, and that viral diversity is lower in captive than in wild devils, has greatly expanded our knowledge of gut-associated viruses in devils and provides important baseline information that will contribute to the conservation and captive management of this endangered species. Our results also revealed that a combination of virion-enriched metagenomics and metatranscriptomics may be a more comprehensive approach for virome characterization than either method alone. Our results thus provide a springboard for continuous improvements in the way we study complex viral communities.
Collapse
Affiliation(s)
- Rowena Chong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences and Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Catherine E Grueber
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- San Diego Zoo Global, San Diego, California, USA
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- School of Life and Environmental Sciences and Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Vanessa R Barrs
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Sydney School of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
25
|
Fecal Viral Diversity of Captive and Wild Tasmanian Devils Characterized Using Virion-Enriched Metagenomics and Metatranscriptomics. J Virol 2019; 93:JVI.00205-19. [PMID: 30867308 PMCID: PMC6532096 DOI: 10.1128/jvi.00205-19] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 02/21/2019] [Indexed: 12/28/2022] Open
Abstract
The Tasmanian devil is an iconic Australian marsupial that has suffered an 80% population decline due to a contagious cancer, devil facial tumor disease, along with other threats. Until now, viral discovery in this species has been confined to one gammaherpesvirus (dasyurid herpesvirus 2 [DaHV-2]), for which captivity was identified as a significant risk factor. Our discovery of 24 novel marsupial-associated RNA and DNA viruses, and that viral diversity is lower in captive than in wild devils, has greatly expanded our knowledge of gut-associated viruses in devils and provides important baseline information that will contribute to the conservation and captive management of this endangered species. Our results also revealed that a combination of virion-enriched metagenomics and metatranscriptomics may be a more comprehensive approach for virome characterization than either method alone. Our results thus provide a springboard for continuous improvements in the way we study complex viral communities. The Tasmanian devil is an endangered carnivorous marsupial threatened by devil facial tumor disease (DFTD). While research on DFTD has been extensive, little is known about viruses in devils and whether any are of potential conservation relevance for this endangered species. Using both metagenomics based on virion enrichment and sequence-independent amplification (virion-enriched metagenomics) and metatranscriptomics based on bulk RNA sequencing, we characterized and compared the fecal viromes of captive and wild devils. A total of 54 fecal samples collected from two captive and four wild populations were processed for virome characterization using both approaches. In total, 24 novel marsupial-related viruses, comprising a sapelovirus, astroviruses, rotaviruses, picobirnaviruses, parvoviruses, papillomaviruses, polyomaviruses, and a gammaherpesvirus, were identified, as well as known mammalian pathogens such as rabbit hemorrhagic disease virus 2. Captive devils showed significantly lower viral diversity than wild devils. Comparison of the two virus discovery approaches revealed substantial differences in the number and types of viruses detected, with metatranscriptomics better suited for RNA viruses and virion-enriched metagenomics largely identifying more DNA viruses. Thus, the viral communities revealed by virion-enriched metagenomics and metatranscriptomics were not interchangeable and neither approach was able to detect all viruses present. An integrated approach using both virion-enriched metagenomics and metatranscriptomics constitutes a powerful tool for obtaining a complete overview of both the taxonomic and functional profiles of viral communities within a sample. IMPORTANCE The Tasmanian devil is an iconic Australian marsupial that has suffered an 80% population decline due to a contagious cancer, devil facial tumor disease, along with other threats. Until now, viral discovery in this species has been confined to one gammaherpesvirus (dasyurid herpesvirus 2 [DaHV-2]), for which captivity was identified as a significant risk factor. Our discovery of 24 novel marsupial-associated RNA and DNA viruses, and that viral diversity is lower in captive than in wild devils, has greatly expanded our knowledge of gut-associated viruses in devils and provides important baseline information that will contribute to the conservation and captive management of this endangered species. Our results also revealed that a combination of virion-enriched metagenomics and metatranscriptomics may be a more comprehensive approach for virome characterization than either method alone. Our results thus provide a springboard for continuous improvements in the way we study complex viral communities.
