1
|
Cardoso SF, Yoshikawa AAG, Pinheiro IC, Granella LW, Couto-Lima D, Neves MSAS, Mansur DS, Pitaluga AN, Rona LDP. Development and validation of RT-LAMP for detecting yellow fever virus in non-human primates samples from Brazil. Sci Rep 2024; 14:22520. [PMID: 39342022 PMCID: PMC11438901 DOI: 10.1038/s41598-024-74020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
Monitoring yellow fever in non-human primates (NHPs) is an early warning system for sylvatic yellow fever outbreaks, aiding in preventing human cases. However, current diagnostic tests for this disease, primarily relying on RT-qPCR, are complex and costly. Therefore, there is a critical need for simpler and more cost-effective methods to detect yellow fever virus (YFV) infection in NHPs, enabling early identification of viral circulation. In this study, an RT-LAMP assay for detecting YFV in NHP samples was developed and validated. Two sets of RT-LAMP primers targeting the YFV NS5 and E genes were designed and tested together with a third primer set to the NS1 locus using NHP tissue samples from Southern Brazil. The results were visualized by colorimetry and compared to the RT-qPCR test. Standardization and validation of the RT-LAMP assay demonstrated 100% sensitivity and specificity compared to RT-qPCR, with a detection limit of 12 PFU/mL. Additionally, the cross-reactivity test with other flaviviruses confirmed a specificity of 100%. Our newly developed RT-LAMP diagnostic test for YFV in NHP samples will significantly contribute to yellow fever monitoring efforts, providing a simpler and more accessible method for viral early detection. This advancement holds promise for enhancing surveillance and ultimately preventing the spread of yellow fever.
Collapse
Affiliation(s)
- Sabrina F Cardoso
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
- Directorate of Epidemiological Surveillance (DIVE), Santa Catarina's State Health Secretary, Florianópolis, Brazil
| | - Andre Akira Gonzaga Yoshikawa
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Iara Carolini Pinheiro
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Lucilene Wildner Granella
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Dinair Couto-Lima
- Hematozoan Transmitting Mosquito Laboratory, Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Daniel Santos Mansur
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - André N Pitaluga
- Oswaldo Cruz Institute (IOC), FIOCRUZ, Rio de Janeiro, RJ, Brazil.
- National Institute of Science and Technology in Molecular Entomology, National Council for Scientific and Technological Development (INCT-EM, CNPq), Rio de Janeiro, Brazil.
| | - Luísa D P Rona
- Department of Cell Biology, Embryology, and Genetics, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil.
- National Institute of Science and Technology in Molecular Entomology, National Council for Scientific and Technological Development (INCT-EM, CNPq), Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Ofori B, Agoha RK, Bokoe EK, Armah ENA, Misita Morang'a C, Sarpong KAN. Leveraging wastewater-based epidemiology to monitor the spread of neglected tropical diseases in African communities. Infect Dis (Lond) 2024; 56:697-711. [PMID: 38922811 DOI: 10.1080/23744235.2024.2369177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Neglected tropical diseases continue to cause a significant burden worldwide, with Africa accounting for more than one-third of the global burden. Over the past decade, progress has been made in eliminating, controlling, and eradicating these diseases in Africa. By December 2022, 47 out of 54 African countries had eliminated at least one neglected tropical disease, and more countries were close to achieving this milestone. Between 2020 and 2021, there was an 80 million reduction in people requiring intervention. However, continued efforts are needed to manage neglected tropical diseases and address their social and economic burden, as they deepen marginalisation and stigmatisation. Wastewater-based epidemiology involves analyzing wastewater to detect and quantify biomarkers of disease-causing pathogens. This approach can complement current disease surveillance systems in Africa and provide an additional layer of information for monitoring disease spread and detecting outbreaks. This is particularly important in Africa due to limited traditional surveillance methods. Wastewater-based epidemiology also provides a tsunami-like warning system for neglected tropical disease outbreaks and can facilitate timely intervention and optimised resource allocation, providing an unbiased reflection of the community's health compared to traditional surveillance systems. In this review, we highlight the potential of wastewater-based epidemiology as an innovative approach for monitoring neglected tropical disease transmission within African communities and improving existing surveillance systems. Our analysis shows that wastewater-based epidemiology can enhance surveillance of neglected tropical diseases in Africa, improving early detection and management of Buruli ulcers, hookworm infections, ascariasis, schistosomiasis, dengue, chikungunya, echinococcosis, rabies, and cysticercosis for better disease control.
