1
|
Khan MT, Shah IA, Hossain MF, Akther N, Zhou Y, Khan MS, Al-Shaeli M, Bacha MS, Ihsanullah I. Personal protective equipment (PPE) disposal during COVID-19: An emerging source of microplastic and microfiber pollution in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160322. [PMID: 36414071 PMCID: PMC9675081 DOI: 10.1016/j.scitotenv.2022.160322] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 05/29/2023]
Abstract
Waste generated by healthcare facilities during the COVID-19 pandemic has become a new source of pollution, particularly with the widespread use of single-use personal protective equipment (PPE). Releasing microplastics (MPs) and microfibers (MFs) from discarded PPE becomes an emerging threat to environmental sustainability. MPs/MFs have recently been reported in a variety of aquatic and terrestrial ecosystems, including water, deep-sea sediments, air, and soil. As COVID-19 spreads, the use of plastic-made PPE in healthcare facilities has increased significantly worldwide, resulting in massive amounts of plastic waste entering the terrestrial and marine environments. High loads of MPs/MFs emitted into the environment due to excessive PPE consumption are easily consumed by aquatic organisms, disrupting the food chain, and potentially causing chronic health problems in humans. Thus, proper management of PPE waste is critical for ensuring a post-COVID sustainable environment, which has recently attracted the attention of the scientific community. The current study aims to review the global consumption and sustainable management of discarded PPE in the context of COVID-19. The severe impacts of PPE-emitted MPs/MFs on human health and other environmental segments are briefly addressed. Despite extensive research progress in the area, many questions about MP/MF contamination in the context of COVID-19 remain unanswered. Therefore, in response to the post-COVID environmental remediation concerns, future research directions and recommendations are highlighted considering the current MP/MF research progress from COVID-related PPE waste.
Collapse
Affiliation(s)
- Muhammad Tariq Khan
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai po New Territories, Hong Kong
| | - Izaz Ali Shah
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Md Faysal Hossain
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai po New Territories, Hong Kong; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130, Meilong Road, Shanghai 200237, China
| | - Nasrin Akther
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130, Meilong Road, Shanghai 200237, China; Department of Soil Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130, Meilong Road, Shanghai 200237, China
| | | | - Muayad Al-Shaeli
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | - Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
2
|
Alahdal HM, Ameen F, AlYahya S, Sonbol H, Khan A, Alsofayan Y, Alahmari A. Municipal wastewater viral pollution in Saudi Arabia: effect of hot climate on COVID-19 disease spreading. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25050-25057. [PMID: 34138435 PMCID: PMC8210523 DOI: 10.1007/s11356-021-14809-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 05/02/2023]
Abstract
The viral RNA of SARS-Coronavirus-2 is known to be contaminating municipal wastewater. We aimed to assess if COVID-19 disease is spreading through wastewater. We studied the amount of viral RNA in raw sewage and the efficiency of the sewage treatment to remove the virus. Sewage water was collected before and after the activated sludge process three times during summer 2020 from three different sewage treatment plants. The sewage treatment was efficient in removing SARS-CoV-2 viral RNA. Each sewage treatment plant gathered wastewater from one hospital, of which COVID-19 admissions were used to describe the level of disease occurrence in the area. The presence of SARS-CoV-2 viral RNA-specific target genes (N1, N2, and E) was confirmed using RT-qPCR analysis. However, hospital admission did not correlate significantly with viral RNA. Moreover, viral RNA loads were relatively low, suggesting that sewage might preserve viral RNA in a hot climate only for a short time.
