1
|
Johnson C, Marquez C, Olson D, Ward T, Cheney S, Hulten T, Ton T, Webb CR, Dunn J. Development and performance of a multiplex PCR assay for the detection of bacteria in sterile body fluids. Future Microbiol 2023; 18:187-195. [PMID: 36820638 DOI: 10.2217/fmb-2022-0226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Aim: To assess the performance characteristics of a lab-developed multiplex PCR assay for the detection of common bacterial pathogens associated with infections in pediatric patients from normally sterile sites, such as cerebrospinal fluid, synovial and pleural fluids. Materials & methods: A total of 272 specimens were tested by PCR and traditional culture methods to assess the presence of Neisseria meningitidis, Streptococcus pneumoniae, Streptococcus pyogenes, methicillin-sensitive and methicillin-resistant Staphylococcus aureus, and Kingella kingae. Results: Compared with culture, the overall positive and negative percentage agreement of the PCR were 95.9% and 74.1%, respectively. Conclusion: This sterile body fluid PCR affords a rapid and sensitive alternative for bacterial detection, allowing for more timely pathogen-directed antimicrobial therapy.
Collapse
Affiliation(s)
- Coreen Johnson
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher Marquez
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Damon Olson
- Department of Pathology, Children's Minnesota, Minneapolis, MN 55404, USA
| | - Tabitha Ward
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen Cheney
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tina Hulten
- Department of Pediatrics, Section of Infectious Disease, Baylor College of Medicine, TX 77030, USA
| | - Trang Ton
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
| | - C R Webb
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
| | - James Dunn
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA.,Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Shin JI, Ha JH, Kim KM, Choi JG, Park SR, Park HE, Park JS, Byun JH, Jung M, Baik SC, Lee WK, Kang HL, Yoo JW, Shin MK. A novel repeat sequence-based PCR (rep-PCR) using specific repeat sequences of Mycobacterium intracellulare as a DNA fingerprinting. Front Microbiol 2023; 14:1161194. [PMID: 37089534 PMCID: PMC10117815 DOI: 10.3389/fmicb.2023.1161194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
Repetitive sequence-based PCR (rep-PCR) is a potential epidemiological technique that can provide high-throughput genotype fingerprints of heterogeneous Mycobacterium strains rapidly. Previously published rep-PCR primers, which are based on nucleotide sequences of Gram-negative bacteria may have low specificity for mycobacteria. Moreover, it was difficult to ensure the continuity of the study after the commercial rep-PCR kit was discontinued. Here, we designed a novel rep-PCR for Mycobacterium intracellulare, a major cause of nontuberculous mycobacterial pulmonary disease with frequent recurrence. We screened the 7,645 repeat sequences for 200 fragments from the genome of M. intracellulare ATCC 13950 in silico, finally generating five primers with more than 90% identity for a total of 226 loci in the genome. The five primers could make different band patterns depending on the genome of three different M. intracellulare strains using an in silico test. The novel rep-PCR with the five primers was conducted using 34 bacterial samples of 7 species containing 25 M. intracellulare clinical isolates, compared with previous published rep-PCRs. This shows distinguished patterns depending on species and blotting assay for 6 species implied the sequence specificity of the five primers. The Designed rep-PCR had a 95-98% of similarity value in the reproducibility test and showed 7 groups of fingerprints in M. intracellulare strains. Designed rep-PCR had a correlation value of 0.814 with VNTR, reference epidemiological method. This study provides a promising genotype fingerprinting method for tracing the recurrence of heterogeneous M. intracellulare.