Collapse
Affiliation(s)
- Benedict Ofori
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Righteous Kwaku Agoha
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Edem Kwame Bokoe
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | | | - Collins Misita Morang'a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| | - Kwabena Amofa Nketia Sarpong
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra, Ghana
| |
Collapse
|
3
|
Dias BDP, Barbosa CC, Ferreira CS, Mayra Soares Alves Dos Santos S, Arrieta OAP, Malta WC, Gomes MLMD, Alves E Silva M, Fonseca JDM, Borges LP, Silva BDM. Challenges in Direct Detection of Flaviviruses: A Review. Pathogens 2023; 12:pathogens12050643. [PMID: 37242313 DOI: 10.3390/pathogens12050643] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Arthropods transmit arboviruses via mosquito and tick bites to humans and other animals. The genus flavivirus, which causes diseases, sequelae, and thousands of deaths, mainly in developing and underdeveloped countries, is among the arboviruses of interest to public health. Given the importance of early and accurate diagnosis, this review analyzes the methods of direct detection of flaviviruses, such as reverse transcription loop-mediated isothermal amplification, microfluidics, localized surface plasmon resonance, and surface-enhanced Raman scattering, and presents the advantages, disadvantages, and detection limits identified in studies reported in the literature for each methodology. Among the different methods available, it is essential to balance four fundamental indicators to determine the ideal test: good sensitivity, high specificity, low false positive rate, and rapid results. Among the methods analyzed, reverse transcription loop-mediated isothermal amplification stands out, owing to result availability within a few minutes, with good sensitivity and specificity; in addition, it is the best-characterized methodology.
Collapse
Affiliation(s)
- Bruna de Paula Dias
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Camila Cavadas Barbosa
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Cyntia Silva Ferreira
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil
| | | | | | | | | | - Mariela Alves E Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Júlia de Matos Fonseca
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão 9100-000, Brazil
| | - Breno de Mello Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35400-000, Brazil
| |
Collapse
|
4
|
Faggioni G, De Santis R, Moramarco F, Di Donato M, De Domenico A, Molinari F, Petralito G, Fortuna C, Venturi G, Rezza G, Lista F. Pan-Yellow Fever Virus Detection and Lineage Assignment by Real-Time RT-PCR and Amplicon Sequencing. J Virol Methods 2023; 316:114717. [PMID: 36972832 DOI: 10.1016/j.jviromet.2023.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Yellow fever disease is a viral zoonosis that may result in a severe hemorrhagic disease. A safe and effective vaccine used in mass immunization campaigns has allowed control and mitigation against explosive outbreaks in endemic areas. Since the 1960's, re-emergent of the yellow fever virus has been observed. The timely implementation of control measures, to avoid or contain an ongoing outbreak requires rapid specific viral detection methods. Here a novel molecular assay, expected to detect all known yellow fever virus strains, is described. The method has demonstrated high sensitivity and specificity in real-time RT-PCR as well as in an endpoint RT-PCR set-up. Sequence alignment and phylogenetic analysis reveal that the amplicon resulting from the novel method covers a genomic region whose mutational profile is completely associated to the yellow fever viral lineages. Therefore, sequencing analysis of this amplicon allows for assignment of the viral lineage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Claudia Fortuna
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Giulietta Venturi
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Giovanni Rezza
- Health Prevention Directorate, Ministry of Health, Rome, Italy.
| | - Florigio Lista
- Army Medical Center, Scientific Department, Rome, Italy.
