1
|
Cao Y, Yan D, Zhou H, Han K, Wan Q, Peng J, Zheng H, Lin L, Yan F, Song X. Achieving precise dual detection: One-tube reverse transcription-recombinase aided amplification (RT-RAA) combined with lateral flow strip (LFS) assay for RNA and DNA target genes from pepper mild mottle virus and Colletotrichum species in crude plant samples. Talanta 2025; 281:126908. [PMID: 39303325 DOI: 10.1016/j.talanta.2024.126908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Ensuring the detection sensitivity of both RNA-derived and DNA-derived target genes in a single reaction has posed a significant challenge for on-site detection of plant pathogens. This challenge was addressed by developing a one-tube dual RT-RAA assay combined with LFS for the rapid on-site detection of pepper mild mottle virus (PMMoV) and four Colletotrichum species causing anthracnose in Solanaceous crops. By testing four different combinations of primer groups, two combinations were precisely adjusted within the dual RT-RAA system to balance amplification efficiency and maintain consistent levels of amplification in crude plant samples. Utilizing commercially accessible small-scale equipment and following a streamlined optimization strategy, the assay achieved a limit of detection of 0.32 copies/μL of target genes in the reaction. Importantly, it demonstrated no cross-reactivity with other plant pathogens, thereby affirming the high sensitivity and specificity of the developed dual RT-RAA-LFS detection assay. Moreover, the entire process took only 25 min from sample collection to the visible presentation of results. The assay was validated with 60 field samples and 10 seed samples, producing results consistent with reverse transcription quantitative polymerase chain reaction (RT-qPCR). Notably, it successfully detected PMMoV in systemic leaves without visible symptoms three days post-inoculation, underscoring its effectiveness in early disease detection. This streamlined strategy offers a valuable approach for rapid, low-cost, and highly sensitive on-site simultaneous detection of RNA genome-contained PMMoV and DNA genome-contained Colletotrichum species.
Collapse
Affiliation(s)
- Yuhao Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Dankan Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Huijie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Qionglian Wan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xuemei Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China; Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Chen Z, Mao K, Chen Z, Feng R, Du W, Zhang H, Tu C. Isothermal nucleic acid amplification for monitoring hand-foot-and-mouth disease: current status and future implications. Mikrochim Acta 2024; 192:31. [PMID: 39720958 DOI: 10.1007/s00604-024-06899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024]
Abstract
With the global prevalence of the hand-foot-and-mouth disease (HFMD) epidemic, the development of reliable point-of-care testing (POCT) is crucial for the timely identification and prevention of outbreaks. Isothermal nucleic acid amplification techniques (INAATs) have attracted much attention because of their high efficiency for rapid diagnosis. In this work, we systematically summarize the current status of INAATs for HFMD and discuss advantages and drawbacks of various INAATs for HFMD. The INAATs for HFMD detection mainly include loop-mediated isothermal amplification (LAMP), simultaneous amplification and testing (SAT), and recombinase polymerase amplification (RPA). Among them, LAMP has excelled in several diagnostic metrics and has made significant progress in the field of POCT. SAT has been effective in overcoming the problem of RNA degradation. RPA is suited for on-site testing due to its rapid amplification rate and low reaction temperature. In addition, this study explores the potential of INAATs in lateral flow strips (LFS) test and microfluidic devices for HFMD. LFS is typically used for qualitative analysis and supports multiple detection. Microfluidics can integrate necessary processes of sample pre-processing, amplification, and signal output, enabling high-throughput qualitative or quantitative detection and demonstrating the potential of monitoring HFMD. We hope the current work will provide insights into INAATs for monitoring HFMD and serve as a reference for the implementation of on-site EV detection for public health.
Collapse
Affiliation(s)
- Zhen Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Zhuo Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Rida Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Chenglong Tu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 561113, China.
- Toxicity Testing Center, Guizhou Medical University, Guian New Region, 561113, China.
