1
|
Jiang Y, Jia P, Feng X, Zhang D. Marfan syndrome: insights from animal models. Front Genet 2025; 15:1463318. [PMID: 39834548 PMCID: PMC11743488 DOI: 10.3389/fgene.2024.1463318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Marfan syndrome (MFS) is an inherited disorder that affects the connective tissues and mainly presents in the bones, eyes, and cardiovascular system, etc. Aortic pathology is the leading cause of death in patients with Marfan syndrome. The fibrillin-1 gene (FBN1) is a major gene involved in the pathogenesis of MFS. It has been shown that the aortic pathogenesis of MFS is associated with the imbalances of the transforming growth factor-beta (TGF-β) signaling pathway. However, the exact molecular mechanism of MFS is unclear. Animal models may partially mimic MFS and are vital to the study of MFS. Several species of animals have been used for MFS studies, including chicks, cattle, mice, pigs, zebrafishes, Caenorhabditis elegans, and rabbits. These models were developed spontaneously or in combination with genetic engineering techniques. This review is to describe the TGF-β signaling pathway in MFS and the potential application of animal models to provide new therapeutic strategies for patients with MFS.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Marfan Research Group, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Jia
- Department of Neurosurgery Nursing, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoying Feng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Vecoli C, Foffa I, Vittorini S, Botto N, Esposito A, Costa S, Piagneri V, Festa P, Ait-Ali L. A novel TGFβR2 splice variant in patient with aortic aneurysm and family history for aortic dissection: a case report. Per Med 2024; 21:139-144. [PMID: 38634413 DOI: 10.2217/pme-2023-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
We report the clinical presentation and genetic screening of a 31-year-old man with dilatation of the aortic root and ascending aorta and a positive family history for aortic dissection and sudden death. A novel heterozygous variant in a splice acceptor site (c.1600-1G>T) of TGFβR2 gene was identified by using a targeted multi-gene panel analysis. Bioinformatics tools predicted that the c.1600-1G>T variant is pathogenic by altering acceptor splice site at - 1 position affecting pre-mRNA splicing. These data confirm that the diverging splicing in the TGF-β pathway genes may be an important process in aneurismal disease and emphasize the utility of genetic sequencing in the identification of high-risk patients for a more patient's management able to improve outcomes and minimize costs for the care of patients with heritable thoracic aortic aneurysm and dissection.
Collapse
Affiliation(s)
- Cecilia Vecoli
- Institute of Clinical Physiology, CNR, Massa, Italy
- Ospedale del Cuore, Fondazione Toscana "G. Monasterio", Massa, Italy
| | - Ilenia Foffa
- Institute of Clinical Physiology, CNR, Massa, Italy
- Ospedale del Cuore, Fondazione Toscana "G. Monasterio", Massa, Italy
| | - Simona Vittorini
- Ospedale del Cuore, Fondazione Toscana "G. Monasterio", Massa, Italy
| | - Nicoletta Botto
- Ospedale del Cuore, Fondazione Toscana "G. Monasterio", Massa, Italy
| | - Augusto Esposito
- Ospedale del Cuore, Fondazione Toscana "G. Monasterio", Massa, Italy
| | - Sabrina Costa
- Ospedale del Cuore, Fondazione Toscana "G. Monasterio", Massa, Italy
| | - Valeria Piagneri
- Ospedale del Cuore, Fondazione Toscana "G. Monasterio", Massa, Italy
| | - Pierluigi Festa
- Ospedale del Cuore, Fondazione Toscana "G. Monasterio", Massa, Italy
| | - Lamia Ait-Ali
- Institute of Clinical Physiology, CNR, Massa, Italy
- Ospedale del Cuore, Fondazione Toscana "G. Monasterio", Massa, Italy
| |
Collapse
|
3
|
Domagała D, Data K, Szyller H, Farzaneh M, Mozdziak P, Woźniak S, Zabel M, Dzięgiel P, Kempisty B. Cellular, Molecular and Clinical Aspects of Aortic Aneurysm-Vascular Physiology and Pathophysiology. Cells 2024; 13:274. [PMID: 38334666 PMCID: PMC10854611 DOI: 10.3390/cells13030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
A disturbance of the structure of the aortic wall results in the formation of aortic aneurysm, which is characterized by a significant bulge on the vessel surface that may have consequences, such as distention and finally rupture. Abdominal aortic aneurysm (AAA) is a major pathological condition because it affects approximately 8% of elderly men and 1.5% of elderly women. The pathogenesis of AAA involves multiple interlocking mechanisms, including inflammation, immune cell activation, protein degradation and cellular malalignments. The expression of inflammatory factors, such as cytokines and chemokines, induce the infiltration of inflammatory cells into the wall of the aorta, including macrophages, natural killer cells (NK cells) and T and B lymphocytes. Protein degradation occurs with a high expression not only of matrix metalloproteinases (MMPs) but also of neutrophil gelatinase-associated lipocalin (NGAL), interferon gamma (IFN-γ) and chymases. The loss of extracellular matrix (ECM) due to cell apoptosis and phenotype switching reduces tissue density and may contribute to AAA. It is important to consider the key mechanisms of initiating and promoting AAA to achieve better preventative and therapeutic outcomes.