Collapse
Affiliation(s)
- Jeong-Ih Shin
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Fastidious Specialized Pathogen Resources Bank, A Member of the National Culture Collection for Pathogens, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jong-Hun Ha
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyu-Min Kim
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Fastidious Specialized Pathogen Resources Bank, A Member of the National Culture Collection for Pathogens, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jeong-Gyu Choi
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Fastidious Specialized Pathogen Resources Bank, A Member of the National Culture Collection for Pathogens, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Seo-Rin Park
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyun-Eui Park
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jin-Sik Park
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung-Hyun Byun
- Fastidious Specialized Pathogen Resources Bank, A Member of the National Culture Collection for Pathogens, Gyeongsang National University Hospital, Jinju, Republic of Korea
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Myunghwan Jung
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Fastidious Specialized Pathogen Resources Bank, A Member of the National Culture Collection for Pathogens, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Seung-Chul Baik
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Woo-Kon Lee
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Fastidious Specialized Pathogen Resources Bank, A Member of the National Culture Collection for Pathogens, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Hyung-Lyun Kang
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung-Wan Yoo
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
- Jung-Wan Yoo,
| | - Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Sciences, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Fastidious Specialized Pathogen Resources Bank, A Member of the National Culture Collection for Pathogens, Gyeongsang National University Hospital, Jinju, Republic of Korea
- *Correspondence: Min-Kyoung Shin,
| |
Collapse
|
3
|
Hrdy J, Vasickova P. Virus detection methods for different kinds of food and water samples – The importance of molecular techniques. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Abade dos Santos FA, Carvalho CL, Parra F, Dalton KP, Peleteiro MC, Duarte MD. A Quadruplex qPCR for Detection and Differentiation of Classic and Natural Recombinant Myxoma Virus Strains of Leporids. Int J Mol Sci 2021; 22:ijms222112052. [PMID: 34769480 PMCID: PMC8584577 DOI: 10.3390/ijms222112052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/19/2023] Open
Abstract
A natural recombinant myxoma virus (referred to as ha-MYXV or MYXV-Tol08/18) emerged in the Iberian hare (Lepus granatensis) and the European rabbit (Oryctolagus cuniculus) in late 2018 and mid-2020, respectively. This new virus is genetically distinct from classic myxoma virus (MYXV) strains that caused myxomatosis in rabbits until then, by acquiring an additional 2.8 Kbp insert within the m009L gene that disrupted it into ORFs m009L-a and m009L-b. To distinguish ha-MYXV from classic MYXV strains, we developed a robust qPCR multiplex technique that combines the amplification of the m000.5L/R duplicated gene, conserved in all myxoma virus strains including ha-MYXV, with the amplification of two other genes targeted by the real-time PCR systems designed during this study, specific either for classic MYXV or ha-MYXV strains. The first system targets the boundaries between ORFs m009L-a and m009L-b, only contiguous in classic strains, while the second amplifies a fragment within gene m060L, only present in recombinant MYXV strains. All amplification reactions were validated and normalized by a fourth PCR system directed to a housekeeping gene (18S rRNA) conserved in eukaryotic organisms, including hares and rabbits. The multiplex PCR (mPCR) technique described here was optimized for Taqman® and Evagreen® systems allowing the detection of as few as nine copies of viral DNA in the sample with an efficiency > 93%. This real-time multiplex is the first fast method available for the differential diagnosis between classic and recombinant MYXV strains, also allowing the detection of co-infections. The system proves to be an essential and effective tool for monitoring the geographical spread of ha-MYXV in the hare and wild rabbit populations, supporting the management of both species in the field.
Collapse
Affiliation(s)
- Fábio A. Abade dos Santos
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.C.P.); (M.D.D.)
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33003 Oviedo, Spain; (F.P.); (K.P.D.)
- Correspondence: ; Tel.: +351-21-440-3500
| | - Carina L. Carvalho
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| | - Francisco Parra
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33003 Oviedo, Spain; (F.P.); (K.P.D.)
| | - Kevin P. Dalton
- Instituto Universitario de Biotecnología de Asturias (IUBA), Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33003 Oviedo, Spain; (F.P.); (K.P.D.)
| | - Maria C. Peleteiro
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.C.P.); (M.D.D.)
| | - Margarida D. Duarte
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (M.C.P.); (M.D.D.)
