1
|
Yu Z, Xiao C, Liu R, Pi D, Jin B, Zou Z, Xu F. The protective effect of apolipoprotein H in paediatric sepsis. Crit Care 2024; 28:36. [PMID: 38291524 PMCID: PMC10826270 DOI: 10.1186/s13054-024-04809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Sepsis is a severe condition characterized by acute organ dysfunction resulting from an imbalanced host immune response to infections. Apolipoprotein H (APOH) is a critical plasma protein that plays a crucial role in regulating various biological processes. However, the precise role of APOH in the immunopathology of paediatric sepsis remains unclear. METHODS In this study, we evaluated the concentration of APOH in paediatric patients with sepsis and healthy individuals. In an experimental sepsis model of caecal ligation and puncture (CLP), the impact of APOH on survival, organ injury, and inflammation was measured. Furthermore, the anti-inflammatory effects of APOH were investigated across diverse immune cell types, encompassing peripheral blood mononuclear cells (PBMCs), peritoneal macrophages (PMs), bone marrow-derived macrophages (BMDMs), and RAW 264.7 macrophages. RESULTS In the pilot cohort, the relative abundance of APOH was found to be decreased in patients with sepsis (2.94 ± 0.61) compared to healthy controls (1.13 ± 0.84) (p < 0.001), non-survivors had lower levels of APOH (0.50 ± 0.37) compared to survivors (1.45 ± 0.83) (p < 0.05). In the validation cohort, the serum concentration of APOH was significantly decreased in patients with sepsis (202.0 ± 22.5 ng/ml) compared to healthy controls (409.5 ± 182.9 ng/ml) (p < 0.0001). The application of recombinant APOH protein as a therapeutic intervention significantly lowered the mortality rate, mitigated organ injury, and suppressed inflammation in mice with severe sepsis. In contrast, neutralizing APOH with an anti-APOH monoclonal antibody increased the mortality rate, exacerbated organ injury, and intensified inflammation in mice with non-severe sepsis. Intriguingly, APOH exhibited minimal effects on the bacterial burden, neutrophil, and macrophage counts in the sepsis mouse model, along with negligible effects on bacterial phagocytosis and killing during Pseudomonas aeruginosa infection in PMs, RAW 264.7 cells, and PBMCs. Mechanistic investigations in PMs and RAW 264.7 cells revealed that APOH inhibited M1 polarization in macrophages by suppressing toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signalling pathway. CONCLUSION This proof-of-concept study demonstrated that APOH has a protective role in the host defense response to sepsis, highlighting the potential therapeutic value of APOH in sepsis treatment.
Collapse
Affiliation(s)
- Zhicai Yu
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Changxue Xiao
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Rong Liu
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Dandan Pi
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Bian Jin
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Feng Xu
- Department of Critical Care Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China.
- Department of Pediatric Intensive Care Unit, Children's Hospital Affiliated to Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
2
|
Moreno-Gonzalez MA, Ortega-Rivera OA, Steinmetz NF. Two decades of vaccine development against atherosclerosis. NANO TODAY 2023; 50:101822. [PMID: 37860053 PMCID: PMC10586238 DOI: 10.1016/j.nantod.2023.101822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Atherosclerosis is an immune-mediated chronic inflammatory disease that leads to the development of fatty plaques in the arterial walls, ultimately increasing the risk of thrombosis, stroke, and myocardial infarction. The immune response in this complex disease is both atheroprotective and pro-atherogenic, involving both innate and adaptive immunity. Current treatments include the adjustment of lifestyle factors, cholesterol-lowering drugs such as statins, and immunotherapy, whereas vaccine development has received comparatively little attention. In this review, we discuss the potential of antigen-specific vaccination as a preventative approach based on more than 20 years of research and innovation. Vaccination targets include proteins that are more abundant in atherosclerotic patients, such as oxidized low-density lipoprotein (LDL), apolipoprotein B-100, proprotein convertase subtilisin/kexin type-9 serine protease (PCSK9), cholesteryl ester transfer protein (CETP), and heat shock proteins HSP60 and HSP65. Immunization with such proteins or their peptide epitopes has been shown to induce T-cell activation, produce antigen-specific antibodies, reduce the size of atherosclerotic lesions, and/or reduce serum cholesterol levels. Vaccination against atherosclerosis therefore offers a new strategy to address the burden on healthcare systems caused by cardiovascular disease, the leading cause of death worldwide.