Collapse
Affiliation(s)
- Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Hubert Szyller
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Institute of Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
4
|
Alaamery M, Albesher N, Alhabshan F, Barnett P, Salim Kabbani M, Chaikhouni F, Ilgun A, Mook ORF, Alsaif H, Christoffels VM, van Tintelen P, Wilde AAM, Houweling AC, Massadeh S, Postma AV. TGFBR1 Variants Can Associate with Non-Syndromic Congenital Heart Disease without Aortopathy. J Cardiovasc Dev Dis 2023; 10:455. [PMID: 37998513 PMCID: PMC10672196 DOI: 10.3390/jcdd10110455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Congenital heart diseases (CHD) are the most common congenital malformations in newborns and remain the leading cause of mortality among infants under one year old. Molecular diagnosis is crucial to evaluate the recurrence risk and to address future prenatal diagnosis. Here, we describe two families with various forms of inherited non-syndromic CHD and the genetic work-up and resultant findings. METHODS Next-generation sequencing (NGS) was employed in both families to uncover the genetic cause. In addition, we performed functional analysis to investigate the consequences of the identified variants in vitro. RESULTS NGS identified possible causative variants in both families in the protein kinase domain of the TGFBR1 gene. These variants occurred on the same amino acid, but resulted in differently substituted amino acids (p.R398C/p.R398H). Both variants co-segregate with the disease, are extremely rare or unique, and occur in an evolutionary highly conserved domain of the protein. Furthermore, both variants demonstrated a significantly altered TGFBR1-smad signaling activity. Clinical investigation revealed that none of the carriers had (signs of) aortopathy. CONCLUSION In conclusion, we describe two families, with various forms of inherited non-syndromic CHD without aortopathies, associated with unique/rare variants in TGFBR1 that display altered TGF-beta signaling. These findings highlight involvement of TGFBR1 in CHD, and warrant consideration of potential causative TGFBR1 variants also in CHD patients without aortopathies.
Collapse
Affiliation(s)
- Manal Alaamery
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard—Health Affairs, Riyadh 11481, Saudi Arabia
- Saudi Genome Program, National Centre for Genomic Technologies, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centres of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Nour Albesher
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centres of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad Alhabshan
- Department of Cardiac Sciences, Ministry of the National Guard—Health Affairs, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Phil Barnett
- Department of Medical Biology, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (P.B.); (A.I.)
| | - Mohamed Salim Kabbani
- Department of Cardiac Sciences, Ministry of the National Guard—Health Affairs, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Farah Chaikhouni
- Department of Cardiac Sciences, Ministry of the National Guard—Health Affairs, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
| | - Aho Ilgun
- Department of Medical Biology, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (P.B.); (A.I.)
| | - Olaf R. F. Mook
- Department of Human Genetics, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (O.R.F.M.); (A.C.H.)
| | - Hessa Alsaif
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centres of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (P.B.); (A.I.)
| | - Peter van Tintelen
- Department of Genetics, University Medical Center Utrecht, Utrecht University, 3584 CS Utrecht, The Netherlands;
| | - Arthur A. M. Wilde
- Department of Cardiology, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands;
| | - Arjan C. Houweling
- Department of Human Genetics, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (O.R.F.M.); (A.C.H.)
| | - Salam Massadeh
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard—Health Affairs, Riyadh 11481, Saudi Arabia
- Saudi Genome Program, National Centre for Genomic Technologies, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
- KACST-BWH Centre of Excellence for Biomedicine, Joint Centres of Excellence Program, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Alex V. Postma
- Department of Medical Biology, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (P.B.); (A.I.)