Collapse
|
26
|
Cholleti H, Berg M, Hayer J, Blomström AL. Vector-borne viruses and their detection by viral metagenomics. Infect Ecol Epidemiol 2018. [DOI: 10.1080/20008686.2018.1553465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Harindranath Cholleti
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mikael Berg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Juliette Hayer
- SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anne-Lie Blomström
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
27
|
Zhang D, Lou X, Yan H, Pan J, Mao H, Tang H, Shu Y, Zhao Y, Liu L, Li J, Chen J, Zhang Y, Ma X. Metagenomic analysis of viral nucleic acid extraction methods in respiratory clinical samples. BMC Genomics 2018; 19:773. [PMID: 30359242 PMCID: PMC6202819 DOI: 10.1186/s12864-018-5152-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/09/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Numerous protocols for viral enrichment and genome amplification have been created. However, the direct identification of viral genomes from clinical specimens using next-generation sequencing (NGS) still has its challenges. As a selected viral nucleic acid extraction method may determine the sensitivity and reliability of NGS, it is still valuable to evaluate the extraction efficiency of different extraction kits using clinical specimens directly. RESULTS In this study, we performed qRT-PCR and viral metagenomic analysis of the extraction efficiency of four commonly used Qiagen extraction kits: QIAamp Viral RNA Mini Kit (VRMK), QIAamp MinElute Virus Spin Kit (MVSK), RNeasy Mini Kit (RMK), and RNeasy Plus Micro Kit (RPMK), using a mixed respiratory clinical sample without any pre-treatment. This sample contained an adenovirus (ADV), influenza virus A (Flu A), human parainfluenza virus 3 (PIV3), human coronavirus OC43 (OC43), and human metapneumovirus (HMPV). The quantity and quality of the viral extracts were significantly different among these kits. The highest threshold cycle(Ct)values for ADV and OC43 were obtained by using the RPMK. The MVSK had the lowest Ct values for ADV and PIV3. The RMK revealed the lowest detectability for HMPV and PIV3. The most effective rate of NGS data at 67.47% was observed with the RPMK. The other three kits ranged between 12.1-26.79% effectiveness rates for the NGS data. Most importantly, compared to the other three kits the highest proportion of non-host reads was obtained by the RPMK. The MVSK performed best with the lowest Ct value of 20.5 in the extraction of ADV, while the RMK revealed the best extraction efficiency by NGS analysis. CONCLUSIONS The evaluation of viral nucleic acid extraction efficiency is different between NGS and qRT-PCR analysis. The RPMK was most applicable for the metagenomic analysis of viral RNA and enabled more sensitive identification of the RNA virus genome in respiratory clinical samples. In addition, viral RNA extraction kits were also applicable for metagenomic analysis of the DNA virus. Our results highlighted the importance of nucleic acid extraction kit selection, which has a major impact on the yield and number of viral reads by NGS analysis. Therefore, the choice of extraction method for a given viral pathogen needs to be carefully considered.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, 102206, China.,Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Xiuyu Lou
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Hao Yan
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Junhang Pan
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Haiyan Mao
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Hongfeng Tang
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Yan Shu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Yun Zhao
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Lei Liu
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Junping Li
- Department of Pathology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Jiang Chen
- College Of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, 310013, China
| | - Yanjun Zhang
- Institute of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Xuejun Ma
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, 102206, China.
| |
Collapse
|
28
|
Wylezich C, Papa A, Beer M, Höper D. A Versatile Sample Processing Workflow for Metagenomic Pathogen Detection. Sci Rep 2018; 8:13108. [PMID: 30166611 PMCID: PMC6117295 DOI: 10.1038/s41598-018-31496-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 08/16/2018] [Indexed: 11/09/2022] Open
Abstract
Metagenomics is currently the only generic method for pathogen detection. Starting from RNA allows the assessment of the whole sample community including RNA viruses. Here we present our modular concerted protocol for sample processing for diagnostic metagenomics analysis of human, animal, and food samples. The workflow does not rely on dedicated amplification steps at any stage in the process and, in contrast to published methods, libraries prepared accordingly will yield only minute amounts of unclassifiable reads. We confirmed the performance of the approach using a spectrum of pathogen/matrix-combinations showing it has the potential to become a commonly usable analytical framework.
Collapse
Affiliation(s)
- Claudia Wylezich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), 17493, Greifswald-Insel Riems, Germany.
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), 17493, Greifswald-Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
29
|
Jin CE, Koo B, Lee EY, Kim JY, Kim SH, Shin Y. Simple and label-free pathogen enrichment via homobifunctional imidoesters using a microfluidic (SLIM) system for ultrasensitive pathogen detection in various clinical specimens. Biosens Bioelectron 2018; 111:66-73. [PMID: 29653418 PMCID: PMC7125596 DOI: 10.1016/j.bios.2018.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/16/2018] [Accepted: 04/01/2018] [Indexed: 01/12/2023]
Abstract
Diseases caused by pathogenic microorganisms including bacteria and viruses can cause serious medical issues including death and result in huge economic losses. Despite the myriad of recent advances in the rapid and accurate detection of pathogens, large volume clinical samples with a low concentration of pathogens continue to present challenges for diagnosis and surveillance. We here report a simple and label-free approach via homobifunctional imidoesters (HIs) with a microfluidic platform (SLIM) to efficiently enrich and extract pathogens at low concentrations from clinical samples. The SLIM system consists of an assembled double microfluidic chip for streamlining large volume processing and HIs for capturing pathogens and isolating nucleic acids by both electrostatic and covalent interaction without a chaotropic detergent or bulky instruments. The SLIM system significantly increases the enrichment and extraction rate of pathogens (up to 80% at 10 CFU (colony forming unit) in a 1 mL volume within 50 min). We demonstrated its clinical utility in large sample volumes from 46 clinical specimens including environmental swabs, saliva, and blood plasma. The SLIM system showed higher sensitivity with these samples and could detect pathogens that were below the threshold of detection with other methods. Finally, by combining our SLIM approach with an isothermal optical sensor, pathogens could be detected at a very high sensitivity in blood plasma samples within 80 min via enrichment, extraction and detection steps. Our SLIM system thus provides a simple, reliable, cost-effective and ultrasensitive pathogen diagnosis platform for use with large volume clinical samples and would thus have significant utility for various infectious diseases. SLIM system significantly increases the enrichment and extraction rate of pathogens. Demonstrated its clinical utility in large sample volumes from 46 clinical specimens. A simple, reliable, cost-effective and ultrasensitive pathogen diagnosis platform.