| |
Collapse
|
3
|
Anbazhagan P, Parameswari B, Anitha K, Chaitra GV, Bajaru B, Rajashree A, Mangrauthia SK, Yousuf F, Chalam VC, Singh GP. Advances in plant pathogen detection: integrating recombinase polymerase amplification with CRISPR/Cas systems. 3 Biotech 2024; 14:214. [PMID: 39211481 PMCID: PMC11349965 DOI: 10.1007/s13205-024-04055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Plant pathogens are causing substantial economic losses and thus became a significant threat to global agriculture. Effective and timely detection methods are prerequisite for combating the damages caused by the plant pathogens. In the realm of plant pathogen detection, the isothermal amplification techniques, e.g., recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP), have emerged as a fast, precise, and most sensitive alternative to conventional PCR but they often comprise high rates of non-specific amplification and operational complexity. In recent advancements, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease Cas systems, particularly Cas12, have emerged as powerful tools for highly sensitive, specific, and rapid pathogen detection. Exploiting the collateral activities of Cas12, which selectively cleaves single-stranded DNA (ssDNA), novel detection platforms have been developed. The mechanism employs the formation of a triple complex molecule comprising guide RNA, Cas12 enzyme, and the substrate target nucleotide sequence. Upon recognition of the target, Cas12 indiscriminately cleaves the DNA strand, leading to the release of fluorescence from the cleaved ssDNA reporter. Integration of isothermal amplification methods with CRISPR/Cas12 enables one-step detection assays, facilitating rapid pathogen identification within 30 min at a single temperature. This integrated RPA-CRISPR/Cas12a approach eliminates the need for RNA extraction and cDNA conversion, allowing direct use of crude plant sap as a template. With an affordable fluorescence visualization system, this portable method achieves 100-fold greater sensitivity than conventional techniques. This review summarizes recent advances in RPA-CRISPR/Cas12a for detecting plant pathogens, covering primer design, field-level portability, and enhanced sensitivity.
Collapse
Affiliation(s)
- P. Anbazhagan
- ICAR-National Bureau of Plant Genetic Resources Regional Station, Hyderabad, Telangana 500030 India
| | - B. Parameswari
- ICAR-National Bureau of Plant Genetic Resources Regional Station, Hyderabad, Telangana 500030 India
| | - K. Anitha
- ICAR-National Bureau of Plant Genetic Resources Regional Station, Hyderabad, Telangana 500030 India
| | - G. V. Chaitra
- ICAR-National Bureau of Plant Genetic Resources Regional Station, Hyderabad, Telangana 500030 India
| | - Bhaskar Bajaru
- ICAR-National Bureau of Plant Genetic Resources Regional Station, Hyderabad, Telangana 500030 India
| | - A. Rajashree
- ICAR-National Bureau of Plant Genetic Resources Regional Station, Hyderabad, Telangana 500030 India
| | - S. K. Mangrauthia
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | - Faisal Yousuf
- ICAR-Indian Institute of Rice Research, Hyderabad, Telangana 500030 India
| | - V. Celia Chalam
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012 India
| | - G. P. Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012 India
| |
Collapse
|
4
|
Song X, Cao Y, Yan F. Isothermal Nucleic Acid Amplification-Based Lateral Flow Testing for the Detection of Plant Viruses. Int J Mol Sci 2024; 25:4237. [PMID: 38673821 PMCID: PMC11050433 DOI: 10.3390/ijms25084237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Isothermal nucleic acid amplification-based lateral flow testing (INAA-LFT) has emerged as a robust technique for on-site pathogen detection, providing a visible indication of pathogen nucleic acid amplification that rivals or even surpasses the sensitivity of real-time quantitative PCR. The isothermal nature of INAA-LFT ensures consistent conditions for nucleic acid amplification, establishing it as a crucial technology for rapid on-site pathogen detection. However, despite its considerable promise, the widespread application of isothermal INAA amplification-based lateral flow testing faces several challenges. This review provides an overview of the INAA-LFT procedure, highlighting its advancements in detecting plant viruses. Moreover, the review underscores the imperative of addressing the existing limitations and emphasizes ongoing research efforts dedicated to enhancing the applicability and performance of this technology in the realm of rapid on-site testing.