- Department of Human Genetics, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (O.R.F.M.); (A.C.H.)
| |
Collapse
|
5
|
杨 书, 罗 芳. [Latest advances in the diagnosis and treatment of Marfan syndrome]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2022; 24:826-831. [PMID: 35894201 PMCID: PMC9336618 DOI: 10.7499/j.issn.1008-8830.2203099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Marfan syndrome (MFS) is a multisystem connective tissue disease with autosomal dominant inheritance. It is mainly caused by FBN1 gene mutation and often has different clinical manifestations. Neonatal MFS is especially rare with severe conditions and a poor prognosis. At present, there is still no radical treatment method for MFS, but early identification, early diagnosis, and early treatment can effectively prolong the life span of patients. This article reviews the latest advances in the diagnosis and treatment of MFS.
Collapse
|
6
|
Domingo-Relloso A, Makhani K, Riffo-Campos AL, Tellez-Plaza M, Klein KO, Subedi P, Zhao J, Moon KA, Bozack AK, Haack K, Goessler W, Umans JG, Best LG, Zhang Y, Herreros-Martinez M, Glabonjat RA, Schilling K, Galvez-Fernandez M, Kent JW, Sanchez TR, Taylor KD, Craig Johnson W, Durda P, Tracy RP, Rotter JI, Rich SS, Berg DVD, Kasela S, Lappalainen T, Vasan RS, Joehanes R, Howard BV, Levy D, Lohman K, Liu Y, Daniele Fallin M, Cole SA, Mann KK, Navas-Acien A. Arsenic Exposure, Blood DNA Methylation, and Cardiovascular Disease. Circ Res 2022; 131:e51-e69. [PMID: 35658476 PMCID: PMC10203287 DOI: 10.1161/circresaha.122.320991] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/18/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Epigenetic dysregulation has been proposed as a key mechanism for arsenic-related cardiovascular disease (CVD). We evaluated differentially methylated positions (DMPs) as potential mediators on the association between arsenic and CVD. METHODS Blood DNA methylation was measured in 2321 participants (mean age 56.2, 58.6% women) of the Strong Heart Study, a prospective cohort of American Indians. Urinary arsenic species were measured using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. We identified DMPs that are potential mediators between arsenic and CVD. In a cross-species analysis, we compared those DMPs with differential liver DNA methylation following early-life arsenic exposure in the apoE knockout (apoE-/-) mouse model of atherosclerosis. RESULTS A total of 20 and 13 DMPs were potential mediators for CVD incidence and mortality, respectively, several of them annotated to genes related to diabetes. Eleven of these DMPs were similarly associated with incident CVD in 3 diverse prospective cohorts (Framingham Heart Study, Women's Health Initiative, and Multi-Ethnic Study of Atherosclerosis). In the mouse model, differentially methylated regions in 20 of those genes and DMPs in 10 genes were associated with arsenic. CONCLUSIONS Differential DNA methylation might be part of the biological link between arsenic and CVD. The gene functions suggest that diabetes might represent a relevant mechanism for arsenic-related cardiovascular risk in populations with a high burden of diabetes.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
- Department of Statistics and Operations Research, University of Valencia, Spain
| | - Kiran Makhani
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Angela L. Riffo-Campos
- Millennium Nucleus on Sociomedicine (SocioMed) and Vicerrectoría Académica, Universidad de La Frontera, Temuco, Chile
- Department of Computer Science, ETSE, University of Valencia, Valencia, Spain
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Kathleen Oros Klein
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Pooja Subedi
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Katherine A. Moon
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anne K. Bozack
- Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley, USA
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry for Health and Environment, University of Graz, Austria
| | | | - Lyle G. Best
- Missouri Breaks Industries and Research Inc., Eagle Butte, SD, USA
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, OK, USA
| | | | - Ronald A. Glabonjat
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Kathrin Schilling
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Marta Galvez-Fernandez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Jack W. Kent
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Peter Durda
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Russell P. Tracy