Collapse
Affiliation(s)
- Choong Eun Jin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Eun Yeong Lee
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Ji Yeun Kim
- Department of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Van Borm S, Steensels M, Mathijs E, Yinda CK, Matthijnssens J, Lambrecht B. Complete coding sequence of a novel picorna-like virus in a blackbird infected with Usutu virus. Arch Virol 2018; 163:1701-1703. [PMID: 29442227 DOI: 10.1007/s00705-018-3761-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 11/25/2022]
Abstract
Using random high-throughput RNA sequencing, the complete coding sequence of a novel picorna-like virus (a 9,228-nt contig containing 212,202 reads) was determined from a blackbird (Turdus merula) infected with Usutu virus. This sequence shares only 36% amino acid sequence identity with its closest homolog, arivirus 1, (an unclassified member of the order Picornavirales), and shares its dicistronic genome arrangement. The new virus was therefore tentatively named "blackbird arilivirus" (ari-like virus). The nearly complete genome sequence consists of at least 9,228 nt and contains two open reading frames (ORFs) encoding the nonstructural polyprotein (2235 amino acids) and structural polyprotein (769 amino acids). Two TaqMan RT-qPCR assays specific for ORF1 confirmed the presence of high levels of this novel virus in the original sample. Nucleotide composition analysis suggests that blackbird arilivirus is of dietary (plant) origin.
Collapse
Affiliation(s)
- Steven Van Borm
- Directorate Viral Diseases, Veterinary and Agrochemical Research Center CODA-CERVA, Brussels, Belgium.
| | - Mieke Steensels
- Directorate Viral Diseases, Veterinary and Agrochemical Research Center CODA-CERVA, Brussels, Belgium
| | - Elisabeth Mathijs
- Directorate Viral Diseases, Veterinary and Agrochemical Research Center CODA-CERVA, Brussels, Belgium
| | - Claude Kwe Yinda
- Laboratory of Viral Metagenomics, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Bénédicte Lambrecht
- Directorate Viral Diseases, Veterinary and Agrochemical Research Center CODA-CERVA, Brussels, Belgium
| |
Collapse
|
31
|
Monteil-Bouchard S, Temmam S, Desnues C. Protocol for Generating Infectious RNA Viromes from Complex Biological Samples. Methods Mol Biol 2018; 1838:25-36. [PMID: 30128987 DOI: 10.1007/978-1-4939-8682-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This chapter proposes a simple, standardized protocol for generating RNA viromes from complex host-associated biological samples of various origins. Compared to other existing protocols to generate RNA viromes, this protocol preserves the infectivity of viral particles and allows for downstream applications such as viral characterization and isolation tests.
Collapse
Affiliation(s)
- Sonia Monteil-Bouchard
- Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes (URMITE), IHU Méditerranée Infection, Assistance-Publique des Hôpitaux de Marseille, Aix-Marseille Université, CNRS 7278, IRD 198, INSERM1095, Marseille, France
| | - Sarah Temmam
- Biology of Infection Unit, Laboratory of Pathogen Discovery, Institut Pasteur, INSERM U1117, Paris, France
| | - Christelle Desnues
- Unité de Recherche sur les Maladies Infectieuses Tropicales Emergentes (URMITE), IHU Méditerranée Infection, Assistance-Publique des Hôpitaux de Marseille, Aix-Marseille Université, CNRS 7278, IRD 198, INSERM1095, Marseille, France.
| |
Collapse
|
32
|
Gonzales-Gustavson E, Timoneda N, Fernandez-Cassi X, Caballero A, Abril JF, Buti M, Rodriguez-Frias F, Girones R. Identification of sapovirus GV.2, astrovirus VA3 and novel anelloviruses in serum from patients with acute hepatitis of unknown aetiology. PLoS One 2017; 12:e0185911. [PMID: 28982120 PMCID: PMC5628893 DOI: 10.1371/journal.pone.0185911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatitis is a general term meaning inflammation of the liver, which can be caused by a variety of viruses. However, a substantial number of cases remain with unknown aetiology. We analysed the serum of patients with clinical signs of hepatitis using a metagenomics approach to characterize their viral species composition. Four pools of patients with hepatitis without identified aetiological agents were evaluated. Additionally, one pool of patients with hepatitis E (HEV) and pools of healthy volunteers were included as controls. A high diversity of anelloviruses, including novel sequences, was found in pools from patients with hepatitis of unknown aetiology. Moreover, viruses recently associated with gastroenteritis as sapovirus GV.2 and astrovirus VA3 were also detected only in those pools. Besides, most of the HEV genome was recovered from the HEV pool. Finally, GB virus C and human endogenous retrovirus were found in the HEV and healthy pools. Our study provides an overview of the virome in serum from hepatitis patients suggesting a potential role of these viruses not previously described in cases of hepatitis. However, further epidemiologic studies are necessary to confirm their contribution to the development of hepatitis.