Collapse
Affiliation(s)
- Xuemei Song
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China;
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yuhao Cao
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo 315211, China;
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China;
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Yilmaz S, Batuman O. Development of a reverse transcription recombinase polymerase amplification combined with lateral flow assay for equipment-free on-site field detection of tomato chlorotic spot virus. Virol J 2023; 20:136. [PMID: 37349823 PMCID: PMC10288760 DOI: 10.1186/s12985-023-02097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Tomato chlorotic spot virus (TCSV) is an economically important, thrips-transmitted, emerging member of the Orthotospovirus genus that causes significant yield loss mainly in tomatoes, but also in other vegetable and ornamental crops. Disease management of this pathogen is often challenging due to the limited availability of natural host resistance genes, the broad host range of TCSV, and the wide distribution of its thrips vector. Point-of-care detection of TCSV with a rapid, equipment-free, portable, sensitive, and species-specific diagnostic technique can provide prompt response outside the laboratory, which is critical for preventing disease progression and further spread of the pathogen. Current diagnostic techniques require either laboratory-dependent or portable electronic equipment and are relatively time-consuming and costly. RESULTS In this study, we developed a novel technique for reverse-transcription recombinase polymerase amplification combined with lateral flow assay (RT-RPA-LFA) to achieve a faster and equipment-free point-of-care detection of TCSV. The RPA reaction tubes containing crude RNA are incubated in the hand palm to obtain sufficient heat (∼36 °C) for the amplification without the need for equipment. Body-heat mediated RT-RPA-LFA is highly TCSV-specific with a detection limit as low as ∼6 pg/μl of total RNA from TCSV-infected tomato plants. The assay can be performed in 15 min in the field. CONCLUSION To the best of our knowledge, this is the first equipment-free, body-heat-mediated RT-RPA-LFA technique developed to detect TCSV. Our new system offers a time-saving advantage for the sensitive and specific diagnostic of TCSV that local growers and small nurseries in low-resource settings can use without skilled personnel.
Collapse
Affiliation(s)
- Salih Yilmaz
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, 34142, USA
| | - Ozgur Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL, 34142, USA.
| |
Collapse
|
6
|
Kim DH, Jeong RD, Choi S, Ju HJ, Yoon JY. Application of Rapid and Reliable Detection of Cymbidium Mosaic Virus by Reverse Transcription Recombinase Polymerase Amplification Combined with Lateral Flow Immunoassay. THE PLANT PATHOLOGY JOURNAL 2022; 38:665-672. [PMID: 36503195 PMCID: PMC9742802 DOI: 10.5423/ppj.ft.10.2022.0147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Cymbidium mosaic virus (CymMV) is one of economically important viruses that cause significant losses of orchids in the world. In the present study, a reverse transcription recombinase polymerase amplification (RT-RPA) assay combined with a lateral flow immunostrip (LFI) assay was developed for the detection of CymMV in orchid plants. A pair of primers containing fluorescent probes at each terminus that amplifies highly specifically a part of the coat protein gene of CymMV was determined for RT-RPA assay. The RT-RPA assay involved incubation at an isothermal temperature (39°C) and could be performed rapidly within 30 min. In addition, no cross-reactivity was observed to occur with odontoglossum ringspot virus and cymbidium chlorotic mosaic virus. The RT-RPA with LFI assay (RT-RPA-LFI) for CymMV showed 100 times more sensitivity than conventional reverse transcription polymerase chain reaction (RT-PCR). Furthermore, the RT-PCR-LFI assay demonstrated the simplicity and the rapidity of CymMV detection since the assay did not require any equipment, by comparing results with those of conventional RT-PCR. On-site application of the RT-RPA-LFI assay was validated for the detection of CymMV in field-collected orchids, indicating a simple, rapid, sensitive, and reliable method for detecting CymMV in orchids.
Collapse
Affiliation(s)
- Do-Hyun Kim
- Department of Agricultural Biology, Jeonbuk National University, Jeonju 54896,
Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185,
Korea
| | - Sena Choi
- Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Ho-Jong Ju
- Department of Agricultural Biology, Jeonbuk National University, Jeonju 54896,
Korea
- Department of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896,
Korea
| | - Ju-Yeon Yoon
- Department of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896,
Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896,
Korea
| |
Collapse
|
7
|
Bhat AI, Aman R, Mahfouz M. Onsite detection of plant viruses using isothermal amplification assays. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1859-1873. [PMID: 35689490 PMCID: PMC9491455 DOI: 10.1111/pbi.13871] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/16/2022] [Accepted: 06/02/2022] [Indexed: 05/09/2023]
Abstract
Plant diseases caused by viruses limit crop production and quality, resulting in significant losses. However, options for managing viruses are limited; for example, as systemic obligate parasites, they cannot be killed by chemicals. Sensitive, robust, affordable diagnostic assays are needed to detect the presence of viruses in plant materials such as seeds, vegetative parts, insect vectors, or alternative hosts and then prevent or limit their introduction into the field by destroying infected plant materials or controlling insect hosts. Diagnostics based on biological and physical properties are not very sensitive and are time-consuming, but assays based on viral proteins and nucleic acids are more specific, sensitive, and rapid. However, most such assays require laboratories with sophisticated equipment and technical skills. By contrast, isothermal-based assays such as loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA) are simple, easy to perform, reliable, specific, and rapid and do not require specialized equipment or skills. Isothermal amplification assays can be performed using lateral flow devices, making them suitable for onsite detection or testing in the field. To overcome non-specific amplification and cross-contamination issues, isothermal amplification assays can be coupled with CRISPR/Cas technology. Indeed, the collateral activity associated with some CRISPR/Cas systems has been successfully harnessed for visual detection of plant viruses. Here, we briefly describe traditional methods for detecting viruses and then examine the various isothermal assays that are being harnessed to detect viruses.