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - David Van Den Berg
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Silva Kasela
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Ramachandran S Vasan
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, MA; Sections of Preventive Medicine and Epidemiology and Cardiovascular Medicine, Department of Medicine, department of Epidemiology, Boston University Schools of medicine and Public health, Boston, MA, USA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Framingham Heart Study, Framingham, MA
| | | | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Framingham Heart Study, Framingham, MA
| | - Kurt Lohman
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Yongmei Liu
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - M Daniele Fallin
- Departments of Mental Health and Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Shelley A. Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Koren K. Mann
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
7
|
Multiple Arterial Dissections and Connective Tissue Abnormalities. J Clin Med 2022; 11:jcm11123264. [PMID: 35743335 PMCID: PMC9224905 DOI: 10.3390/jcm11123264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Although patients with multiple arterial dissections in distinct arterial regions rarely present with known connective tissue syndromes, we hypothesized that mild connective tissue abnormalities are common findings in these patients. Methods: From a consecutive register of 322 patients with cervical artery dissection (CeAD), we identified and analyzed 4 patients with a history of additional dissections in other vascular beds. In three patients, dermal connective tissue was examined by electron microscopy. DNA from all four patients was studied by whole-exome sequencing and copy number variation (CNV) analysis. Results: The collagen fibers of dermal biopsies were pathologic in all three analyzed patients. One patient carried a CNV disrupting the COL3A1 and COL5A2 genes (vascular or hypermobility type of Ehlers–Danlos syndrome), and another patient a CNV in MYH11 (familial thoracic aortic aneurysms and dissections). The third patient carried a missense substitution in COL5A2. Conclusion: Three patients showed morphologic alterations of the dermal connective tissue, and two patients carried pathogenic variants in genes associated with arterial connective tissue dysfunction. The findings suggest that genetic testing should be recommended after recurrent arterial dissections, independently of apparent phenotypical signs of connective tissue disorders.
Collapse
|
8
|
Zhu G, Luo M, Chen Q, Zhang Y, Zhao K, Zhang Y, Shu C, Yang H, Zhou Z. Novel LTBP3 mutations associated with thoracic aortic aneurysms and dissections. Orphanet J Rare Dis 2021; 16:513. [PMID: 34906192 PMCID: PMC8670144 DOI: 10.1186/s13023-021-02143-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Thoracic aortic aneurysm and dissection (TAAD) is a hidden-onset but life-threatening disorder with high clinical variability and genetic heterogeneity. In recent years, an increasing number of genes have been identified to be related to TAAD. However, some genes remain uncertain because of limited case reports and/or functional studies. LTBP3 was such an ambiguous gene that was previously known for dental and skeletal dysplasia and then noted to be associated with TAAD. More research on individuals or families harboring variants in this gene would be helpful to obtain full knowledge of the disease and clarify its association with TAAD. METHODS A total of 266 TAAD probands with no causative mutations in known genes had been performed wholeexome sequencing (WES) to identify potentially pathogenic variants. In this study, rare LTBP3 variants were the focus of analysis. RESULTS Two compound heterozygous mutations, c.625dup (p.Leu209fs) and c.1965del (p.Arg656fs), in LTBP3 were identified in a TAAD patient along with short stature and dental problems, which was the first TAAD case with biallelic LTBP3 null mutations in an Asian population. Additionally, several rare heterozygous LTBP3 variants were also detected in other sporadic TAAD patients. CONCLUSION The identification of LTBP3 mutations in TAAD patients in our study provided more clinical evidence to support its association with TAAD, which broadens the gene spectrum of LTBP3. LTBP3 should be considered to be incorporated into the routine genetic analysis of heritable aortopathy, which might help to fully understand its phenotypic spectrum and improve the diagnostic rate of TAAD.