Collapse
Affiliation(s)
- Eloy Gonzales-Gustavson
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - N. Timoneda
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
- Computational Genomics Lab, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
| | - X. Fernandez-Cassi
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
| | - A. Caballero
- Hospital Universitari Vall d’Hebron and CIBEREHD del Instituto Carlos III, Barcelona, Catalonia, Spain
| | - J. F. Abril
- Computational Genomics Lab, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain
| | - M. Buti
- Hospital Universitari Vall d’Hebron and CIBEREHD del Instituto Carlos III, Barcelona, Catalonia, Spain
| | - F. Rodriguez-Frias
- Hospital Universitari Vall d’Hebron and CIBEREHD del Instituto Carlos III, Barcelona, Catalonia, Spain
| | - R. Girones
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Catalonia, Spain
- * E-mail:
| |
Collapse
|
33
|
Lewandowska DW, Zagordi O, Geissberger FD, Kufner V, Schmutz S, Böni J, Metzner KJ, Trkola A, Huber M. Optimization and validation of sample preparation for metagenomic sequencing of viruses in clinical samples. MICROBIOME 2017; 5:94. [PMID: 28789678 PMCID: PMC5549297 DOI: 10.1186/s40168-017-0317-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/25/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Sequence-specific PCR is the most common approach for virus identification in diagnostic laboratories. However, as specific PCR only detects pre-defined targets, novel virus strains or viruses not included in routine test panels will be missed. Recently, advances in high-throughput sequencing allow for virus-sequence-independent identification of entire virus populations in clinical samples, yet standardized protocols are needed to allow broad application in clinical diagnostics. Here, we describe a comprehensive sample preparation protocol for high-throughput metagenomic virus sequencing using random amplification of total nucleic acids from clinical samples. RESULTS In order to optimize metagenomic sequencing for application in virus diagnostics, we tested different enrichment and amplification procedures on plasma samples spiked with RNA and DNA viruses. A protocol including filtration, nuclease digestion, and random amplification of RNA and DNA in separate reactions provided the best results, allowing reliable recovery of viral genomes and a good correlation of the relative number of sequencing reads with the virus input. We further validated our method by sequencing a multiplexed viral pathogen reagent containing a range of human viruses from different virus families. Our method proved successful in detecting the majority of the included viruses with high read numbers and compared well to other protocols in the field validated against the same reference reagent. Our sequencing protocol does work not only with plasma but also with other clinical samples such as urine and throat swabs. CONCLUSIONS The workflow for virus metagenomic sequencing that we established proved successful in detecting a variety of viruses in different clinical samples. Our protocol supplements existing virus-specific detection strategies providing opportunities to identify atypical and novel viruses commonly not accounted for in routine diagnostic panels.
Collapse
Affiliation(s)
- Dagmara W Lewandowska
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Osvaldo Zagordi
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | | - Verena Kufner
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Stefan Schmutz
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Karin J Metzner
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
34
|
Manso CF, Bibby DF, Mbisa JL. Efficient and unbiased metagenomic recovery of RNA virus genomes from human plasma samples. Sci Rep 2017. [PMID: 28646219 PMCID: PMC5482852 DOI: 10.1038/s41598-017-02239-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RNA viruses cause significant human pathology and are responsible for the majority of emerging zoonoses. Mainstream diagnostic assays are challenged by their intrinsic diversity, leading to false negatives and incomplete characterisation. New sequencing techniques are expanding our ability to agnostically interrogate nucleic acids within diverse sample types, but in the clinical setting are limited by overwhelming host material and ultra-low target frequency. Through selective host RNA depletion and compensatory protocol adjustments for ultra-low RNA inputs, we are able to detect three major blood-borne RNA viruses – HIV, HCV and HEV. We recovered complete genomes and up to 43% of the genome from samples with viral loads of 104 and 103 IU/ml respectively. Additionally, we demonstrated the utility of this method in detecting and characterising members of diverse RNA virus families within a human plasma background, some present at very low levels. By applying this method to a patient sample series, we have simultaneously determined the full genome of both a novel subtype of HCV genotype 6, and a co-infecting human pegivirus. This method builds upon earlier RNA metagenomic techniques and can play an important role in the surveillance and diagnostics of blood-borne viruses.
Collapse
Affiliation(s)
- Carmen F Manso
- Antiviral Unit, Virus Reference Department, National Infection Service, Public Health England, Colindale, London, NW9 5EQ, United Kingdom
| | - David F Bibby
- Antiviral Unit, Virus Reference Department, National Infection Service, Public Health England, Colindale, London, NW9 5EQ, United Kingdom.
| | - Jean L Mbisa
- Antiviral Unit, Virus Reference Department, National Infection Service, Public Health England, Colindale, London, NW9 5EQ, United Kingdom
| |
Collapse
|
35
|
Kumar A, Murthy S, Kapoor A. Evolution of selective-sequencing approaches for virus discovery and virome analysis. Virus Res 2017; 239:172-179. [PMID: 28583442 PMCID: PMC5819613 DOI: 10.1016/j.virusres.2017.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/28/2016] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
Abstract
Description of virus enrichment techniques for metagenomics based virome analysis. Usefulness of recently developed virome capture sequencing techniques. Perspective on negative and positive selection approaches for virome analysis.
Recent advances in sequencing technologies have transformed the field of virus discovery and virome analysis. Once mostly confined to the traditional Sanger sequencing based individual virus discovery, is now entirely replaced by high throughput sequencing (HTS) based virus metagenomics that can be used to characterize the nature and composition of entire viromes. To better harness the potential of HTS for the study of viromes, sample preparation methodologies use different approaches to exclude amplification of non-viral components that can overshadow low-titer viruses. These virus-sequence enrichment approaches mostly focus on the sample preparation methods, like enzymatic digestion of non-viral nucleic acids and size exclusion of non-viral constituents by column filtration, ultrafiltration or density gradient centrifugation. However, recently a new approach of virus-sequence enrichment called virome-capture sequencing, focused on the amplification or HTS library preparation stage, was developed to increase the ability of virome characterization. This new approach has the potential to further transform the field of virus discovery and virome analysis, but its technical complexity and sequence-dependence warrants further improvements. In this review we discuss the different methods, their applications and evolution, for selective sequencing based virome analysis and also propose refinements needed to harness the full potential of HTS for virome analysis.