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Av. da República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| |
Collapse
|
5
|
van Rijn PA, Boonstra J. Critical parameters of real time reverse transcription polymerase chain reaction (RT-PCR) diagnostics: Sensitivity and specificity for bluetongue virus. J Virol Methods 2021; 295:114211. [PMID: 34126108 DOI: 10.1016/j.jviromet.2021.114211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 11/18/2022]
Abstract
A new variant of bluetongue virus serotype 3, BTV3 ITL 2018 (here named: BTV3), was included in serial dilutions in the BT Proficiency Test 2020. Although the OIE-recommended panBTV real time RT-PCR test targeting genome segment 10 (Seg-10) detected this variant, we showed that reverse transcription (RT) at 61 °C instead of 50 °C completely abolished detection. Another Seg-10 panBTV real time RT-PCR test detected BTV3, irrespective of the temperature of RT. In silico validation showed that each of the OIE-recommended PCR primers using IVI-primers contain single mismatches at the -3 position for BTV3. In contrast, WBVR-primers of a second test completely match to the BTV3 variant. Our results suggest that single mismatches caused false negative PCR results for BTV3 at high RT temperature. Indeed, correction of both IVI-primers for BTV3 led to positive results for BTV3 but negative results for all other samples of the BT Proficiency Test 2020. Apparently, variability of the -3 position is sufficient for discriminative PCR detection, although the single mismatch in the IVI-reverse primer was the most important for this phenomenon. Extensive in silico validation showed that targets of both Seg-10 panBTV RT-PCR tests are not completely conserved, and the detailed effect of single mismatches are hard to predict. Therefore, we recommend at least two panBTV RT-PCR tests to minimize the risk of false negatives. Preferably, their PCR targets should be located at completely different and highly conserved regions of the BTV genome to guarantee adequate detection of future BTV infections.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands; Department of Biochemistry, Centre for Human Metabolomics, North-West University, South Africa.
| | - Jan Boonstra
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| |
Collapse
|
6
|
Flannery J, Rajko-Nenow P, Arnold H, van Weezep E, van Rijn PA, Ngeleja C, Batten C. Improved PCR diagnostics using up-to-date in silico validation: An F-gene RT-qPCR assay for the detection of all four lineages of peste des petits ruminants virus. J Virol Methods 2019; 274:113735. [PMID: 31526766 PMCID: PMC6853160 DOI: 10.1016/j.jviromet.2019.113735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 11/29/2022]
Abstract
Designed F-gene RT-qPCR using all full-genomes available on genbank. Performed in silico evaluation of existing and new PPRV RT-qPCR assays. F-gene RT-qPCR assay shows the greatest in silico performance. The assay demonstrates excellent diagnostic and analytical sensitivity. The assay may be useful during the global PPR eradication campaign.
Peste des petits ruminants (PPR) is a globally significant disease of small ruminants caused by the peste des petits ruminants virus (PPRV) that is considered for eradication by 2030 by the United Nations Food and Agriculture Organisation (FAO). Critical to the eradication of PPR are accurate diagnostic assays. RT-qPCR assays targeting the nucleocapsid gene of PPRV have been successfully used for the diagnosis of PPR. We describe the development of an RT-qPCR assay targeting an alternative region (the fusion (F) gene) based on the most up-to-date PPRV sequence data. In silico analysis of the F-gene RT-qPCR assay performed using PCRv software indicated 98% sensitivity and 100% specificity against all PPRV sequences published in Genbank. The assay indicated the greatest in silico sensitivity in comparison to other previously published and recommended PPRV RT-qPCR assays. We evaluated the assay using strains representative of all 4 lineages in addition to samples obtained from naturally and experimentally-infected animals. The F-gene RT-qPCR assay showed 100% diagnostic specificity and demonstrated a limit of detection of 10 PPRV genome copies per μl. This RT-qPCR assay can be used in isolation or in conjunction with other assays for confirmation of PPR and should support the global efforts for eradication.
Collapse
Affiliation(s)
- John Flannery
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom.
| | - Paulina Rajko-Nenow
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Hannah Arnold
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| | - Erik van Weezep
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
| | - Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands; Department of Biochemistry, North West University, Potchefstroom, South Africa
| | - Chanasa Ngeleja
- Centre for Infectious Diseases and Biotechnology, Tanzania Veterinary Laboratory Agency, Dar es Salaam, Tanzania
| | - Carrie Batten
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, United Kingdom
| |
Collapse
|