| |
Collapse
|
5
|
JEV-nanobarcode and colorimetric reverse transcription loop-mediated isothermal amplification (cRT-LAMP). Mikrochim Acta 2021; 188:333. [PMID: 34498149 DOI: 10.1007/s00604-021-04986-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
Nucleic acid amplification tests (NAATs) are powerful tools for the Japanese encephalitis virus (JEV). We demonstrated highly sensitive, specific, and rapid detection of JEV by colorimetric reverse-transcription loop-mediated isothermal amplification (cRT-LAMP). Under optimized conditions, the RT-LAMP assay results showed that the limit of detection was approximately equivalent to 1 RNA genome copy/μL with an assay time of 30 min. The assay was highly specific to JEV when tested with other mosquito-borne virus panels (Zika virus and dengue virus types 2-4). The ability to detect JEV directly from crude human sample matrices (serum and urine) demonstrated the suitability of our JEV RT-LAMP for widespread clinical application. The JEV RT-LAMP provides combination of rapid colorimetric determination of true-positive JEV RT-LAMP amplicons with our recently developed JEV-nanobarcodes, measured at absorbance wavelenght of 530 (A530) and 650 (A650), which have a limit of detection of 23.3 ng/μL. The AuNP:polyA10-JEV RT-LAMP nanobarcodes exhibited superior capability for stabilizing the true-positive JEV RT-LAMP amplicons against salt-induced AuNP aggregation, which improved the evaluation of true/false positive signals in the assay. These advances enable to expand the use of RT-LAMP for point-of-care tests, which will greatly bolster JEV clinical programs. The JEV RT-LAMP nanobarcode assay targeting the envelope (E) gene and MgSO4 induced AuNP aggregation, indicated by an instant pink-to-violet colorimetric read-out.
Collapse
|
6
|
Ji C, Xue S, Yu M, Liu J, Zhang Q, Zuo F, Zheng Q, Zhao L, Zhang H, Cao J, Wang K, Liu W, Zheng W. Rapid Detection of SARS-CoV-2 Virus Using Dual Reverse Transcriptional Colorimetric Loop-Mediated Isothermal Amplification. ACS OMEGA 2021; 6:8837-8849. [PMID: 33842755 PMCID: PMC8008787 DOI: 10.1021/acsomega.0c05781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/09/2021] [Indexed: 05/12/2023]
Abstract
The outbreak and pandemic of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed into a public health emergency of international concern. The rapid and accurate detection of the virus is a critical means to prevent and control the disease. Herein, we provide a novel, rapid, and simple approach, named dual reverse transcriptional colorimetric loop-mediated isothermal amplification (dRT-cLAMP) assay, to accelerate the detection of the SARS-CoV-2 virus without using expensive equipment. The result of this assay is shown by color change and is easily detected by the naked eye. To improve the detection accuracy, we included two primer sets that specifically target the viral orf1ab and N genes in the same reaction mixture. Our assay can detect the synthesized SARS-CoV-2 N and orf1ab genes at a low level of 100 copies/μL. Sequence alignment analysis of the two synthesized genes and those of 9968 published SARS-CoV-2 genomes and 17 genomes of other pathogens from the same infection site or similar symptoms as COVID-19 revealed that the primers for the dRT-cLAMP assay are highly specific. Our assay of 27 clinical samples of SARS-CoV-2 virus and 27 standard-added environmental simulation samples demonstrated that compared to the commercial kits, the consistency of the positive, negative, and probable clinical samples was 100, 92.31, and 44.44%, respectively. Moreover, our results showed that the positive, but not negative, standard-added samples displayed a naked-eye-detectable color change. Together, our results demonstrate that the dRT-cLAMP assay is a feasible detection assay for SARS-CoV-2 virus and is of great significance since rapid onsite detection of the virus is urgently needed at the ports of entry, health care centers, and for internationally traded goods.