Collapse
Affiliation(s)
- Miguel A. Moreno-Gonzalez
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
| | - Oscar A. Ortega-Rivera
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
| | - Nicole F. Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
- Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92039, USA
- Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA 92039, USA
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92039, USA
- Department of Radiology, University of California-San Diego, La Jolla, CA 92039, USA
- Moores Cancer Center, University of California-San Diego, La Jolla, CA 92039, USA
| |
Collapse
|
3
|
Marchini T, Abogunloko T, Wolf D. Modulating Autoimmunity against LDL: Development of a Vaccine against Atherosclerosis. Hamostaseologie 2021; 41:447-457. [PMID: 34942658 PMCID: PMC8702296 DOI: 10.1055/a-1661-1908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractAtherosclerosis is a chronic inflammatory disease of the arterial wall that leads to the build-up of occluding atherosclerotic plaques. Its clinical sequelae, myocardial infarction and stroke, represent the most frequent causes of death worldwide. Atherosclerosis is a multifactorial pathology that involves traditional risk factors and chronic low-grade inflammation in the atherosclerotic plaque and systemically. This process is accompanied by a strong autoimmune response that involves autoreactive T cells in lymph nodes and atherosclerotic plaques, as well as autoantibodies that recognize low-density lipoprotein (LDL) and its main protein component apolipoprotein B (ApoB). In the past 60 years, numerous preclinical observations have suggested that immunomodulatory vaccination with LDL, ApoB, or its peptides has the potential to specifically dampen autoimmunity, enhance tolerance to atherosclerosis-specific antigens, and protect from experimental atherosclerosis in mouse models. Here, we summarize and discuss mechanisms, challenges, and therapeutic opportunities of immunomodulatory vaccination and other strategies to enhance protective immunity in atherosclerosis.
Collapse
Affiliation(s)
- Timoteo Marchini
- Cardiology and Angiology I, University Heart Center and Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Germany
| | - Tijani Abogunloko
- Cardiology and Angiology I, University Heart Center and Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Germany
| | - Dennis Wolf
- Cardiology and Angiology I, University Heart Center and Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Marchini T, Hansen S, Wolf D. ApoB-Specific CD4 + T Cells in Mouse and Human Atherosclerosis. Cells 2021; 10:446. [PMID: 33669769 PMCID: PMC7922692 DOI: 10.3390/cells10020446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory condition of the arterial wall that leads to the formation of vessel-occluding plaques within the subintimal space of middle-sized and larger arteries. While traditionally understood as a myeloid-driven lipid-storage disease, growing evidence suggests that the accumulation of low-density lipoprotein cholesterol (LDL-C) ignites an autoimmune response with CD4+ T-helper (TH) cells that recognize self-peptides from Apolipoprotein B (ApoB), the core protein of LDL-C. These autoreactive CD4+ T cells home to the atherosclerotic plaque, clonally expand, instruct other cells in the plaque, and induce clinical plaque instability. Recent developments in detecting antigen-specific cells at the single cell level have demonstrated that ApoB-reactive CD4+ T cells exist in humans and mice. Their phenotypes and functions deviate from classical immunological concepts of distinct and terminally differentiated TH immunity. Instead, ApoB-specific CD4+ T cells have a highly plastic phenotype, can acquire several, partially opposing and mixed transcriptional programs simultaneously, and transit from one TH subset into another over time. In this review, we highlight adaptive immune mechanisms in atherosclerosis with a focus on CD4+ T cells, introduce novel technologies to detect ApoB-specific CD4+ T cells at the single cell level, and discuss the potential impact of ApoB-driven autoimmunity in atherosclerosis.
