6
|
Peterson SM, Turner JE, Harrington A, Davis-Knowlton J, Lindner V, Gridley T, Vary CPH, Liaw L. Notch2 and Proteomic Signatures in Mouse Neointimal Lesion Formation. Arterioscler Thromb Vasc Biol 2018; 38:1576-1593. [PMID: 29853569 PMCID: PMC6023756 DOI: 10.1161/atvbaha.118.311092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/16/2018] [Indexed: 12/29/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Vascular remodeling is associated with complex molecular changes, including increased Notch2, which promotes quiescence in human smooth muscle cells. We used unbiased protein profiling to understand molecular signatures related to neointimal lesion formation in the presence or absence of Notch2 and to test the hypothesis that loss of Notch2 would increase neointimal lesion formation because of a hyperproliferative injury response. Approach and Results— Murine carotid arteries isolated at 6 or 14 days after ligation injury were analyzed by mass spectrometry using a data-independent acquisition strategy in comparison to uninjured or sham injured arteries. We used a tamoxifen-inducible, cell-specific Cre recombinase strain to delete the Notch2 gene in smooth muscle cells. Vessel morphometric analysis and immunohistochemical staining were used to characterize lesion formation, assess vascular smooth muscle cell proliferation, and validate proteomic findings. Loss of Notch2 in smooth muscle cells leads to protein profile changes in the vessel wall during remodeling but does not alter overall lesion morphology or cell proliferation. Loss of smooth muscle Notch2 also decreases the expression of enhancer of rudimentary homolog, plectin, and annexin A2 in vascular remodeling. Conclusions— We identified unique protein signatures that represent temporal changes in the vessel wall during neointimal lesion formation in the presence and absence of Notch2. Overall lesion formation was not affected with loss of smooth muscle Notch2, suggesting compensatory pathways. We also validated the regulation of known injury- or Notch-related targets identified in other vascular contexts, providing additional insight into conserved pathways involved in vascular remodeling.
Collapse
Affiliation(s)
- Sarah M Peterson
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.).,University of Maine Graduate School of Biomedical Science and Engineering, Orono (S.M.P., V.L., T.G., C.P.H.V., L.L.)
| | - Jacqueline E Turner
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Anne Harrington
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Jessica Davis-Knowlton
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.).,Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA (J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Volkhard Lindner
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.).,University of Maine Graduate School of Biomedical Science and Engineering, Orono (S.M.P., V.L., T.G., C.P.H.V., L.L.).,Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA (J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Thomas Gridley
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.).,University of Maine Graduate School of Biomedical Science and Engineering, Orono (S.M.P., V.L., T.G., C.P.H.V., L.L.).,Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA (J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Calvin P H Vary
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.).,University of Maine Graduate School of Biomedical Science and Engineering, Orono (S.M.P., V.L., T.G., C.P.H.V., L.L.).,Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA (J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| | - Lucy Liaw
- From the Maine Medical Center Research Institute, Scarborough (S.M.P., J.E.T., A.H., J.D.-K., V.L., T.G., C.P.H.V., L.L.) .,University of Maine Graduate School of Biomedical Science and Engineering, Orono (S.M.P., V.L., T.G., C.P.H.V., L.L.).,Tufts Sackler School of Graduate Biomedical Sciences, Boston, MA (J.D.-K., V.L., T.G., C.P.H.V., L.L.)
| |
Collapse
|
7
|
Kuwahara G, Hashimoto T, Tsuneki M, Yamamoto K, Assi R, Foster TR, Hanisch JJ, Bai H, Hu H, Protack CD, Hall MR, Schardt JS, Jay SM, Madri JA, Kodama S, Dardik A. CD44 Promotes Inflammation and Extracellular Matrix Production During Arteriovenous Fistula Maturation. Arterioscler Thromb Vasc Biol 2017; 37:1147-1156. [PMID: 28450292 DOI: 10.1161/atvbaha.117.309385] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Arteriovenous fistulae (AVF) remain the optimal conduit for hemodialysis access but continue to demonstrate poor patency and poor rates of maturation. We hypothesized that CD44, a widely expressed cellular adhesion molecule that serves as a major receptor for extracellular matrix components, promotes wall thickening and extracellular matrix deposition during AVF maturation. APPROACH AND RESULTS AVF were created via needle puncture in wild-type C57BL/6J and CD44 knockout mice. CD44 mRNA and protein expression was increased in wild-type AVF. CD44 knockout mice showed no increase in AVF wall thickness (8.9 versus 26.8 μm; P=0.0114), collagen density, and hyaluronic acid density, but similar elastin density when compared with control AVF. CD44 knockout mice also showed no increase in vascular cell adhesion molecule-1 expression, intercellular adhesion molecule-1 expression, and monocyte chemoattractant protein-1 expression in the AVF compared with controls; there were also no increased M2 macrophage markers (transglutaminase-2: 81.5-fold, P=0.0015; interleukin-10: 7.6-fold, P=0.0450) in CD44 knockout mice. Delivery of monocyte chemoattractant protein-1 to CD44 knockout mice rescued the phenotype with thicker AVF walls (27.2 versus 14.7 μm; P=0.0306), increased collagen density (2.4-fold; P=0.0432), and increased number of M2 macrophages (2.1-fold; P=0.0335). CONCLUSIONS CD44 promotes accumulation of M2 macrophages, extracellular matrix deposition, and wall thickening during AVF maturation. These data show the association of M2 macrophages with wall thickening during AVF maturation and suggest that enhancing CD44 activity may be a strategy to increase AVF maturation.
Collapse
Affiliation(s)
- Go Kuwahara
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Takuya Hashimoto
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Masayuki Tsuneki
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Kota Yamamoto
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Roland Assi
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Trenton R Foster
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Jesse J Hanisch
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Hualong Bai
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Haidi Hu
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Clinton D Protack
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Michael R Hall
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - John S Schardt
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Steven M Jay
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Joseph A Madri
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Shohta Kodama
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Alan Dardik
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.).
| |
Collapse
|