Collapse
Affiliation(s)
- Chao Ji
- State
Key Laboratory for Conservation and Utilization of Bio-Resources in
Yunnan, Yunnan Agricultural University, Kunming 650201, P. R. China
- Key
Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming 650201, P. R. China
- Laboratory
for Quality Control and Traceability of Food, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Shuxia Xue
- Laboratory
for Quality Control and Traceability of Food, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Min Yu
- Department
of Gynecologic Oncology, Tianjin Medical University Cancer Institute
and Hospital, National Clinical Research
Center for Cancer, Tianjin 300060, P. R. China
| | - Jinyu Liu
- Laboratory
for Quality Control and Traceability of Food, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Qin Zhang
- Laboratory
for Quality Control and Traceability of Food, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Feng Zuo
- Tianjin
Customs District, Tianjin 300308, China
| | - Qiuyue Zheng
- Key Laboratory
of Biotechnology and Bioresources Utilization of Ministry of Education,
College of Life Science, Dalian Minzu University, Dalian 116600, P. R. China
| | | | | | - Jijuan Cao
- Key Laboratory
of Biotechnology and Bioresources Utilization of Ministry of Education,
College of Life Science, Dalian Minzu University, Dalian 116600, P. R. China
| | - Ke Wang
- Department
of Gynecologic Oncology, Tianjin Medical University Cancer Institute
and Hospital, National Clinical Research
Center for Cancer, Tianjin 300060, P. R. China
| | - Wei Liu
- Tianjin
Customs District, Tianjin 300308, China
| | - Wenjie Zheng
- Laboratory
for Quality Control and Traceability of Food, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
7
|
Meagher RJ, Priye A, Light YK, Huang C, Wang E. Impact of primer dimers and self-amplifying hairpins on reverse transcription loop-mediated isothermal amplification detection of viral RNA. Analyst 2019; 143:1924-1933. [PMID: 29620773 DOI: 10.1039/c7an01897e] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Loop-mediated isothermal amplification (LAMP), coupled with reverse transcription (RT), has become a popular technique for detection of viral RNA due to several desirable characteristics for use in point-of-care or low-resource settings. The large number of primers in LAMP (six per target) leads to an increased likelihood of primer dimer interactions, and the inner primers in particular are prone to formation of stable hairpin structures due to their length (typically 40-45 bases). Although primer dimers and hairpin structures are known features to avoid in nucleic acid amplification techniques, there is little quantitative information in literature regarding the impact of these structures on LAMP or RT-LAMP assays. In this study, we examine the impact of primer dimers and hairpins on previously published primer sets for dengue virus and yellow fever virus. We demonstrate that minor changes to the primers to eliminate amplifiable primer dimers and hairpins improves the performance of the assays when monitored in real time with intercalating dyes, and when monitoring a fluorescent endpoint using the QUASR technique. We also discuss the thermodynamic implications of these minor changes on the overall stability of amplifiable secondary structures, and we present a single thermodynamic parameter that can be correlated to the probability of non-specific amplification associated with LAMP primers.
Collapse
Affiliation(s)
- Robert J Meagher
- Sandia National Laboratories, Biotechnology and Bioengineering Department, PO Box 969, Livermore, CA 94550, USA.
| | | | | | | | | |
Collapse
|
8
|
Simultaneous Detection of Different Zika Virus Lineages via Molecular Computation in a Point-of-Care Assay. Viruses 2018; 10:v10120714. [PMID: 30558136 PMCID: PMC6316447 DOI: 10.3390/v10120714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
We have developed a generalizable “smart molecular diagnostic” capable of accurate point-of-care (POC) detection of variable nucleic acid targets. Our isothermal assay relies on multiplex execution of four loop-mediated isothermal amplification reactions, with primers that are degenerate and redundant, thereby increasing the breadth of targets while reducing the probability of amplification failure. An easy-to-read visual answer is computed directly by a multi-input Boolean OR logic gate (gate output is true if either one or more gate inputs is true) signal transducer that uses degenerate strand exchange probes to assess any combination of amplicons. We demonstrate our methodology by using the same assay to detect divergent Asian and African lineages of the evolving Zika virus (ZIKV), while maintaining selectivity against non-target viruses. Direct analysis of biological specimens proved possible, with crudely macerated ZIKV-infected Aedes aegypti mosquitoes being identified with 100% specificity and sensitivity. The ease-of-use with minimal instrumentation, broad programmability, and built-in fail-safe reliability make our smart molecular diagnostic attractive for POC use.