Collapse
Affiliation(s)
- Timoteo Marchini
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetterstraße 55, 79106 Freiburg, Germany; (T.M.); (S.H.)
- Faculty of Medicine, University of Freiburg, Breisacherstraße 153, 79110 Freiburg, Germany
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Junín 954, C1113 AAD Buenos Aires, Argentina
| | - Sophie Hansen
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetterstraße 55, 79106 Freiburg, Germany; (T.M.); (S.H.)
- Faculty of Medicine, University of Freiburg, Breisacherstraße 153, 79110 Freiburg, Germany
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetterstraße 55, 79106 Freiburg, Germany; (T.M.); (S.H.)
- Faculty of Medicine, University of Freiburg, Breisacherstraße 153, 79110 Freiburg, Germany
| |
Collapse
|
5
|
Guerrero-Beltrán CE, Mijares-Rojas IA, Salgado-Garza G, Garay-Gutiérrez NF, Carrión-Chavarría B. Peptidic vaccines: The new cure for heart diseases? Pharmacol Res 2020; 164:105372. [PMID: 33316382 DOI: 10.1016/j.phrs.2020.105372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/12/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease continues to be the most common cause of death worldwide. The global burden is so high that numerous organizations are providing counseling recommendations and annual revisions of current pharmacological and non-pharmacological treatments as well as risk prediction for disease prevention and further progression. Although primary preventive interventions targeting risk factors such as obesity, hypertension, smoking, and sedentarism have led to a global decline in hospitalization rates, the aging population has overwhelmed these efforts on a global scale. This review focuses on peptidic vaccines, with the known and not well-known autoantigens in atheroma formation or acquired cardiac diseases, as novel potential immunotherapy approaches to counteract harmful heart disease continuance. We summarize how cancer immunomodulatory strategies started novel approaches to modulate the innate and adaptive immune responses, and how they can be targeted for therapeutic purposes in the cardiovascular system. Brief descriptions focused on the processes that start as either immunologic or non-immunologic, and the ultimate loss of cardiac muscle cell contractility as the outcome, are discussed. We conclude debating how novel strategies with nanoparticles and nanovaccines open a promising therapeutic option to reduce or prevent cardiovascular diseases.
Collapse
Affiliation(s)
- Carlos Enrique Guerrero-Beltrán
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico; Tecnologico de Monterrey, Hospital Zambrano Hellion, TecSalud, Centro de Investigación Biomédica, San Pedro Garza García, N.L., Mexico.
| | - Iván Alfredo Mijares-Rojas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico
| | - Gustavo Salgado-Garza
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico
| | - Noé Francisco Garay-Gutiérrez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico
| | - Belinda Carrión-Chavarría
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Monterrey, N.L., Mexico
| |
Collapse
|
6
|
Bleda S, de Haro J, Sánchez I, Laime I, Acin F. Effect of clopidogrel vs. aspirin on pro-atherosclerotic NLRP1 inflammasome expression in endothelial cells. ECLOAS study. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2020; 32:193-199. [PMID: 32736893 DOI: 10.1016/j.arteri.2020.