Collapse
Affiliation(s)
- Alangar I. Bhat
- ICAR‐Indian Institute of Spices ResearchKozhikodeKeralaIndia
| | - Rashid Aman
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological SciencesKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
8
|
Donovan NJ, Chambers GA, Cao M. Detection of Viroids by RT-PCR. Methods Mol Biol 2022; 2316:143-151. [PMID: 34845692 DOI: 10.1007/978-1-0716-1464-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Reverse transcription-polymerase chain reaction (RT-PCR) is an effective method for detecting the presence of viroids in plant tissue. Viroid RNA is converted to cDNA and amplified to detectable levels, making it a fast and useful detection tool, even when the viroid is present at low levels. Methods of viroid detection using conventional RT-PCR are described in this chapter.
Collapse
Affiliation(s)
- Nerida J Donovan
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, NSW, Australia.
| | - Grant A Chambers
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, NSW, Australia
| | - Mengji Cao
- National Citrus Engineering Research Centre, Citrus Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Zhou Y, Zheng HY, Jiang DM, Liu M, Zhang W, Yan JY. A rapid detection of tomato yellow leaf curl virus using recombinase polymerase amplification-lateral flow dipstick assay. Lett Appl Microbiol 2021; 74:640-646. [PMID: 34822723 DOI: 10.1111/lam.13611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
Abstract
Tomato yellow leaf curl disease which is caused by Tomato yellow leaf curl virus (TYLCV) is economically important and a widely spread tomato disease in China. Rapid and accurate detection methods are important in the control TYLCV. Here, a rapid method was developed to identify TYLCV on the basis of recombinase polymerase amplification (RPA) that can be visualized in 5 min using lateral flow dipsticks. The sensitivity and the specificity of this method were evaluated. This method can detect 0·5 pg DNA after 30 min at 37°C without any expensive instrumentation. In addition, it showed higher sensitivity than a PCR method when purified DNA was used. Moreover, the TYLCV was specifically detected, whereas other viruses infecting tomato produced negative results. The crude tomato extracts used in this assay has potential application in minimally equipped plant clinic laboratories. This method will facilitate the early and rapid detection of TYLCV for the timely application of control measures.
Collapse
Affiliation(s)
- Y Zhou
- Institute of Plant Protection, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - H Y Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - D M Jiang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - M Liu
- Institute of Plant Protection, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - W Zhang
- Institute of Plant Protection, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - J Y Yan
- Institute of Plant Protection, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
10
|
Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. The Potential Use of Isothermal Amplification Assays for In-Field Diagnostics of Plant Pathogens. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112424. [PMID: 34834787 PMCID: PMC8621059 DOI: 10.3390/plants10112424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 05/27/2023]
Abstract
Rapid, sensitive, and timely diagnostics are essential for protecting plants from pathogens. Commonly, PCR techniques are used in laboratories for highly sensitive detection of DNA/RNA from viral, viroid, bacterial, and fungal pathogens of plants. However, using PCR-based methods for in-field diagnostics is a challenge and sometimes nearly impossible. With the advent of isothermal amplification methods, which provide amplification of nucleic acids at a certain temperature and do not require thermocyclic equipment, going beyond the laboratory has become a reality for molecular diagnostics. The amplification stage ceases to be limited by time and instruments. Challenges to solve involve finding suitable approaches for rapid and user-friendly plant preparation and detection of amplicons after amplification. Here, we summarize approaches for in-field diagnostics of phytopathogens based on different types of isothermal amplification and discuss their advantages and disadvantages. In this review, we consider a combination of isothermal amplification methods with extraction and detection methods compatible with in-field phytodiagnostics. Molecular diagnostics in out-of-lab conditions are of particular importance for protecting against viral, bacterial, and fungal phytopathogens in order to quickly prevent and control the spread of disease. We believe that the development of rapid, sensitive, and equipment-free nucleic acid detection methods is the future of phytodiagnostics, and its benefits are already visible.