Collapse
|
9
|
Waggoner JJ, Rojas A, Pinsky BA. Yellow Fever Virus: Diagnostics for a Persistent Arboviral Threat. J Clin Microbiol 2018; 56:e00827-18. [PMID: 30021822 PMCID: PMC6156298 DOI: 10.1128/jcm.00827-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Yellow fever (YF) is the prototypical hemorrhagic fever and results from infection with yellow fever virus (YFV), which is endemic to regions of Africa and South America. Despite the availability of an effective vaccine, YFV continues to cause disease throughout regions where it is endemic, including intermittent large outbreaks among undervaccinated populations. A number of diagnostic methods and assays have been described for the detection of YFV infection, including viral culture, molecular testing, serology, and antigen detection. Commercial diagnostics are not widely available, and testing is generally performed at a small number of reference laboratories. The goal of this article, therefore, is to review available clinical diagnostics for YFV, which may not be familiar to many practitioners outside areas where it is endemic. Additionally, we identify gaps in our current knowledge about YF that pertain to diagnosis and describe interventions that may improve YFV detection.
Collapse
Affiliation(s)
- Jesse J Waggoner
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Global Health, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Alejandra Rojas
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
10
|
Klitting R, Fischer C, Drexler JF, Gould EA, Roiz D, Paupy C, de Lamballerie X. What Does the Future Hold for Yellow Fever Virus? (II). Genes (Basel) 2018; 9:E425. [PMID: 30134625 PMCID: PMC6162518 DOI: 10.3390/genes9090425] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023] Open
Abstract
As revealed by the recent resurgence of yellow fever virus (YFV) activity in the tropical regions of Africa and South America, YFV control measures need urgent rethinking. Over the last decade, most reported outbreaks occurred in, or eventually reached, areas with low vaccination coverage but that are suitable for virus transmission, with an unprecedented risk of expansion to densely populated territories in Africa, South America and Asia. As reflected in the World Health Organization's initiative launched in 2017, it is high time to strengthen epidemiological surveillance to monitor accurately viral dissemination, and redefine vaccination recommendation areas. Vector-control and immunisation measures need to be adapted and vaccine manufacturing must be reconciled with an increasing demand. We will have to face more yellow fever (YF) cases in the upcoming years. Hence, improving disease management through the development of efficient treatments will prove most beneficial. Undoubtedly, these developments will require in-depth descriptions of YFV biology at molecular, physiological and ecological levels. This second section of a two-part review describes the current state of knowledge and gaps regarding the molecular biology of YFV, along with an overview of the tools that can be used to manage the disease at the individual, local and global levels.
Collapse
Affiliation(s)
- Raphaëlle Klitting
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| | - Carlo Fischer
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany.
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany.
| | - Jan F Drexler
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany.
- German Center for Infection Research (DZIF), 38124 Braunschweig, Germany.
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119991 Moscow, Russia.
| | - Ernest A Gould
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| | - David Roiz
- UMR Maladies Infectieuses et Vecteurs: Écologie, Génétique Évolution et Contrôle (MIVEGEC: IRD, CNRS, Univ. Montpellier), 34394 Montpellier, France.
| | - Christophe Paupy
- UMR Maladies Infectieuses et Vecteurs: Écologie, Génétique Évolution et Contrôle (MIVEGEC: IRD, CNRS, Univ. Montpellier), 34394 Montpellier, France.