Collapse
Affiliation(s)
- Arvind Kumar
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine and Public Health, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
36
|
Dimitrov KM, Sharma P, Volkening JD, Goraichuk IV, Wajid A, Rehmani SF, Basharat A, Shittu I, Joannis TM, Miller PJ, Afonso CL. A robust and cost-effective approach to sequence and analyze complete genomes of small RNA viruses. Virol J 2017; 14:72. [PMID: 28388925 PMCID: PMC5384157 DOI: 10.1186/s12985-017-0741-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/29/2017] [Indexed: 01/26/2023] Open
Abstract
Background Next-generation sequencing (NGS) allows ultra-deep sequencing of nucleic acids. The use of sequence-independent amplification of viral nucleic acids without utilization of target-specific primers provides advantages over traditional sequencing methods and allows detection of unsuspected variants and co-infecting agents. However, NGS is not widely used for small RNA viruses because of incorrectly perceived cost estimates and inefficient utilization of freely available bioinformatics tools. Methods In this study, we have utilized NGS-based random sequencing of total RNA combined with barcode multiplexing of libraries to quickly, effectively and simultaneously characterize the genomic sequences of multiple avian paramyxoviruses. Thirty libraries were prepared from diagnostic samples amplified in allantoic fluids and their total RNAs were sequenced in a single flow cell on an Illumina MiSeq instrument. After digital normalization, data were assembled using the MIRA assembler within a customized workflow on the Galaxy platform. Results Twenty-eight avian paramyxovirus 1 (APMV-1), one APMV-13, four avian influenza and two infectious bronchitis virus complete or nearly complete genome sequences were obtained from the single run. The 29 avian paramyxovirus genomes displayed 99.6% mean coverage based on bases with Phred quality scores of 30 or more. The lower and upper quartiles of sample median depth per position for those 29 samples were 2984 and 6894, respectively, indicating coverage across samples sufficient for deep variant analysis. Sample processing and library preparation took approximately 25–30 h, the sequencing run took 39 h, and processing through the Galaxy workflow took approximately 2–3 h. The cost of all steps, excluding labor, was estimated to be 106 USD per sample. Conclusions This work describes an efficient multiplexing NGS approach, a detailed analysis workflow, and customized tools for the characterization of the genomes of RNA viruses. The combination of multiplexing NGS technology with the Galaxy workflow platform resulted in a fast, user-friendly, and cost-efficient protocol for the simultaneous characterization of multiple full-length viral genomes. Twenty-nine full-length or near-full-length APMV genomes with a high median depth were successfully sequenced out of 30 samples. The applied de novo assembly approach also allowed identification of mixed viral populations in some of the samples. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0741-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kiril M Dimitrov
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA
| | - Poonam Sharma
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA
| | | | - Iryna V Goraichuk
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA.,National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, 83 Pushkinskaya Street, Kharkiv, 61023, Ukraine
| | - Abdul Wajid
- Quality Operations Laboratory (QOL), University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Road, Lahore, 54000, Pakistan.,Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Road, Lahore, 54000, Pakistan
| | - Shafqat Fatima Rehmani
- Quality Operations Laboratory (QOL), University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Road, Lahore, 54000, Pakistan
| | - Asma Basharat
- Quality Operations Laboratory (QOL), University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Road, Lahore, 54000, Pakistan
| | - Ismaila Shittu
- Regional Laboratory for Animal Influenza and other Transboundary Animal Diseases, National Veterinary Research Institute, PMB01, Vom, 930010, Plateau State, Nigeria
| | - Tony M Joannis
- Regional Laboratory for Animal Influenza and other Transboundary Animal Diseases, National Veterinary Research Institute, PMB01, Vom, 930010, Plateau State, Nigeria
| | - Patti J Miller
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA
| | - Claudio L Afonso
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA.
| |
Collapse
|
37
|
Complete Coding Sequence of Usutu Virus Strain Gracula religiosa/U1609393/Belgium/2016 Obtained from the Brain Tissue of an Infected Captive Common Hill Myna ( Gracula religiosa). GENOME ANNOUNCEMENTS 2017; 5:5/12/e00042-17. [PMID: 28336592 PMCID: PMC5364217 DOI: 10.1128/genomea.00042-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complete and annotated coding sequence and partial noncoding sequence of an Usutu virus genome were sequenced from RNA extracted from a clinical brain tissue sample obtained from a common hill myna (Gracula religiosa), demonstrating close homology with Usutu viruses circulating in Europe.