Collapse
Affiliation(s)
- Guoyan Zhu
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Qianlong Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yinhui Zhang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Kun Zhao
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yujing Zhang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Chang Shu
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hang Yang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
9
|
Association of gene polymorphisms in MYH11 and TGF-β signaling with the susceptibility and clinical outcomes of DeBakey type III aortic dissection. Mamm Genome 2021; 33:555-563. [PMID: 34729648 DOI: 10.1007/s00335-021-09929-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/19/2021] [Indexed: 01/10/2023]
Abstract
To investigate the association of myosin heavy chain protein 11 (MYH11) and transforming growth factor β signaling-related gene polymorphisms with the susceptibility of DeBakey type III aortic dissection (AD) and its clinical outcomes. Four single-nucleotide polymorphism (SNPs) (MYH11 rs115364997, rs117593370, TGFB1 rs1800469, and TGFBR1 rs1626340) were analyzed in patients with DeBakey III AD (173) and healthy participants (335). Gene-gene and gene-environment interactions were evaluated using generalized multifactor dimensionality reduction. The patients were followed up for a median of 55.7 months. MYH11 rs115364997 G or TGFBR1 rs1626340 A carriers had an increased risk of DeBakey type III AD. MYH11, TGFB1, TGFBR1, and environment interactions contributed to the risk of DeBakey type III AD (cross-validation consistency = 10/10, P = 0.001). Dominant models of MYH11 rs115364997 AG + GG genotype (HR = 2.443; 95%CI: 1.096-5.445, P = 0.029), TGFB1 rs1800469 AG + GG (HR = 2.303; 95%CI: 1.069-4.96, P = 0.033) were associated with an increased risk of mortality in DeBakey type III AD. The dominant model of TGFB1 rs1800469 AG + GG genotype was associated with an increased risk of recurrence of chest pain in DeBakey type III AD (HR = 1.566; 95%CI: 1.018-2.378, P = 0.041). In conclusions, G carriers of MYH11 rs115364997 or TGFB1 rs1800469 may be the poor prognostic indicators of mortality and recurrent chest pain in DeBakey type III AD. The interactions of gene-gene and gene-environment are associated with the risk of DeBakey type III AD.
Collapse
|
10
|
Yin X, Hao J, Yao Y. CRISPR/Cas9 in zebrafish: An attractive model for FBN1 genetic defects in humans. Mol Genet Genomic Med 2021; 9:e1775. [PMID: 34324266 PMCID: PMC8580104 DOI: 10.1002/mgg3.1775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 12/27/2022] Open
Abstract
Background Mutations in the fibrillin‐1 gene (FBN1) are associated with various heritable connective tissue disorders (HCTD). The most studied HCTD is Marfan syndrome. Ninety percent of Marfan syndrome is caused by mutations in the FBN1 gene. The zebrafish share high genetic similarity to humans, representing an ideal model for genetic research of human diseases. This study aimed to generate and characterize fbn1+/− mutant zebrafish using the CRISPR/Cas9 gene‐editing technology. Methods CRISPR/Cas9 was applied to generate an fbn1 frameshift mutation (fbn1+/−) in zebrafish. F1 fbn1+/− heterozygotes were crossed with transgenic fluorescent zebrafish to obtain F2 fbn1+/− zebrafish. Morphological abnormalities were assessed in F2 fbn1+/− zebrafish by comparing with the Tuebingen (TU) wild‐type controls at different development stages. Results We successfully generated a transgenic line of fbn1+/− zebrafish. Compared with TU wild‐type zebrafish, F2 fbn1+/− zebrafish exhibited noticeably decreased pigmentation, increased lengths, slender body shape, and abnormal cardiac blood flow from atrium to ventricle. Conclusion We generated the first fbn1+/− zebrafish model using CRISPR/Cas9 gene‐editing approach to mimic FBN1 genetic defects in humans, providing an attractive model of Marfan syndrome and a method to determine the pathogenicity of gene mutation sites.