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/07/2020] [Accepted: 03/17/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION AND OBJECTIVES NRP1 inflammasome is crucial in endothelial dysfunction. Platelets are mandatory for the inflammation that precedes it. Aspirin could inhibit NLRP1 inflammasome in endothelial cells, and clopidogrel could also provoke a reduction in vascular inflammation. A study was carried out on the influence of platelet inflammatory inhibition by P2Y receptor inhibition versus COX enzyme inhibition on the transcription of NLRP1 inflammasome in endothelial cells. METHODS An open-label, prospective, randomised crossover study with two periods of platelet inhibition enrolled 20 healthy volunteers. They received clopidogrel 75mg/day/7days and aspirin 100mg/day/7days. A venous blood sample was collected from all participants before and after this period. Human aortic endothelial cells (HAECs) were exposed for 2h in cultures. NLRP1 gene expression was then analysed in these cultures. RESULTS HAEC cultures that were exposed to baseline plasma showed higher expression of NLRP1 than HAECs exposed to plasma after one week of aspirin or clopidogrel intake [relative quantification (RQ), 1.077±0.05 vs. 1.002±0.06; OR, 1.8; 95% CI, 1.1-2.9; P<.01 and 1.077±0.05 vs. 1.04±0.03; OR, 1.7; 95% CI, 1.2-2.6; P<.001, respectively]. NLRP1 expression in HAEC cultures exposed to plasma after one week of aspirin or clopidogrel was similar to that observed in control HAECs that was no exposed to human plasma (PBS) [RQ; 1.002±0.06 vs. 1.009±0.03; OR, 0.9; 95% CI, 0.5-1.4; P=.7, and 1.04±0.03 vs. 1.009±0.03; OR, 0.8; 95% CI, 0.3-1.2; P=.5, respectively]. No difference was observed in NLRP1 percentage reduction in HAEC after aspirin or clopidogrel exposure (3.8% vs. 2.8%, P=.3, respectively). CONCLUSIONS Platelet inhibition by P2Y pathway is similar to COX pathway in NLRP1 expression inhibition in HAECs.
Collapse
Affiliation(s)
- Silvia Bleda
- Servicio de Angiología y Cirugía Vascular, Hospital Universitario de Getafe, Madrid, España.
| | - Joaquin de Haro
- Servicio de Angiología y Cirugía Vascular, Hospital Universitario de Getafe, Madrid, España
| | - Isabel Sánchez
- Departamento de Investigación, Fundación para la investigación biomédica del Hospital Universitario de Getafe, Madrid, España
| | - Ilsem Laime
- Servicio de Angiología y Cirugía Vascular, Hospital Universitario de Getafe, Madrid, España
| | - Francisco Acin
- Servicio de Angiología y Cirugía Vascular, Hospital Universitario de Getafe, Madrid, España
| |
Collapse
|
7
|
Amirfakhryan H. Vaccination against atherosclerosis: An overview. Hellenic J Cardiol 2020; 61:78-91. [DOI: 10.1016/j.hjc.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
|
8
|
Grönberg C, Nilsson J, Wigren M. Recent advances on CD4 + T cells in atherosclerosis and its implications for therapy. Eur J Pharmacol 2017; 816:58-66. [PMID: 28457923 DOI: 10.1016/j.ejphar.2017.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/13/2017] [Accepted: 04/20/2017] [Indexed: 12/19/2022]
Abstract
Atherosclerosis is an arterial inflammatory disease and the primary cause of cardiovascular disease. T helper (Th) cells are an important part in atherosclerotic plaque as they can be either disease promoting or protective. A body of evidence points to a pro-atherosclerotic role of Th1 cells, whereas the role of Th2, Th17 and iNKT cells seems more complex and dependent on surrounding factors, including the developmental stage of the disease. Opposed to Th1 cells, there is convincing support for an anti-atherogenic role of Tregs. Recent data identify the plasticity of Th cells as an important challenge in understanding the functional role of different Th cell subsets in atherosclerosis. Much of the knowledge of Th cell function in atherosclerosis is based on findings from experimental models and translating this into human disease is challenging. Targeting Th cells and/or their specific cytokines represents an attractive option for future therapy against atherosclerosis, although the benefits and the risk of modulation of Th cells with these novel drug targets must first be carefully assessed.