Collapse
|
11
|
Kovalskaya N, Hammond RW. Rapid diagnostic detection of tomato apical stunt viroid based on isothermal reverse transcription-recombinase polymerase amplification. J Virol Methods 2021; 300:114353. [PMID: 34767861 DOI: 10.1016/j.jviromet.2021.114353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/31/2022]
Abstract
Tomato apical stunt viroid (TASVd) is a serious threat to tomato plants that can cause a considerable yield loss. In the present study, two isothermal molecular diagnostic assays based on reverse transcription-recombinase polymerase amplification (RT-RPA) utilizing the AmplifyRP® platform for plant pathogen detection were developed. The results of this research demonstrated distinct specificity of both developed assays, AmplifyRP® Acceler8™ and AmplifyRP® XRT, expressed in the absence of any cross-reaction activity to all total RNA extracts obtained from plants infected with other pospiviroids. The RT-RPA assays detected viroid RNA in 81- and 27-fold dilutions of the original TASVd-infected crude extract for AmplifyRP® Acceler8™ and AmplifyRP® XRT, respectively. The sensitivity tests in serial water dilutions showed the ability of AmplifyRP® Acceler8™ and AmplifyRP® XRT to detect 8 and 80 fg of pure TASVd RNA transcript, respectively. The influence of crude extract on viroid RNA transcript detection was also examined and a decrease of sensitivity of approximately 100-fold for both RT-RPA assays was revealed. To our knowledge, this is the first report describing development of RT-RPA assays to detect TASVd in plants using the AmplifyRP® platform that can be further employed both in laboratory conditions and in the field for on-site diagnosis.
Collapse
Affiliation(s)
- Natalia Kovalskaya
- ORISE-USDA ARS USNA Floral and Nursery Plant Research Unit, 10300 Baltimore Ave, Bldg. 004, Rm. 211, Beltsville, MD, 20705, USA.
| | - Rosemarie W Hammond
- USDA ARS Molecular Plant Pathology Laboratory, 10300 Baltimore Ave, Bldg. 004, Rm. 214, Beltsville, MD, 20705, USA.
| |
Collapse
|
12
|
Widmer TL, Costa JM. Impact of the United States Department of Agriculture, Agricultural Research Service on Plant Pathology: 2015-2020. PHYTOPATHOLOGY 2021; 111:1265-1276. [PMID: 33507089 DOI: 10.1094/phyto-09-20-0393-ia] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is an increasing need to supply the world with more food as the population continues to grow. Research on mitigating the effects of plant diseases to improve crop yield and quality can help provide more food without increasing the land area devoted to farming. National Program 303 (NP 303) within the U.S. Department of Agriculture, Agricultural Research Service is dedicated to research across multiple fields in plant pathology. This review article highlights the research impact within NP 303 between 2015 and 2020, including case studies on wheat and citrus diseases and the National Plant Disease Recovery System, which provide specific examples of this impact.
Collapse
Affiliation(s)
- Timothy L Widmer
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705
| | - José M Costa
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705
| |
Collapse
|
13
|
Stackhouse T, Martinez-Espinoza AD, Ali ME. Turfgrass Disease Diagnosis: Past, Present, and Future. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1544. [PMID: 33187303 PMCID: PMC7697262 DOI: 10.3390/plants9111544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/30/2020] [Accepted: 11/09/2020] [Indexed: 01/15/2023]
Abstract
Turfgrass is a multibillion-dollar industry severely affected by plant pathogens including fungi, bacteria, viruses, and nematodes. Many of the diseases in turfgrass have similar signs and symptoms, making it difficult to diagnose the specific problem pathogen. Incorrect diagnosis leads to the delay of treatment and excessive use of chemicals. To effectively control these diseases, it is important to have rapid and accurate detection systems in the early stages of infection that harbor relatively low pathogen populations. There are many methods for diagnosing pathogens on turfgrass. Traditional methods include symptoms, morphology, and microscopy identification. These have been followed by nucleic acid detection and onsite detection techniques. Many of these methods allow for rapid diagnosis, some even within the field without much expertise. There are several methods that have great potential, such as high-throughput sequencing and remote sensing. Utilization of these techniques for disease diagnosis allows for faster and accurate disease diagnosis and a reduction in damage and cost of control. Understanding of each of these techniques can allow researchers to select which method is best suited for their pathogen of interest. The objective of this article is to provide an overview of the turfgrass diagnostics efforts used and highlight prospects for disease detection.