Collapse
Affiliation(s)
- Xiaoyun Yin
- Medical School of Chinese PLA, Beijing, China
| | - Jianxiu Hao
- Clinical Biobank Center, the Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
| | | |
Collapse
|
11
|
Liu L, He J, Lu X, Yuan Y, Jiang D, Xiao H, Lin S, Xu L, Chen Y. Association of Myopia and Genetic Variants of TGFB2-AS1 and TGFBR1 in the TGF-β Signaling Pathway: A Longitudinal Study in Chinese School-Aged Children. Front Cell Dev Biol 2021; 9:628182. [PMID: 33996791 PMCID: PMC8115727 DOI: 10.3389/fcell.2021.628182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Background Myopia is a complex multifactorial condition which involves several overlapping signaling pathways mediated by distinct genes. This prospective cohort study evaluated the associations of two genetic variants in the TGF-β signaling pathway with the onset and progression of myopia and ocular biometric parameters in Chinese school-aged children. Methods A total of 556 second grade children were examined and followed up for 3.5 years. Non-cycloplegic refraction and ocular biometric parameters were measured annually. Multivariate regression analysis was used to assess the effect of the TGFBR1 rs10760673 and TGFB2-AS1 rs7550232 variants on the occurrence and progression of myopia. A 10,000 permutations test was used to correct for multiple testing. Functional annotation of single nucleotide polymorphisms (SNPs) was performed using RegulomeDB, HaploReg, and rVarBase. Results A total of 448 children were included in the analysis. After adjustments for gender, age, near work time and outdoor time with 10,000 permutations, the results indicated that the C allele and the AC or CC genotypes of rs7550232 adjacent to TGFB2-AS1 were associated with a significantly increased risk of the onset of myopia in two genetic models (additive: P’ = 0.022; dominant: P’ = 0.025). Additionally, the A allele and the AA or AG genotypes of rs10760673 of TGFBR1 were associated with a significant myopic shift (additive: P’ = 0.008; dominant: P’ = 0.028; recessive: P’ = 0.027). Furthermore, rs10760673 was associated with an increase in axial length (AL) (P’ = 0.013, β = 0.03) and a change in the ratio of AL to the corneal radius of curvature (AL/CRC) (P’ = 0.031, β = 0.003). Analysis using RegulomeDB, HaploReg, and rVarBase indicated that rs7550232 is likely to affect transcription factor binding, any motif, DNase footprint, and DNase peak. Conclusion The present study indicated that rs10760673 and rs7550232 may represent susceptibility loci for the progression and onset of myopia, respectively, in school-aged children. Associations of the variants of the TGFBR1 and TGFB2-AS1 genes with myopia may be mediated by the TGF-β signaling pathway; this hypothesis requires validation in functional studies. This trial was registered as ChiCTR1900020584 at www.Chictr.org.cn.
Collapse
Affiliation(s)
- Linjie Liu
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Juan He
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Lu
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Yimin Yuan
- Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dandan Jiang
- Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haishao Xiao
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Shudan Lin
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Liangde Xu
- School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yanyan Chen
- Eye Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Liu X, Zhang Y. Bioinformatics Analysis of Dysregulated MicroRNA-Messenger RNA Networks in Small Cell Lung Cancer. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study aimed to identify a key module of differentially expressed miRNAs (DE-miRNAs) together with the corresponding differentially expressed mRNAs (DE-mRNAs) within small cell lung cancer (SCLC). Linear models were applied to ascertain the DE-miRNAs and DE-mRNAs in SCLC
versus matched non-carcinoma samples obtained from the RNA expression datasets of GSE19945, GSE74190 and GSE6044. The common DE-miRNAs were identified using the Venn plot. Then, 3 databases were used to retrieve the DE-miRNAs target genes, and the intersection was taken for validating the
shared target genes. Besides, Cytoscape was utilized for constructing the miRNAmRNA network for SCLC. Finally, a key module of five DE-miRNAs and four hub genes was determined based on the degree. In addition, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
were conducted for exploring those hub genes in terms of their functions along with the involved signal transduction pathways. Altogether 106 shared DE-miRNAs were identified, which were used to predict 63 common target genes. In addition, a key module of five DE-miRNAs (hsa-miR-17-5p, hsa-miR-20a-5p,
hsa-miR-20b-5p, hsa-miR-93-5p and hsa-miR- 106b-5p) and four hub genes (SOX4, DPYSL2, TGFBR2 and F3) were extracted from the miRNAmRNA network according to their degree. Finally, the hub genes were subjected to GO as well as KEGG analysis, which revealed that cell cycle G1/S phase transition,
the extracellular matrix, and cellular senescence signaling pathways exerted vial parts during SCLC progression. A key module of five DE-miRNAs and four hub genes may be potentially used as clinical biomarkers to predict SCLC.