Collapse
|
38
|
Moustafa A, Xie C, Kirkness E, Biggs W, Wong E, Turpaz Y, Bloom K, Delwart E, Nelson KE, Venter JC, Telenti A. The blood DNA virome in 8,000 humans. PLoS Pathog 2017; 13:e1006292. [PMID: 28328962 PMCID: PMC5378407 DOI: 10.1371/journal.ppat.1006292] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/03/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023] Open
Abstract
The characterization of the blood virome is important for the safety of blood-derived transfusion products, and for the identification of emerging pathogens. We explored non-human sequence data from whole-genome sequencing of blood from 8,240 individuals, none of whom were ascertained for any infectious disease. Viral sequences were extracted from the pool of sequence reads that did not map to the human reference genome. Analyses sifted through close to 1 Petabyte of sequence data and performed 0.5 trillion similarity searches. With a lower bound for identification of 2 viral genomes/100,000 cells, we mapped sequences to 94 different viruses, including sequences from 19 human DNA viruses, proviruses and RNA viruses (herpesviruses, anelloviruses, papillomaviruses, three polyomaviruses, adenovirus, HIV, HTLV, hepatitis B, hepatitis C, parvovirus B19, and influenza virus) in 42% of the study participants. Of possible relevance to transfusion medicine, we identified Merkel cell polyomavirus in 49 individuals, papillomavirus in blood of 13 individuals, parvovirus B19 in 6 individuals, and the presence of herpesvirus 8 in 3 individuals. The presence of DNA sequences from two RNA viruses was unexpected: Hepatitis C virus is revealing of an integration event, while the influenza virus sequence resulted from immunization with a DNA vaccine. Age, sex and ancestry contributed significantly to the prevalence of infection. The remaining 75 viruses mostly reflect extensive contamination of commercial reagents and from the environment. These technical problems represent a major challenge for the identification of novel human pathogens. Increasing availability of human whole-genome sequences will contribute substantial amounts of data on the composition of the normal and pathogenic human blood virome. Distinguishing contaminants from real human viruses is challenging. Novel sequencing technologies offer insight into the virome in human samples. Here, we identify the viral DNA sequences in blood of over 8,000 individuals undergoing whole genome sequencing. This approach serves to identify 94 viruses; however, many are shown to reflect widespread DNA contamination of commercial reagents or of environmental origin. While this represents a significant limitation to reliably identify novel viruses infecting humans, we could confidently detect sequences and quantify abundance of 19 human viruses in 42% of individuals. Ancestry, sex, and age were important determinants of viral prevalence. This large study calls attention on the challenge of interpreting next generation sequencing data for the identification of novel viruses. However, it serves to categorize the abundance of human DNA viruses using an unbiased technique.
Collapse
Affiliation(s)
- Ahmed Moustafa
- Human Longevity Inc., San Diego, California, United States of America
| | - Chao Xie
- Human Longevity Singapore Pte. Ltd., Singapore
| | - Ewen Kirkness
- Human Longevity Inc., San Diego, California, United States of America
| | - William Biggs
- Human Longevity Inc., San Diego, California, United States of America
| | - Emily Wong
- Human Longevity Inc., San Diego, California, United States of America
| | | | - Kenneth Bloom
- Human Longevity Inc., San Diego, California, United States of America
| | - Eric Delwart
- Blood Systems Research Institute, Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Karen E. Nelson
- J. Craig Venter Institute, La Jolla, California, United States of America
| | - J. Craig Venter
- Human Longevity Inc., San Diego, California, United States of America
- J. Craig Venter Institute, La Jolla, California, United States of America
- * E-mail: (JCV); (AT)
| | - Amalio Telenti
- Human Longevity Inc., San Diego, California, United States of America
- J. Craig Venter Institute, La Jolla, California, United States of America
- * E-mail: (JCV); (AT)
| |
Collapse
|
39
|
Yeh YT, Tang Y, Sebastian A, Dasgupta A, Perea-Lopez N, Albert I, Lu H, Terrones M, Zheng SY. Tunable and label-free virus enrichment for ultrasensitive virus detection using carbon nanotube arrays. SCIENCE ADVANCES 2016; 2:e1601026. [PMID: 27730213 PMCID: PMC5055386 DOI: 10.1126/sciadv.1601026] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/31/2016] [Indexed: 05/13/2023]
Abstract
Viral infectious diseases can erupt unpredictably, spread rapidly, and ravage mass populations. Although established methods, such as polymerase chain reaction, virus isolation, and next-generation sequencing have been used to detect viruses, field samples with low virus count pose major challenges in virus surveillance and discovery. We report a unique carbon nanotube size-tunable enrichment microdevice (CNT-STEM) that efficiently enriches and concentrates viruses collected from field samples. The channel sidewall in the microdevice was made by growing arrays of vertically aligned nitrogen-doped multiwalled CNTs, where the intertubular distance between CNTs could be engineered in the range of 17 to 325 nm to accurately match the size of different viruses. The CNT-STEM significantly improves detection limits and virus isolation rates by at least 100 times. Using this device, we successfully identified an emerging avian influenza virus strain [A/duck/PA/02099/2012(H11N9)] and a novel virus strain (IBDV/turkey/PA/00924/14). Our unique method demonstrates the early detection of emerging viruses and the discovery of new viruses directly from field samples, thus creating a universal platform for effectively remediating viral infectious diseases.
Collapse
Affiliation(s)
- Yin-Ting Yeh
- Micro and Nano Integrated Biosystem Laboratory, Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Material Research Institute, Pennsylvania State University, University Park, PA 16802, USA
| | - Yi Tang
- Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Aswathy Sebastian
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Archi Dasgupta
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Nestor Perea-Lopez
- Department of Physics and Center for 2-Dimensional and Layered Materials, Pennsylvania State University, University Park, PA 16802, USA
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Huaguang Lu
- Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Mauricio Terrones
- Penn State Material Research Institute, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics and Center for 2-Dimensional and Layered Materials, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Corresponding author. (M.T.); (S.-Y.Z.)
| | - Si-Yang Zheng
- Micro and Nano Integrated Biosystem Laboratory, Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Material Research Institute, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Corresponding author. (M.T.); (S.-Y.Z.)