Collapse
Affiliation(s)
- Hadil M Alahdal
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Sami AlYahya
- National Center for Biotechnology, King Abdulaziz City for Science & Technology, Riyadh, Saudi Arabia
| | - Hana Sonbol
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Anas Khan
- Department of Emergency Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Global Center for Mass Gatherings Medicine, Ministry of Health, P.O. Box 11461, Riyadh, Saudi Arabia
| | - Yousef Alsofayan
- Global Center for Mass Gatherings Medicine, Ministry of Health, P.O. Box 11461, Riyadh, Saudi Arabia
| | - Ahmed Alahmari
- Global Center for Mass Gatherings Medicine, Ministry of Health, P.O. Box 11461, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Materón EM, Gómez FR, Almeida MB, Shimizu FM, Wong A, Teodoro KBR, Silva FSR, Lima MJA, Angelim MKSC, Melendez ME, Porras N, Vieira PM, Correa DS, Carrilho E, Oliveira O, Azevedo RB, Goncalves D. Colorimetric Detection of SARS-CoV-2 Using Plasmonic Biosensors and Smartphones. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54527-54538. [PMID: 36454041 PMCID: PMC9728479 DOI: 10.1021/acsami.2c15407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/08/2022] [Indexed: 05/27/2023]
Abstract
Low-cost, instrument-free colorimetric tests were developed to detect SARS-CoV-2 using plasmonic biosensors with Au nanoparticles functionalized with polyclonal antibodies (f-AuNPs). Intense color changes were noted with the naked eye owing to plasmon coupling when f-AuNPs form clusters on the virus, with high sensitivity and a detection limit of 0.28 PFU mL-1 (PFU stands for plaque-forming units) in human saliva. Plasmon coupling was corroborated with computer simulations using the finite-difference time-domain (FDTD) method. The strategies based on preparing plasmonic biosensors with f-AuNPs are robust to permit SARS-CoV-2 detection via dynamic light scattering and UV-vis spectroscopy without interference from other viruses, such as influenza and dengue viruses. The diagnosis was made with a smartphone app after processing the images collected from the smartphone camera, measuring the concentration of SARS-CoV-2. Both image processing and machine learning algorithms were found to provide COVID-19 diagnosis with 100% accuracy for saliva samples. In subsidiary experiments, we observed that the biosensor could be used to detect the virus in river waters without pretreatment. With fast responses and requiring small sample amounts (only 20 μL), these colorimetric tests can be deployed in any location within the point-of-care diagnosis paradigm for epidemiological control.
Collapse
Affiliation(s)
- Elsa M. Materón
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
| | - Faustino R. Gómez
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
| | - Mariana B. Almeida
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
- National Institute of Science and
Technology in Bioanalytics - INCTBio, 13083-970Campinas, SP,
Brazil
| | - Flavio M. Shimizu
- Department of Applied Physics, “Gleb
Wataghin” Institute of Physics (IFGW), University of Campinas
(UNICAMP), 13083-859Campinas, SP, Brazil
| | - Ademar Wong
- Department of Chemistry, Federal
University of São Carlos (UFSCar), 13560-970São Carlos,
São Paulo, Brazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture,
Embrapa Instrumentation, 13560-970São Carlos, SP,
Brazil
| | - Filipe S. R. Silva
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
| | - Manoel J. A. Lima
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
| | - Monara Kaelle S. C. Angelim
- Department of Genetics Evolution, Microbiology, and
Immunology, Institute of Biology, University of Campinas,
13083-970Campinas, SP, Brazil
| | - Matias E. Melendez
- Molecular Carcinogenesis Program,
National Cancer Institute, 20231-050Rio de Janeiro, RJ,
Brazil
| | - Nelson Porras
- Physics Department, del Valle
University, AA 25360Cali, Colombia
| | - Pedro M. Vieira
- Department of Genetics Evolution, Microbiology, and
Immunology, Institute of Biology, University of Campinas,
13083-970Campinas, SP, Brazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture,
Embrapa Instrumentation, 13560-970São Carlos, SP,
Brazil
| | - Emanuel Carrilho
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
- National Institute of Science and
Technology in Bioanalytics - INCTBio, 13083-970Campinas, SP,
Brazil
| | - Osvaldo
N. Oliveira
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
| | - Ricardo B. Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics
and Morphology, Institute of Biological Sciences, University of
Brasilia, 70910-900Brasilia, DF, Brazil
| | - Débora Goncalves
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
| |
Collapse
|
4
|
Padilla-Reyes DA, Álvarez MM, Mora A, Cervantes-Avilés PA, Kumar M, Loge FJ, Mahlknecht J. Acquired insights from the long-term surveillance of SARS-CoV-2 RNA for COVID-19 monitoring: The case of Monterrey Metropolitan Area (Mexico). ENVIRONMENTAL RESEARCH 2022; 210:112967. [PMID: 35189100 PMCID: PMC8853965 DOI: 10.1016/j.envres.2022.112967] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 05/08/2023]
Abstract
Wastewater-based epidemiology offers a time- and cost-effective way to monitor SARS-CoV-2 spread in communities and therefore represents a complement to clinical testing. WBE applicability has been demonstrated in a number of cases over short-term periods as a method for tracking the prevalence of SARS-CoV-2 and an early-warning tool for predicting outbreaks in the population. This study reports SARS-CoV-2 viral loads from wastewater treatment plants (WWTPs) and hospitals over a 6-month period (June to December 2020). Results show that the overall range of viral load in positive tested samples was between 1.2 × 103 and 3.5 × 106 gene copies/l, unveiling that secondary-treated wastewaters mirrored the viral load of influents. The interpretation suggests that the viral titers found in three out of four WWTPs were associated to clinical COVID-19 surveillance indicators preceding 2-7 days the rise of reported clinical cases. The median wastewater detection rate of SARS-CoV-2 was one out of 14,300 reported new cases. Preliminary model estimates of prevalence ranged from 0.02 to 4.6% for the studied period. This comprehensive statistical and epidemiological analysis demonstrates that the applied wastewater-based approach to COVID-19 surveillance is in general consistent and feasible, although there is room for improvements.