Collapse
Affiliation(s)
- Xingsheng Liu
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
13
|
Du Q, Zhang D, Zhuang Y, Xia Q, Wen T, Jia H. The Molecular Genetics of Marfan Syndrome. Int J Med Sci 2021; 18:2752-2766. [PMID: 34220303 PMCID: PMC8241768 DOI: 10.7150/ijms.60685] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/18/2021] [Indexed: 12/27/2022] Open
Abstract
Marfan syndrome (MFS) is a complex connective tissue disease that is primarily characterized by cardiovascular, ocular and skeletal systems disorders. Despite its rarity, MFS severely impacts the quality of life of the patients. It has been shown that molecular genetic factors serve critical roles in the pathogenesis of MFS. FBN1 is associated with MFS and the other genes such as FBN2, transforming growth factor beta (TGF-β) receptors (TGFBR1 and TGFBR2), latent TGF-β-binding protein 2 (LTBP2) and SKI, amongst others also have their associated syndromes, however high overlap may exist between these syndromes and MFS. Abnormalities in the TGF-β signaling pathway also contribute to the development of aneurysms in patients with MFS, although the detailed molecular mechanism remains unclear. Mutant FBN1 protein may cause unstableness in elastic structures, thereby perturbing the TGF-β signaling pathway, which regulates several processes in cells. Additionally, DNA methylation of FBN1 and histone acetylation in an MFS mouse model demonstrated that epigenetic factors play a regulatory role in MFS. The purpose of the present review is to provide an up-to-date understanding of MFS-related genes and relevant assessment technologies, with the aim of laying a foundation for the early diagnosis, consultation and treatment of MFS.
Collapse
Affiliation(s)
- Qiu Du
- Marfan Research Group, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Dingding Zhang
- Marfan Research Group, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China.,Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Yue Zhuang
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Qiongrong Xia
- Marfan Research Group, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Taishen Wen
- Sichuan Provincial Key Laboratory for Genetic Disease, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Haiping Jia
- Department of Immunology, North Sichuan Medical College, Nanchong, 637100, Sichuan, China
| |
Collapse
|
14
|
Ljubic B, Pavlovski M, Alshehri J, Roychoudhury S, Bajic V, Van Neste C, Obradovic Z. Comorbidity network analysis and genetics of colorectal cancer. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
15
|
Abstract
PURPOSE Congenital clubfoot is a serious birth defect that affects nearly 0.1% of all births. Though there is strong evidence for a genetic basis of isolated clubfoot, aside from a handful of associations, much of the heritability remains unexplained. METHODS By systematically examining the genes involved in syndromic clubfoot, we may find new candidate genes and pathways to investigate in isolated clubfoot. RESULTS In addition to the expected enrichment of extracellular matrix and transforming growth factor beta (TGF-β) signalling genes, we find many genes involved in syndromic clubfoot encode peroxisomal matrix proteins, as well as enzymes necessary for sulfation of proteoglycans, an important part of connective tissue. Further, the association of Filamin B with isolated clubfoot as well as syndromic clubfoot is an encouraging finding. CONCLUSION We should examine these categories for enrichment in isolated clubfoot patients to increase our understanding of the underlying biology and pathophysiology of this deformity. Understanding the spectrum of syndromes that have clubfoot as a feature enables a better understanding of the underlying pathophysiology of the disorder and directs future genetic screening efforts toward certain genes and genetic pathways. LEVEL OF EVIDENCE V.
