1
|
Yeni O, Şen M, Hasançebi S, Turgut Kara N. Optimization of loop-mediated isothermal amplification assay for sunflower mildew disease detection. Sci Rep 2024; 14:23224. [PMID: 39369029 PMCID: PMC11455944 DOI: 10.1038/s41598-024-72228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/04/2024] [Indexed: 10/07/2024] Open
Abstract
Loop-Mediated Isothermal Amplification (LAMP) represents a valuable technique for DNA/RNA detection, known for its exceptional sensitivity, specificity, speed, accuracy, and affordability. This study focused on optimizing a LAMP-based method to detect early signs of Plasmopara halstedii, the casual pathogen of sunflower downy mildew, a severe threat to sunflower crops. Specifically, a set of six LAMP primers (two outer, two inner, and two loop) were designed from P. halstedii genomic DNA, targeting the ribosomal Large Subunit (LSU). These primers were verified by in silico analysis and experimental validation using both target and non-target species' DNAs. Optimizations encompassing reaction conditions (temperature, time) and component concentrations (magnesium, Bst DNA polymerase, primers, and dNTP) were determined. Validation of these optimizations was performed by agarose gel electrophoresis. Furthermore, various colorimetric chemicals (Neutral Red, Hydroxynaphthol Blue, SYBR Safe, Thiazole Green) were evaluated to facilitate method analysis, and the real-time analysis has been optimized, presenting multiple approaches for detecting sunflower downy mildew using the LAMP technique. The analytical sensitivity of the method was confirmed by detecting P. halstedii DNA concentrations as low as 0.5 pg/μl. This pioneering study, establishing P. halstedii detection through the LAMP method, stands as unique in its field. The precision, robustness, and practicality of the LAMP protocol make it an ideal choice for studies focusing on sunflower mildew, emphasizing its recommended use due to its operational ease and reliability.
Collapse
Affiliation(s)
- Oğuzhan Yeni
- Institute of Science, Program of Molecular Biotechnology and Genetics, Istanbul University, Istanbul, Turkey
| | - Mutlu Şen
- Institute of Science, Program of Biotechnology and Genetics, Trakya University, Edirne, Turkey
| | - Semra Hasançebi
- Faculty of Engineering, Department of Genetics and Bioengineering, Trakya University, Ahmet Karadeniz Yerleskesi, Edirne, Turkey
| | - Neslihan Turgut Kara
- Faculty of Science, Department of Molecular Biology and Genetics, Istanbul University, Vezneciler, 34134, Istanbul, Turkey.
| |
Collapse
|
2
|
Chen Y, Zhu Y, Peng C, Wang X, Wu J, Chen H, Xu J. A Point-of-Care Nucleic Acid Quantification Method by Counting Light Spots Formed by LAMP Amplicons on a Paper Membrane. BIOSENSORS 2024; 14:139. [PMID: 38534246 DOI: 10.3390/bios14030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Nucleic acid quantification, allowing us to accurately know the copy number of target nucleic acids, is significant for diagnosis, food safety, agricultural production, and environmental protection. However, current digital quantification methods require expensive instruments or complicated microfluidic chips, making it difficult to popularize in the point-of-care detection. Paper is an inexpensive and readily available material. In this study, we propose a simple and cost-effective paper membrane-based digital loop-mediated isothermal amplification (LAMP) method for nucleic acid quantification. In the presence of DNA fluorescence dyes, the high background signals will cover up the amplicons-formed bright spots. To reduce the background fluorescence signals, a quencher-fluorophore duplex was introduced in LAMP primers to replace non-specific fluorescence dyes. After that, the amplicons-formed spots on the paper membrane can be observed; thus, the target DNA can be quantified by counting the spots. Take Vibrio parahaemolyticus DNA detection as an instance, a good linear relationship is obtained between the light spots and the copy numbers of DNA. The paper membrane-based digital LAMP detection can detect 100 copies target DNA per reaction within 30 min. Overall, the proposed nucleic acid quantification method has the advantages of a simple workflow, short sample-in and answer-out time, low cost, and high signal-to-noise, which is promising for application in resourced limited areas.
Collapse
Affiliation(s)
- Yanju Chen
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Zhu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Cheng Peng
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaofu Wang
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Huan Chen
- Hangzhou Digital-Micro Biotech Co., Ltd., Hangzhou 311215, China
| | - Junfeng Xu
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
3
|
Marra M, D’Errico C, Montemurro C, Ratti C, Baldoni E, Matic S, Accotto GP. Fast and Sensitive Detection of Soil-Borne Cereal Mosaic Virus in Leaf Crude Extract of Durum Wheat. Viruses 2022; 15:140. [PMID: 36680180 PMCID: PMC9866084 DOI: 10.3390/v15010140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Soil-borne cereal mosaic virus (SBCMV) is a furovirus with rigid rod-shaped particles containing an ssRNA genome, transmitted by Polymyxa graminis Led., a plasmodiophorid that can persist in soil for up to 20 years. SBCMV was reported on common and durum wheat and it can cause yield losses of up to 70%. Detection protocols currently available are costly and time-consuming (real-time PCR) or have limited sensitivity (ELISA). To facilitate an efficient investigation of the real dispersal of SBCMV, it is necessary to develop a new detection tool with the following characteristics: no extraction steps, very fast results, and high sensitivity to allow pooling of a large number of samples. In the present work, we have developed a reverse transcription loop-mediated isothermal amplification (RT-LAMP) protocol with such characteristics, and we have compared it with real-time PCR. Our results show that the sensitivity of LAMP and real-time PCR on cDNA and RT-LAMP on crude extracts are comparable, with the obvious advantage that RT-LAMP produces results in minutes rather than hours. This paves the way for extensive field surveys, leading to a better knowledge of the impact of this virus on wheat health and yield.
Collapse
Affiliation(s)
- Monica Marra
- Institute for Sustainable Plant Protection, National Research Council, 10135 Turin, Italy
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Chiara D’Errico
- Institute for Sustainable Plant Protection, National Research Council, 10135 Turin, Italy
- European Laboratory for Non-Linear Spectroscopy, LENS, 50019 Sesto Fiorentino, Italy
| | - Cinzia Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
- Institute for Sustainable Plant Protection, National Research Council, 70126 Bari, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Elena Baldoni
- Institute of Agricultural Biology and Biotechnology, National Research Council, 20133 Milan, Italy
| | - Slavica Matic
- Institute for Sustainable Plant Protection, National Research Council, 10135 Turin, Italy
| | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection, National Research Council, 10135 Turin, Italy
| |
Collapse
|
4
|
Phusantisampan T, Yamkasem J, Tattiyapong P, Sriariyanun M, Surachetpong W. Specific and rapid detection of tilapia parvovirus using loop-mediated isothermal amplification (LAMP) method. JOURNAL OF FISH DISEASES 2022; 45:1893-1898. [PMID: 36048556 DOI: 10.1111/jfd.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Theerawut Phusantisampan
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
- Microbial Informatics and Industrial Product of Microbe Research Center, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Jidapa Yamkasem
- Graduate Program in Animal Health and Biomedical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Puntanat Tattiyapong
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate school, Kasetsart University, Bangkok, Thailand
| | - Malinee Sriariyanun
- Department of Chemical and Process Engineering, Biorefinery and Process Automation Engineering Center, The Sirindhorn Thai-German International Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Win Surachetpong
- Graduate Program in Animal Health and Biomedical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Department of Veterinary Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Interdisciplinary Program in Genetic Engineering and Bioinformatics, Graduate school, Kasetsart University, Bangkok, Thailand
| |
Collapse
|