Collapse
Affiliation(s)
- Diego A Padilla-Reyes
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico
| | - Mario Moises Álvarez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Mexico
| | - Pabel A Cervantes-Avilés
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla, 72453, Mexico
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, 248007, India
| | - Frank J Loge
- Department of Civil and Environmental Engineering, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Jürgen Mahlknecht
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey, 64849, Mexico.
| |
Collapse
|
5
|
Parida VK, Sikarwar D, Majumder A, Gupta AK. An assessment of hospital wastewater and biomedical waste generation, existing legislations, risk assessment, treatment processes, and scenario during COVID-19. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114609. [PMID: 35101807 PMCID: PMC8789570 DOI: 10.1016/j.jenvman.2022.114609] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 05/23/2023]
Abstract
Hospitals release significant quantities of wastewater (HWW) and biomedical waste (BMW), which hosts a wide range of contaminants that can adversely affect the environment if left untreated. The COVID-19 outbreak has further increased hospital waste generation over the past two years. In this context, a thorough literature study was carried out to reveal the negative implications of untreated hospital waste and delineate the proper ways to handle them. Conventional treatment methods can remove only 50%-70% of the emerging contaminants (ECs) present in the HWW. Still, many countries have not implemented suitable treatment methods to treat the HWW in-situ. This review presents an overview of worldwide HWW generation, regulations, and guidelines on HWW management and highlights the various treatment techniques for efficiently removing ECs from HWW. When combined with advanced oxidation processes, biological or physical treatment processes could remove around 90% of ECs. Analgesics were found to be more easily removed than antibiotics, β-blockers, and X-ray contrast media. The different environmental implications of BMW have also been highlighted. Mishandling of BMW can spread infections, deadly diseases, and hazardous waste into the environment. Hence, the different steps associated with collection to final disposal of BMW have been delineated to minimize the associated health risks. The paper circumscribes the multiple aspects of efficient hospital waste management and may be instrumental during the COVID-19 pandemic when the waste generation from all hospitals worldwide has increased significantly.
Collapse
Affiliation(s)
- Vishal Kumar Parida
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Divyanshu Sikarwar
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
6
|
Nasir AM, Adam MR, Mohamad Kamal SNEA, Jaafar J, Othman MHD, Ismail AF, Aziz F, Yusof N, Bilad MR, Mohamud R, A Rahman M, Wan Salleh WN. A review of the potential of conventional and advanced membrane technology in the removal of pathogens from wastewater. Sep Purif Technol 2022; 286:120454. [PMID: 35035270 PMCID: PMC8741333 DOI: 10.1016/j.seppur.2022.120454] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/23/2022]
Abstract
Consumption of pathogenic contaminated water has claimed the lives of many people. Hence, this scenario has emphasized the urgent need for research methods to avoid, treat and eliminate harmful pathogens in wastewater. Therefore, effective water treatment has become a matter of utmost importance. Membrane technology offers purer, cleaner, and pathogen-free water through the water separation method via a permeable membrane. Advanced membrane technology such as nanocomposite membrane, membrane distillation, membrane bioreactor, and photocatalytic membrane reactor can offer synergistic effects in removing pathogen through the integration of additional functionality and filtration in a single chamber. This paper also comprehensively discussed the application, challenges, and future perspective of the advanced membrane technology as a promising alternative in battling pathogenic microbial contaminants, which will also be beneficial and valuable in managing pandemics in the future as well as protecting human health and the environment. In addition, the potential of membrane technology in battling the ongoing global pandemic of coronavirus disease 2019 (COVID-19) was also discussed briefly.