Collapse
Affiliation(s)
- B. Sadler
- Department of Neurology, Washington University in St. Louis, St Louis, Missouri, USA
| | - C. A. Gurnett
- Department of Neurology, Washington University in St. Louis, St Louis, Missouri, USA
| | - M. B. Dobbs
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA,Correspondence should be sent to Matthew B. Dobbs, MD, 1 Children’s Place, Suite 4S-60, Department of Orthopedic Surgery, 660 S Euclid Ave, Campus Box 8233, Washington University in St Louis, St Louis, Missouri 63110, USA. E-mail:
| |
Collapse
|
16
|
Gensicke NM, Cavanaugh NB, Andersen ND, Huang T, Qian L, Dyle MC, Turek JW. Accelerated Marfan syndrome model recapitulates established signaling pathways. J Thorac Cardiovasc Surg 2019; 159:1719-1726. [PMID: 31272746 DOI: 10.1016/j.jtcvs.2019.05.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/17/2019] [Accepted: 05/11/2019] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Marfan syndrome (MFS) represents a genetic disorder with a range of clinical features, including proximal aortic aneurysms. Extensive research has revealed an abundance of transforming growth factor beta from a mutation in fibrillin-1 to be the key biochemical mechanism of aneurysm formation. Many important signaling pathways downstream of transforming growth factor beta have been further characterized. Our laboratory has previously demonstrated a unique murine model of MFS resulting in the accelerated formation of ascending aortic aneurysms and dilated cardiomyopathies. This study aims to characterize the relevance of this model to known signaling mechanisms in MFS. METHODS Fibrillin 1C1039G/+ heterozygous mice (ie, MFS), with a mutation in fibrillin-1, were supplemented with 4.5 mg/kg/d angiotensin II to accelerate aneurysm formation. Four mouse groups were analyzed: wild type with or without angiotensin II and MFS with or without angiotensin II. Aortic tissue from these samples were subjected to western blotting and phosphoimaging to query various signaling pathways. RESULTS Mice with MFS displayed downstream regulation in both the canonical (Smad2) and noncononical (extracellular signal-regulated kinases and P38) pathways characteristic of MFS. However, these downstream signals were exaggerated in the MFS mice supplemented with angiotensin II (accelerated model), matching the observed phenotypic severity of this model. CONCLUSIONS The murine MFS model depicted here accelerates ascending aortic aneurysm formation and cardiomyopathies via well-characterized MFS signaling cascades. The mechanistic relevance of the accelerated murine MFS model suggests that it could be an important tool in future studies hoping to characterize MFS signaling in an expedited experimental design.
Collapse
Affiliation(s)
| | | | - Nicholas D Andersen
- Duke Congenital Heart Surgery Research & Training Laboratory, Durham, NC; Duke Pediatric & Congenital Heart Center of Duke Children's Hospital, Durham, NC; Division of Thoracic and Cardiovascular Surgery, Duke University Medical Center, Durham, NC
| | - Tai Huang
- Duke Congenital Heart Surgery Research & Training Laboratory, Durham, NC
| | - Lan Qian
- University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Michael C Dyle
- University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Joseph W Turek
- Duke Congenital Heart Surgery Research & Training Laboratory, Durham, NC; Duke Pediatric & Congenital Heart Center of Duke Children's Hospital, Durham, NC; Division of Thoracic and Cardiovascular Surgery, Duke University Medical Center, Durham, NC.
| |
Collapse
|
17
|
Genetic analysis and preimplantation genetic diagnosis of Chinese Marfan syndrome patients. J Genet Genomics 2019; 46:319-323. [PMID: 31279624 DOI: 10.1016/j.jgg.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/21/2019] [Accepted: 04/27/2019] [Indexed: 01/06/2023]
|
18
|
Cao Y, Tan H, Li Z, Linpeng S, Long X, Liang D, Wu L. Three Novel Mutations in FBN1 and TGFBR2 in Patients with the Syndromic Form of Thoracic Aortic Aneurysms and Dissections. Int Heart J 2018; 59:1059-1068. [DOI: 10.1536/ihj.18-046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yingxi Cao
- Center for Medical Genetics, School of Life Sciences, Central South University
| | - Hu Tan
- Center for Medical Genetics, School of Life Sciences, Central South University
| | - Zhuo Li
- Center for Medical Genetics, School of Life Sciences, Central South University
| | - Siyuan Linpeng
- Center for Medical Genetics, School of Life Sciences, Central South University
| | - Xigui Long
- Center for Medical Genetics, School of Life Sciences, Central South University
| | - Desheng Liang
- Center for Medical Genetics, School of Life Sciences, Central South University
| | - Lingqian Wu
- Center for Medical Genetics, School of Life Sciences, Central South University
| |
Collapse
|