Collapse
Affiliation(s)
- Tammy Stackhouse
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA;
| | | | - Md Emran Ali
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA;
| |
Collapse
|
14
|
Ivanov AV, Shmyglya IV, Zherdev AV, Dzantiev BB, Safenkova IV. The Challenge for Rapid Detection of High-Structured Circular RNA: Assay of Potato Spindle Tuber Viroid Based on Recombinase Polymerase Amplification and Lateral Flow Tests. PLANTS 2020; 9:plants9101369. [PMID: 33076508 PMCID: PMC7650583 DOI: 10.3390/plants9101369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/14/2023]
Abstract
An assay was developed to detect the potato spindle tuber viroid (PSTVd), a dangerous plant pathogen that causes crop damage resulting in economic losses in the potato agriculture sector. The assay was based on the reverse transcription and recombinase polymerase amplification (RT-RPA) of PSTVd RNA coupled with amplicon detection via lateral flow assay (LFA). Primers labeled with fluorescein and biotin were designed for RT-RPA for effective recognition of the loop regions in the high-structured circular RNA of PSTVd. The labeled DNA amplicon was detected using lateral flow test strips consisting of a conjugate of gold nanoparticles with antibodies specific to fluorescein and streptavidin in the test zone. The RT-RPA-LFA detected 106 copies of in vitro transcribed PSTVd RNA in reaction or up to 1:107 diluted extracts of infected plant leaves. The assay took 30 min, including the RT-RPA stage and the LFA stage. The testing of healthy and infected potato samples showed full concordance between the developed RT-RPA-LFA and quantitative reverse transcription polymerase chain reaction (RT-qPCR) and the commercial kit. The obtained results proved the feasibility of using the developed assay to detect PSTVd from a natural source.
Collapse
Affiliation(s)
- Aleksandr V. Ivanov
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (A.V.I.); (A.V.Z.); (I.V.S.)
| | - Irina V. Shmyglya
- A. G. Lorch Russian Potato Research Center, Kraskovo 140051, Russia;
| | - Anatoly V. Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (A.V.I.); (A.V.Z.); (I.V.S.)
| | - Boris B. Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (A.V.I.); (A.V.Z.); (I.V.S.)
- Correspondence: ; Tel.: +7-495-954-3142
| | - Irina V. Safenkova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; (A.V.I.); (A.V.Z.); (I.V.S.)
| |
Collapse
|
15
|
Rapid detection of peach latent mosaic viroid by reverse transcription recombinase polymerase amplification. Mol Cell Probes 2020; 53:101627. [DOI: 10.1016/j.mcp.2020.101627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 11/18/2022]
|
16
|
Cao Y, Yan D, Wu X, Chen Z, Lai Y, Lv L, Yan F, Chen J, Zheng H, Song X. Rapid and visual detection of milk vetch dwarf virus using recombinase polymerase amplification combined with lateral flow strips. Virol J 2020; 17:102. [PMID: 32653001 PMCID: PMC7353715 DOI: 10.1186/s12985-020-01371-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
Abstract
Background Milk vetch dwarf virus (MDV) is an important ssDNA virus which causes yellowing, stunting and leaf rolling symptoms on legumes. In China, the virus causes great economic losses and has recently been found to infect tobacco. The expansion of its host range and its ability to spread rapidly has given rise to the urgent need for a sensitive, specific and rapid diagnostic assay that can assist in effective disease control. Methods Assays based on the polymerase chain reaction combined with lateral flow strip detection (PCR-LFS) and recombinase polymerase amplification combined with LFS (RPA-LFS) were developed targeting the coat protein (CP) gene of MDV. Results The PCR and RPA assays could detect respectively 103 copies or 101 copies of MDV by agarose gel electrophoresis. The PCR-LFS and RPA-LFS assays developed could both detect as few as 101 copies per reaction at 37 °C. Both methods could detect MDV in crude leaf extracts. Conclusions The RPA-LFS assay developed is a rapid, sensitive and specific method for detecting MDV, which is convenient and has great potential for use in the field.