| |
Collapse
|
40
|
Nguyen AT, Tran TT, Hoang VMT, Nghiem NM, Le NNT, Le TTM, Phan QT, Truong KH, Le NNT, Ho VL, Do VC, Ha TM, Nguyen HT, Nguyen CVV, Thwaites G, van Doorn HR, Le TV. Development and evaluation of a non-ribosomal random PCR and next-generation sequencing based assay for detection and sequencing of hand, foot and mouth disease pathogens. Virol J 2016; 13:125. [PMID: 27388326 PMCID: PMC4937578 DOI: 10.1186/s12985-016-0580-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/29/2016] [Indexed: 01/16/2023] Open
Abstract
Background Hand, foot and mouth disease (HFMD) has become a major public health problem across the Asia-Pacific region, and is commonly caused by enterovirus A71 (EV-A71) and coxsackievirus A6 (CV-A6), CV-A10 and CV-A16. Generating pathogen whole-genome sequences is essential for understanding their evolutionary biology. The frequent replacements among EV serotypes and a limited numbers of available whole-genome sequences hinder the development of overlapping PCRs for whole-genome sequencing. We developed and evaluated a non-ribosomal random PCR (rPCR) and next-generation sequencing based assay for sequence-independent whole-genome amplification and sequencing of HFMD pathogens. A total of 16 EV-A71/CV-A6/CV-A10/CV-A16 PCR positive rectal/throat swabs (Cp values: 20.9–33.3) were used for assay evaluation. Results Our assay evidently outperformed the conventional rPCR in terms of the total number of EV-A71 reads and the percentage of EV-A71 reads: 2.6 % (1275/50,000 reads) vs. 0.1 % (31/50,000) and 6 % (3008/50,000) vs. 0.9 % (433/50,000) for two samples with Cp values of 30 and 26, respectively. Additionally the assay could generate genome sequences with the percentages of coverage of 94–100 % of 4 different enterovirus serotypes in 73 % of the tested samples, representing the first whole-genome sequences of CV-A6/10/16 from Vietnam, and could assign correctly serotyping results in 100 % of 24 tested specimens. In all but three the obtained consensuses of two replicates from the same sample were 100 % identical, suggesting that our assay is highly reproducible. Conclusions In conclusion, we have successfully developed a non-ribosomal rPCR and next-generation sequencing based assay for sensitive detection and direct whole-genome sequencing of HFMD pathogens from clinical samples. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0580-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anh To Nguyen
- Oxford University Clinical Research Unit, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam.
| | - Thanh Tan Tran
- Oxford University Clinical Research Unit, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
| | | | - Ngoc My Nghiem
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Nhu Nguyen Truc Le
- Oxford University Clinical Research Unit, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
| | | | - Qui Tu Phan
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | | | - Viet Lu Ho
- Children's Hospital 2, Ho Chi Minh City, Vietnam
| | - Viet Chau Do
- Children's Hospital 2, Ho Chi Minh City, Vietnam
| | - Tuan Manh Ha
- Children's Hospital 2, Ho Chi Minh City, Vietnam
| | | | | | - Guy Thwaites
- Oxford University Clinical Research Unit, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tan Van Le
- Oxford University Clinical Research Unit, 764 Vo Van Kiet Street, Ward 1, District 5, Ho Chi Minh City, Vietnam
| |
Collapse
|
41
|
Complete Genome Sequences of Three African Foot-and-Mouth Disease Viruses from Clinical Samples Isolated in 2009 and 2010. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00326-16. [PMID: 27151795 PMCID: PMC4859177 DOI: 10.1128/genomea.00326-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complete genome sequences of three foot-and-mouth disease viruses (one virus of each serotype SAT1, SAT2 and O) were directly sequenced from RNA extracted from clinical bovine samples, demonstrating the feasibility of full-genome sequencing from strong positive samples taken from symptomatic animals.
Collapse
|
42
|
Complete Genome Sequence of Bovine Polyomavirus Type 1 from Aborted Cattle, Isolated in Belgium in 2014. GENOME ANNOUNCEMENTS 2016; 4:4/2/e01646-15. [PMID: 26941154 PMCID: PMC4777765 DOI: 10.1128/genomea.01646-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The complete and fully annotated genome sequence of a bovine polyomavirus type 1 (BPyV/BEL/1/2014) from aborted cattle was assembled from a metagenomics data set. The 4,697-bp circular dsDNA genome contains 6 protein-coding genes. Bovine polyomavirus is unlikely to be causally related to the abortion cases.
Collapse
|
43
|
Abstract
The characterization of the human blood-associated viral community (also called blood virome) is essential for epidemiological surveillance and to anticipate new potential threats for blood transfusion safety. Currently, the risk of blood-borne agent transmission of well-known viruses (HBV, HCV, HIV and HTLV) can be considered as under control in high-resource countries. However, other viruses unknown or unsuspected may be transmitted to recipients by blood-derived products. This is particularly relevant considering that a significant proportion of transfused patients are immunocompromised and more frequently subjected to fatal outcomes. Several measures to prevent transfusion transmission of unknown viruses have been implemented including the exclusion of at-risk donors, leukocyte reduction of donor blood, and physicochemical treatment of the different blood components. However, up to now there is no universal method for pathogen inactivation, which would be applicable for all types of blood components and, equally effective for all viral families. In addition, among available inactivation procedures of viral genomes, some of them are recognized to be less effective on non-enveloped viruses, and inadequate to inactivate higher viral titers in plasma pools or derivatives. Given this, there is the need to implement new methodologies for the discovery of unknown viruses that may affect blood transfusion. Viral metagenomics combined with High Throughput Sequencing appears as a promising approach for the identification and global surveillance of new and/or unexpected viruses that could impair blood transfusion safety.