Collapse
Affiliation(s)
- Atikah Mohd Nasir
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohd Ridhwan Adam
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | | - Juhana Jaafar
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Farhana Aziz
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Norhaniza Yusof
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Muhammad Roil Bilad
- Department of Chemistry Education, Universitas Pendidikan Mandalika (UNDIKMA), Jl. Pemuda No. 59A, Mataram 83126, Indonesia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Health Campus,Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mukhlis A Rahman
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Wan Norhayati Wan Salleh
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
7
|
Tesfaldet YT, Ndeh NT. Assessing face masks in the environment by means of the DPSIR framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152859. [PMID: 34995587 PMCID: PMC8724021 DOI: 10.1016/j.scitotenv.2021.152859] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/05/2023]
Abstract
The use of face masks outside the health care facility dates back a century ago. However, face masks use noticeably soared due to the COVID-19 (Coronavirus disease 2019) pandemic. As a result, an unprecedented influx of discarded face masks is ending up in the environment. This review paper delves into face masks in the environment using the DPSIR (driving forces, pressures, states, impacts, and responses) framework to simplify and communicate the environmental indicators. Firstly, the historical, and briefly the economic trajectory of face masks are discussed. Secondly, the main driving forces of face masks use with an emphasis on public health are explored. Then, the pressures exerted by efforts to fulfill the human needs (driving forces) are investigated. In turn, the state of the environment due to the influx of masks along with the impacts are examined. Furthermore, the upstream, and downstream societal responses to mitigate the environmental damages of the driving forces, pressures, states, and impacts are reviewed. In summary, it has been shown from this review that the COVID-19 pandemic has been causing a surge in face mask usage, which translates to face masks pollution in both terrestrial and aquatic environments. This implies proper usage and disposal of face masks is paramount to the quality of human health and the environment, respectively. Moreover, further research on eco-friendly face masks is indispensable to mitigating the environmental damages occurring due to the mass use of surgical masks worldwide.
Collapse
Affiliation(s)
- Yacob T Tesfaldet
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Nji T Ndeh
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Jalali Milani S, Nabi Bidhendi G. A Review on the Potential of Common Disinfection Processes for the Removal of Virus from Wastewater. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2022; 16:9. [PMID: 35013682 PMCID: PMC8733756 DOI: 10.1007/s41742-021-00387-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/04/2021] [Accepted: 12/25/2021] [Indexed: 05/07/2023]
Abstract
Due to the prevalence of the COVID-19 outbreak, as well as findings of SARS-CoV-2 RNA in wastewater and the possibility of viral transmission through wastewater, disinfection is required. As a consequence, based on prior investigations, this work initially employed the viral concentration detection technique, followed by the RT-qPCR assay, as the foundation for identifying the SARS-CoV-2 virus in wastewater. After that, the ability and efficacy of chlorine, ozone, and UV disinfection to inactivate the SARS-CoV-2 virus from wastewater were examined. Chlorine disinfection is the most extensively used disinfection technology due to its multiple advantages. With a chlorine dioxide disinfectant dose of 40 mg/L, the SARS-CoV virus is inactivated after 30 min of contact time. On the other hand, ozone is a powerful oxidizer and an effective microbicide that is employed as a disinfectant due to its positive characteristics. After 30 min of exposure to 1000 ppmv ozone, corona pseudoviruses are reduced by 99%. Another common method of disinfection is using ultraviolet radiation, which is usually 253.7 nm suitable for ultraviolet disinfection. At a dose of 1048 mJ/cm2, UVC radiation completely inactivates the SARS-CoV-2 virus. Finally, to evaluate disinfection performance and optimize disinfection strategies to prevent the spread of SARS-CoV-2, this study attempted to investigate the ability to remove and compare the effectiveness of each disinfectant to inactive the SARS-CoV-2 virus from wastewater, summarize studies, and provide future solutions due to the limited availability of integrated resources in this field and the spread of the SARS-CoV-2 virus worldwide.