Collapse
Affiliation(s)
- Yuhao Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dankan Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xinyang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Ziqiang Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yuchao Lai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lanqing Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Xuemei Song
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
17
|
Wang Y, Chen R, Nie X, Zhong Z, Li C, Li K, Huang W, Fu X, Liu J, Nie B. Rapid and sensitive detection of potato virus Y by isothermal reverse transcription-recombinase polymerase amplification assay in potato. Mol Cell Probes 2020; 50:101505. [PMID: 31904418 DOI: 10.1016/j.mcp.2019.101505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/13/2019] [Accepted: 12/27/2019] [Indexed: 12/24/2022]
Abstract
In this study, an isothermal reverse transcription-recombinase polymerase amplification (RT-RPA) assay was developed for the efficient and accurate detection of potato virus Y (PVY) under isothermal conditions. This RT-RPA assay was more efficient than the conventional reverse transcription-polymerase chain reaction (RT-PCR) assay as the amplification reaction can be completed in less than 20 min. Moreover, unlike PCR that requires a thermocycler to carry out the DNA amplification through specific temperature phases, RPA assay could be performed under an isothermal condition at a temperature ranging from 25 to 40 °C. A simple instrumentation such as a heating block or a water bath or even anon-instrumental condition such as human hands or a benchtop inside/outside a room during the summer could satisfy the temperature requirement of RPA. The sensitivity of this assay was equivalent to that of the conventional RT-PCR, and the virus can be detected in a minimum of 2 pg of total RNA extracted from the PVY infected potato leaf tissues. The efficacy of the newly developed RT-RPA was then evaluated using field potato leaf and dormancy-broken sprout samples upon enzyme-linked immunosorbent assay (ELISA) screening. Of the 164 PVY-ELISA-positive samples, RT-RPA detected 157 whereas simplex RT-PCR detected 160 and multiplex RT-PCR detected 154. Of the 74 randomly selected PVY-ELISA-negative samples, RT-RPA, simplex RT-PCR and multiplex RT-PCR led to 1, 1 and 0 positive detections, receptively. Overall, RT-RPA and the two RT-PCR assays as well as ELISA exhibited an agreement of 96.6-98.7%, thus demonstrating the suitability of RT-RPA for large scale detection of PVY, irrespective of the strain type of the virus.
Collapse
Affiliation(s)
- Ying Wang
- National Center for Vegetable Improvement (Central China), Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruhao Chen
- National Center for Vegetable Improvement (Central China), Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianzhou Nie
- Fredericton Research and Development Center, Agriculture and Agri-Food Canada, 850 Lincoln Road, P. O. Box 20280, Fredericton, New Brunswick, E3B4Z7, Canada
| | - Ziyang Zhong
- National Center for Vegetable Improvement (Central China), Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyan Li
- National Center for Vegetable Improvement (Central China), Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kun Li
- National Center for Vegetable Improvement (Central China), Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Huang
- National Center for Vegetable Improvement (Central China), Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xingyu Fu
- National Center for Vegetable Improvement (Central China), Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jun Liu
- National Center for Vegetable Improvement (Central China), Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bihua Nie
- National Center for Vegetable Improvement (Central China), Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
18
|
Baldi P, La Porta N. Molecular Approaches for Low-Cost Point-of-Care Pathogen Detection in Agriculture and Forestry. FRONTIERS IN PLANT SCIENCE 2020; 11:570862. [PMID: 33193502 PMCID: PMC7655913 DOI: 10.3389/fpls.2020.570862] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/29/2020] [Indexed: 05/14/2023]
Abstract
Early detection of plant diseases is a crucial factor to prevent or limit the spread of a rising infection that could cause significant economic loss. Detection test on plant diseases in the laboratory can be laborious, time consuming, expensive, and normally requires specific technical expertise. Moreover, in the developing countries, it is often difficult to find laboratories equipped for this kind of analysis. Therefore, in the past years, a high effort has been made for the development of fast, specific, sensitive, and cost-effective tests that can be successfully used in plant pathology directly in the field by low-specialized personnel using minimal equipment. Nucleic acid-based methods have proven to be a good choice for the development of detection tools in several fields, such as human/animal health, food safety, and water analysis, and their application in plant pathogen detection is becoming more and more common. In the present review, the more recent nucleic acid-based protocols for point-of-care (POC) plant pathogen detection and identification are described and analyzed. All these methods have a high potential for early detection of destructive diseases in agriculture and forestry, they should help make molecular detection for plant pathogens accessible to anyone, anywhere, and at any time. We do not suggest that on-site methods should replace lab testing completely, which remains crucial for more complex researches, such as identification and classification of new pathogens or the study of plant defense mechanisms. Instead, POC analysis can provide a useful, fast, and efficient preliminary on-site screening that is crucial in the struggle against plant pathogens.