Collapse
Affiliation(s)
| | - Jan Nilsson
- Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Maria Wigren
- Department of Clinical Sciences Malmö, Lund University, Sweden.
| |
Collapse
|
9
|
Chyu KY, Dimayuga PC, Shah PK. Vaccine against arteriosclerosis: an update. THERAPEUTIC ADVANCES IN VACCINES 2017; 5:39-47. [PMID: 28515939 DOI: 10.1177/2051013617693753] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 01/18/2017] [Indexed: 12/13/2022]
Abstract
Substantial data from experimental and clinical investigation support the role of immune-mediated mechanisms in atherogenesis, with immune systems responding to many endogenous and exogenous antigens that play either proatherogenic or atheroprotective roles. An active immunization strategy against many of these antigens could potentially alter the natural history of atherosclerosis. This review mainly focuses on the important studies on the search for antigens that have been tested in vaccine formulations to reduce atherosclerosis in preclinical models. It will also address the opportunities and challenges associated with potential clinical application of this novel therapeutic paradigm.
Collapse
Affiliation(s)
- Kuang-Yuh Chyu
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul C Dimayuga
- Oppenheimer Atherosclerosis Research Center, Division of Cardiology, Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Prediman K Shah
- Cedars-Sinai Medical Center, 127 South San Vicente Blvd., Suite A-3307, Los Angeles, CA 90048, USA
| |
Collapse
|
10
|
Verma SK, Garikipati VNS, Krishnamurthy P, Khan M, Thorne T, Qin G, Losordo DW, Kishore R. IL-10 Accelerates Re-Endothelialization and Inhibits Post-Injury Intimal Hyperplasia following Carotid Artery Denudation. PLoS One 2016; 11:e0147615. [PMID: 26808574 PMCID: PMC4725953 DOI: 10.1371/journal.pone.0147615] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/06/2016] [Indexed: 12/13/2022] Open
Abstract
The role of inflammation on atherosclerosis and restenosis is well established. Restenosis is thought to be a complex response to injury, which includes early thrombus formation, acute inflammation and neo-intimal growth. Inflammatory cells are likely contributors in the host response to vascular injury, via cytokines and chemokines secretion, including TNF-alpha (TNF). We have previously shown that IL-10 inhibits TNF and other inflammatory mediators produced in response to cardiovascular injuries. The specific effect of IL-10 on endothelial cell (ECs) biology is not well elucidated. Here we report that in a mouse model of carotid denudation, IL-10 knock-out mice (IL-10KO) displayed significantly delayed Re-endothelialization and enhanced neo-intimal growth compared to their WT counterparts. Exogenous recombinant IL-10 treatment dramatically blunted the neo-intimal thickening while significantly accelerating the recovery of the injured endothelium in WT mice. In vitro, IL-10 inhibited negative effects of TNF on ECs proliferation, ECs cell cycle, ECs-monocyte adhesion and ECs apoptosis. Furthermore, IL-10 treatment attenuated TNF-induced smooth muscle cells proliferation. Our data suggest that IL-10 differentially regulate endothelial and vascular smooth cells proliferation and function and thus inhibits neo-intimal hyperplasia. Thus, these results may provide insights necessary to develop new therapeutic strategies to limit vascular restenosis during percutaneous coronary intervention (PCI) in the clinics.
Collapse
Affiliation(s)
- Suresh K Verma
- Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania United States of America
| | | | - Prasanna Krishnamurthy
- Department of Cardiovascular Science, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Mohsin Khan
- Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania United States of America
| | - Tina Thorne
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Gangjian Qin
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Douglas W Losordo
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Raj Kishore
- Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania United States of America.,Department of Pharmacology, Temple University, Philadelphia, Pennsylvania United States of America
| |
Collapse
|
11
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the artery wall. Adaptive immunity plays a key role in the pathogenesis of atherosclerosis. Recently, modulation of the immune response against atherosclerotic plaque antigen(s) has attracted attention as a potentially preventive and therapeutic approach. Here, we review a series of studies on immunization with various antigens targeting treatment and prevention of atherosclerosis. Atherosclerosis-related antigens include oxidized low-density lipoprotein (LDL), apolipoprotein B-100 (ApoB-100) and heat shock protein (HSP) 60/65. Accumulating evidence supports the idea that immunization with these antigenic proteins or peptides may reduce atherosclerosis. In this review, we discuss the current status of immunization studies and possible associated mechanisms of atheroprotection.
Collapse
|