Collapse
Affiliation(s)
- Sevda Jalali Milani
- School of Environment, College of Engineering, University of Tehran, Tehran, Iran
| | | |
Collapse
|
9
|
Sojobi AO, Zayed T. Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. ENVIRONMENTAL RESEARCH 2022; 203:111609. [PMID: 34216613 DOI: 10.1016/j.envres.2021.111609] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 05/09/2023]
Abstract
Sewer overflow (SO), which has attracted global attention, poses serious threat to public health and ecosystem. SO impacts public health via consumption of contaminated drinking water, aerosolization of pathogens, food-chain transmission, and direct contact with fecally-polluted rivers and beach sediments during recreation. However, no study has attempted to map the linkage between SO and public health including Covid-19 using scientometric analysis and systematic review of literature. Results showed that only few countries were actively involved in SO research in relation to public health. Furthermore, there are renewed calls to scale up environmental surveillance to safeguard public health. To safeguard public health, it is important for public health authorities to optimize water and wastewater treatment plants and improve building ventilation and plumbing systems to minimize pathogen transmission within buildings and transportation systems. In addition, health authorities should formulate appropriate policies that can enhance environmental surveillance and facilitate real-time monitoring of sewer overflow. Increased public awareness on strict personal hygiene and point-of-use-water-treatment such as boiling drinking water will go a long way to safeguard public health. Ecotoxicological studies and health risk assessment of exposure to pathogens via different transmission routes is also required to appropriately inform the use of lockdowns, minimize their socio-economic impact and guide evidence-based welfare/social policy interventions. Soft infrastructures, optimized sewer maintenance and prescreening of sewer overflow are recommended to reduce stormwater burden on wastewater treatment plant, curtail pathogen transmission and marine plastic pollution. Comprehensive, integrated surveillance and global collaborative efforts are important to curtail on-going Covid-19 pandemic and improve resilience against future pandemics.
Collapse
Affiliation(s)
| | - Tarek Zayed
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
10
|
Sanchez-Galan JE, Ureña G, Escovar LF, Fabrega-Duque JR, Coles A, Kurt Z. Challenges to detect SARS-CoV-2 on environmental media, the need and strategies to implement the detection methodologies in wastewaters. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2021; 9:105881. [PMID: 34221893 PMCID: PMC8239206 DOI: 10.1016/j.jece.2021.105881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/15/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Understanding risks, putting in place preventative methods to seamlessly continue daily activities are essential tools to fight a pandemic. All social, commercial and leisure activities have an impact on the environmental media. Therefore, to accurately predict the fate and behavior of viruses in the environment, it is necessary to understand and analyze available detection methods, possible transmission pathways and preventative techniques. The aim of this review is to critically analyze and summarize the research done regarding SARS-COV-2 virus detection, focusing on sampling and laboratory detection methods in environmental media. Special attention will be given to wastewater and sewage sludge. This review has summarized the survival of the virus on surfaces to estimate the risk carried by different environmental media (water, wastewater, air and soil) in order to explain which communities are under higher risk. The critical analysis concludes that the detection of SARS-CoV-2 with current technologies and sampling strategies would reveal the presence of the virus. This information could be used to design systematic sampling points throughout the sewage systems when available, taking into account peak flows and more importantly economic factors on when to sample. Such approaches will provide clues for potential future viral outbreak, saving financial resources by reducing testing necessities for viral detection, hence contributing for more appropriate confinement policies by governments and could be further used to define more precisely post-pandemic or additional waves measures if/ when needed.