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ⁻IRD 190⁻Inserm 1207⁻IHU Méditerranée Infection), 13385 Marseille CEDEX 05, France.
| |
Collapse
|
11
|
Yellow fever in the diagnostics laboratory. Emerg Microbes Infect 2018; 7:129. [PMID: 30002363 PMCID: PMC6043483 DOI: 10.1038/s41426-018-0128-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 12/15/2022]
Abstract
Yellow fever (YF) remains a public health issue in endemic areas despite the availability of a safe and effective vaccine. In 2015–2016, urban outbreaks of YF were declared in Angola and the Democratic Republic of Congo, and a sylvatic outbreak has been ongoing in Brazil since December 2016. Of great concern is the risk of urban transmission cycles taking hold in Brazil and the possible spread to countries with susceptible populations and competent vectors. Vaccination remains the cornerstone of an outbreak response, but a low vaccine stockpile has forced a sparing-dose strategy, which has thus far been implemented in affected African countries and now in Brazil. Accurate laboratory confirmation of cases is critical for efficient outbreak control. A dearth of validated commercial assays for YF, however, and the shortcomings of serological methods make it challenging to implement YF diagnostics outside of reference laboratories. We examine the advantages and drawbacks of existing assays to identify the barriers to timely and efficient laboratory diagnosis. We stress the need to develop new diagnostic tools to meet current challenges in the fight against YF.
Collapse
|
12
|
Lam P, Keri RA, Steinmetz NF. A Bioengineered Positive Control for Rapid Detection of the Ebola Virus by Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP). ACS Biomater Sci Eng 2017; 3:452-459. [DOI: 10.1021/acsbiomaterials.6b00769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Patricia Lam
- Department of Biomedical Engineering, ‡Department of Pharmacology, §Department of Genetics, ⊥Case Comprehensive
Cancer Center, Division of General Medical Sciences-Oncology,
- Department of Radiology, #Department of Materials
Science and Engineering, and △Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Ruth A. Keri
- Department of Biomedical Engineering, ‡Department of Pharmacology, §Department of Genetics, ⊥Case Comprehensive
Cancer Center, Division of General Medical Sciences-Oncology,
- Department of Radiology, #Department of Materials
Science and Engineering, and △Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, ‡Department of Pharmacology, §Department of Genetics, ⊥Case Comprehensive
Cancer Center, Division of General Medical Sciences-Oncology,
- Department of Radiology, #Department of Materials
Science and Engineering, and △Department of Macromolecular Science and Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
13
|
Development and Characterization of Monoclonal Antibodies to Yellow Fever Virus and Application in Antigen Detection and IgM Capture Enzyme-Linked Immunosorbent Assay. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:689-97. [PMID: 27307452 PMCID: PMC4979174 DOI: 10.1128/cvi.00209-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/06/2016] [Indexed: 11/29/2022]
Abstract
Yellow fever (YF) is an acute hemorrhagic viral infection transmitted by mosquitoes in Africa and South America. The major challenge in YF disease detection and confirmation of outbreaks in Africa is the limited availability of reference laboratories and the persistent lack of access to diagnostic tests. We used wild-type YF virus sequences to generate recombinant envelope protein in an Escherichia coli expression system. Both the recombinant protein and sucrose gradient-purified YF vaccine virus 17D (YF-17D) were used to immunize BALB/c mice to generate monoclonal antibodies (MAbs). Eight MAbs were established and systematically characterized by indirect enzyme-linked immunosorbent assay (ELISA), Western blot analysis, and immunofluorescence assay (IFA). The established MAbs showed strong reactivity with wild-type YF virus and recombinant protein with no detectable cross-reactivity to dengue virus or Japanese encephalitis virus. Epitope mapping showed strong binding of three MAbs to amino acid positions 1 to 51, while two MAbs mapped to amino acid positions 52 to 135 of the envelope protein. The remaining three MAbs did not show reactivity to envelope fragments. The established MAbs exert no neutralization against wild-type YF and 17D viruses (titer of <10 for both strains). The applicability of MAbs 8H3 and 3F4 was further evaluated using IgM capture ELISA. A total of 49 serum samples were analyzed, among which 12 positive patient and vaccinee samples were correctly identified. Using serum samples that were 2-fold serially diluted, the IgM capture ELISA was able to detect all YF-positive samples. Furthermore, MAb-based antigen detection ELISA enabled the detection of virus in culture supernatants containing titers of about 1,000 focus-forming units.
Collapse
|