Collapse
Affiliation(s)
- V Sauvage
- Département d'études des agents transmissibles par le sang, Institut national de la transfusion sanguine (INTS), Centre national de référence des hépatites virales B et C et du VIH en transfusion, 75015 Paris, France.
| | - M Eloit
- PathoQuest, bâtiment François-Jacob, 25, rue du Dr-Roux, 75015 Paris, France; Inserm U1117, Biology of Infection Unit, Laboratory of Pathogen Discovery, Institut Pasteur, 28, rue du Docteur-Roux, 75724 Paris, France
| |
Collapse
|
44
|
Rosales SM, Vega Thurber R. Brain Meta-Transcriptomics from Harbor Seals to Infer the Role of the Microbiome and Virome in a Stranding Event. PLoS One 2015; 10:e0143944. [PMID: 26630132 PMCID: PMC4668051 DOI: 10.1371/journal.pone.0143944] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/11/2015] [Indexed: 11/18/2022] Open
Abstract
Marine diseases are becoming more frequent, and tools for identifying pathogens and disease reservoirs are needed to help prevent and mitigate epizootics. Meta-transcriptomics provides insights into disease etiology by cataloguing and comparing sequences from suspected pathogens. This method is a powerful approach to simultaneously evaluate both the viral and bacterial communities, but few studies have applied this technique in marine systems. In 2009 seven harbor seals, Phoca vitulina, stranded along the California coast from a similar brain disease of unknown cause of death (UCD). We evaluated the differences between the virome and microbiome of UCDs and harbor seals with known causes of death. Here we determined that UCD stranded animals had no viruses in their brain tissue. However, in the bacterial community, we identified Burkholderia and Coxiella burnetii as important pathogens associated with this stranding event. Burkholderia were 100% prevalent and ~2.8 log2 fold more abundant in the UCD animals. Further, while C. burnetii was found in only 35.7% of all samples, it was highly abundant (~94% of the total microbial community) in a single individual. In this harbor seal, C. burnetii showed high transcription rates of invading and translation genes, implicating it in the pathogenesis of this animal. Based on these data we propose that Burkholderia taxa and C. burnetii are potentially important opportunistic neurotropic pathogens in UCD stranded harbor seals.
Collapse
Affiliation(s)
- Stephanie M. Rosales
- Oregon State University, Dept. of Microbiology, 226 Nash Hall, Corvallis, OR, 97331, United States of America
- * E-mail:
| | - Rebecca Vega Thurber
- Oregon State University, Dept. of Microbiology, 226 Nash Hall, Corvallis, OR, 97331, United States of America
| |
Collapse
|
45
|
Conceição-Neto N, Zeller M, Lefrère H, De Bruyn P, Beller L, Deboutte W, Yinda CK, Lavigne R, Maes P, Van Ranst M, Heylen E, Matthijnssens J. Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis. Sci Rep 2015; 5:16532. [PMID: 26559140 PMCID: PMC4642273 DOI: 10.1038/srep16532] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022] Open
Abstract
A major limitation for better understanding the role of the human gut virome in health and disease is the lack of validated methods that allow high throughput virome analysis. To overcome this, we evaluated the quantitative effect of homogenisation, centrifugation, filtration, chloroform treatment and random amplification on a mock-virome (containing nine highly diverse viruses) and a bacterial mock-community (containing four faecal bacterial species) using quantitative PCR and next-generation sequencing. This resulted in an optimised protocol that was able to recover all viruses present in the mock-virome and strongly alters the ratio of viral versus bacterial and 16S rRNA genetic material in favour of viruses (from 43.2% to 96.7% viral reads and from 47.6% to 0.19% bacterial reads). Furthermore, our study indicated that most of the currently used virome protocols, using small filter pores and/or stringent centrifugation conditions may have largely overlooked large viruses present in viromes. We propose NetoVIR (Novel enrichment technique of VIRomes), which allows for a fast, reproducible and high throughput sample preparation for viral metagenomics studies, introducing minimal bias. This procedure is optimised mainly for faecal samples, but with appropriate concentration steps can also be used for other sample types with lower initial viral loads.
Collapse
Affiliation(s)
- Nádia Conceição-Neto
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Institute for Medical Research Leuven, Belgium.,KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical Virology, Rega Institute for Medical Research Leuven, Belgium
| | - Mark Zeller
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Institute for Medical Research Leuven, Belgium
| | - Hanne Lefrère
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Institute for Medical Research Leuven, Belgium
| | - Pieter De Bruyn
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Institute for Medical Research Leuven, Belgium
| | - Leen Beller
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Institute for Medical Research Leuven, Belgium
| | - Ward Deboutte
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Institute for Medical Research Leuven, Belgium
| | - Claude Kwe Yinda
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Institute for Medical Research Leuven, Belgium.,KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical Virology, Rega Institute for Medical Research Leuven, Belgium
| | - Rob Lavigne
- KU Leuven - University of Leuven, Department of Biosystems, Laboratory of Gene Technology, Faculty of Bioscience Engineering, Belgium
| | - Piet Maes
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical Virology, Rega Institute for Medical Research Leuven, Belgium
| | - Marc Van Ranst
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical Virology, Rega Institute for Medical Research Leuven, Belgium
| | - Elisabeth Heylen
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Institute for Medical Research Leuven, Belgium
| | - Jelle Matthijnssens
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Viral Metagenomics, Rega Institute for Medical Research Leuven, Belgium.,KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory for Clinical Virology, Rega Institute for Medical Research Leuven, Belgium
| |
Collapse
|