Collapse
Affiliation(s)
- Paolo Baldi
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- *Correspondence: Paolo Baldi,
| | - Nicola La Porta
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- The EFI Project Centre on Mountain Forests (MOUNTFOR), San Michele a/Adige, Trento, Italy
| |
Collapse
|
19
|
Lee J, Heo S, Bang D. Applying a Linear Amplification Strategy to Recombinase Polymerase Amplification for Uniform DNA Library Amplification. ACS OMEGA 2019; 4:19953-19958. [PMID: 31788628 PMCID: PMC6882106 DOI: 10.1021/acsomega.9b02886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Recombinase polymerase amplification (RPA) is an isothermal DNA amplification method with broad applications as a point-of-care test and in molecular biology techniques. Currently, most of the applications are focused on target-specific amplification. Because RPA has the advantage of amplifying DNA under isothermal conditions, we utilized RPA as a DNA library amplification tool. In this study, we used a sheared genomic DNA library and an oligonucleotide (oligo) library for the comparison of polymerase chain reaction and RPA. For the sheared DNA library, we observed biased amplification after RPA was conducted. Thus, to amplify the size-variable DNA library uniformly, we introduced a linear amplification strategy with RPA and successfully improved the uniformity. On the other hand, using the same-sized oligo library, we confirmed that RPA amplified this library uniformly without modification of the protocol. These results demonstrate that RPA can be applied not only to amplify a specific target as previously demonstrated but also to amplify a complex DNA library composed of a large number of different DNA molecules.
Collapse
|
20
|
Comparative analysis of different molecular and serological methods for detection of Xylella fastidiosa in blueberry. PLoS One 2019; 14:e0221903. [PMID: 31479482 PMCID: PMC6719857 DOI: 10.1371/journal.pone.0221903] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022] Open
Abstract
Bacterial leaf scorch, caused by Xylella fastidiosa, is a major threat to blueberry production in the southeastern United States. Management of this devastating disease is challenging and often requires early detection of the pathogen to reduce major loss. There are several different molecular and serological detection methods available to identify the pathogen. Knowing the efficiency and suitability of these detection techniques for application in both field and laboratory conditions is important when selecting the appropriate detection tool. Here, we compared the efficiency and the functionality of four different molecular detection techniques (PCR, real-time PCR, LAMP and AmplifyRP® Acceler8™) and one serological detection technique (DAS-ELISA). The most sensitive method was found to be real-time PCR with the detection limit of 25 fg of DNA molecules per reaction (≈9 genome copies), followed by LAMP at 250 fg per reaction (≈90 copies), AmplifyRP® Acceler8™ at 1 pg per reaction (≈350 copies), conventional PCR with nearly 1.25 pg per reaction (≈ 440 copies) and DAS-ELISA with 1x105 cfu/mL of Xylella fastidiosa. Validation between assays with 10 experimental samples gave consistent results beyond the variation of the detection limit. Considering robustness, portability, and cost, LAMP and AmplifyRP® Acceler8™ were not only the fastest methods but also portable to the field and didn’t require any skilled labor to carry out. Among those two, AmplifyRP® Acceler8™ was faster but more expensive and less sensitive than LAMP. On the other hand, real-time PCR was the most sensitive assay and required comparatively lesser time than C-PCR and DAS-ELISA, which were the least sensitive assays in this study, but all three assays are not portable and needed skilled labor to proceed. These findings should enable growers, agents, and diagnosticians to make informed decisions regarding the selection of an appropriate diagnostic tool for X. fastidiosa on blueberry.
Collapse
|
21
|
Abstract
Recombinase polymerase amplification (RPA) is a highly sensitive and selective isothermal amplification technique, operating at 37-42°C, with minimal sample preparation and capable of amplifying as low as 1-10 DNA target copies in less than 20 min. It has been used to amplify diverse targets, including RNA, miRNA, ssDNA and dsDNA from a wide variety of organisms and samples. An ever increasing number of publications detailing the use of RPA are appearing and amplification has been carried out in solution phase, solid phase as well as in a bridge amplification format. Furthermore, RPA has been successfully integrated with different detection strategies, from end-point lateral flow strips to real-time fluorescent detection amongst others. This review focuses on the different methodologies and advances related to RPA technology, as well as highlighting some of the advantages and drawbacks of the technique.
Collapse
Affiliation(s)
- Ivan Magriñá Lobato
- INTERFIBIO Consolidated Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Països Catalans, 26, 43007, Tarragona, Spain
| | - Ciara K O'Sullivan
- INTERFIBIO Consolidated Research Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Països Catalans, 26, 43007, Tarragona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|