Collapse
Affiliation(s)
- Javier E Sanchez-Galan
- Facultad de Ingeniería de Sistemas Computacionales (FISC), Universidad Tecnológica de Panamá, Panama
- Grupo de Investigación en Biotecnología, Bioinformática y Biología de Sistemas (GIBBS), Universidad Tecnológica de Panamá, Panama
- Institute of Scientific Research and High Technology Services, Panama City, Panama
| | - Grimaldo Ureña
- Grupo de Investigación en Biotecnología, Bioinformática y Biología de Sistemas (GIBBS), Universidad Tecnológica de Panamá, Panama
- Theoretical Evolutionary Genetics Laboratory, University of Houston, Houston, TX, USA
| | | | - Jose R Fabrega-Duque
- Centro de Investigaciones Hidráulicas e Hidrotécnicas (CIHH), Universidad Tecnologica de Panama, Panama
| | - Alexander Coles
- Centro de Investigaciones Hidráulicas e Hidrotécnicas (CIHH), Universidad Tecnologica de Panama, Panama
| | - Zohre Kurt
- Grupo de Investigación en Biotecnología, Bioinformática y Biología de Sistemas (GIBBS), Universidad Tecnológica de Panamá, Panama
- Urban Risk Center, Florida State University-Panama, Panama
- Institute of Scientific Research and High Technology Services, Panama City, Panama
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
11
|
Mousazadeh M, Ashoori R, Paital B, Kabdaşlı I, Frontistis Z, Hashemi M, Sandoval MA, Sherchan S, Das K, Emamjomeh MM. Wastewater Based Epidemiology Perspective as a Faster Protocol for Detecting Coronavirus RNA in Human Populations: A Review with Specific Reference to SARS-CoV-2 Virus. Pathogens 2021; 10:1008. [PMID: 34451472 PMCID: PMC8401392 DOI: 10.3390/pathogens10081008] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
Wastewater-based epidemiology (WBE) has a long history of identifying a variety of viruses from poliovirus to coronaviruses, including novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The presence and detection of SARS-CoV-2 in human feces and its passage into the water bodies are significant public health challenges. Hence, the hot issue of WBE of SARS-CoV-2 in the coronavirus respiratory disease (COVID-19) pandemic is a matter of utmost importance (e.g., SARS-CoV-1). The present review discusses the background, state of the art, actual status, and prospects of WBE, as well as the detection and quantification protocols of SARS-CoV-2 in wastewater. The SARS-CoV-2 detection studies have been performed in different water matrixes such as influent and effluent of wastewater treatment plants, suburban pumping stations, hospital wastewater, and sewer networks around the globe except for Antarctica. The findings revealed that all WBE studies were in accordance with clinical and epidemiological data, which correlates the presence of SARS-CoV-2 ribonucleic acid (RNA) with the number of new daily positive cases officially reported. This last was confirmed via Reverse Transcriptase-quantitative Polymerase Chain Reaction (RT-qPCR) testing which unfortunately is not suitable for real-time surveillance. In addition, WBE concept may act as a faster protocol to alert the public health authorities to take administrative orders (possible re-emerging infections) due to the impracticality of testing all citizens in a short time with limited diagnostic facilities. A comprehensive and integrated review covering all steps starting from sampling to molecular detection of SARS-CoV-2 in wastewater has been made to guide for the development well-defined and reliable protocols.
Collapse
Affiliation(s)
- Milad Mousazadeh
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran;
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Razieh Ashoori
- Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran;
| | - Biswaranjan Paital
- Redox Regulation Laboratory, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar 751003, India;
| | - Işık Kabdaşlı
- Environmental Engineering Department, Civil Engineering Faculty, Ayazağa Campus, İstanbul Technical University, İstanbul 34469, Turkey;
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, 50132 Kozani, Greece;
| | - Marjan Hashemi
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran;
| | - Miguel A. Sandoval
- Laboratorio de Electroquímica Medio Ambiental LEQMA, Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile USACH, Casilla 40, Correo 33, Santiago 9170022, Chile;
- Departamento de Ingeniería Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36050, Mexico
| | - Samendra Sherchan
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 7011, USA;
| | - Kabita Das
- Department of Philosophy, Utkal University, Bhubaneswar 751004, India;
| | - Mohammad Mahdi Emamjomeh
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
12
|
Teymoorian T, Teymourian T, Kowsari E, Ramakrishna S. Direct and indirect effects of SARS-CoV-2 on wastewater treatment. JOURNAL OF WATER PROCESS ENGINEERING 2021; 42:102193. [PMID: 35592058 PMCID: PMC8226068 DOI: 10.1016/j.jwpe.2021.102193] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/11/2021] [Accepted: 06/21/2021] [Indexed: 05/06/2023]
Abstract
The novel SARS-CoV-2 is expanding internationally. While the current focus is on limiting its transmission from direct contact with infected patients and surfaces during the pandemic, the secondary transmission potential via sewage should not be underestimated, especially in low-income and developing countries with weak wastewater treatment technologies. Recent studies have indicated SARS-CoV-2 positivity also be detected in the feces of patients. Therefore, the risk of transmission and infection can be increased into sewage by the fecal-oral way, mainly in some parts of the globe with a high amount of open defecation. This review collected scattered data and recent studies about the direct and indirect effects of coronavirus in the water cycle. The direct impacts of COVID-19 on wastewater are related to the presence of the coronavirus and suitable viral removal methods in different phases of treatment in wastewater treatment plants. The indirect effects of COVID-19 on wastewater are related to the overuse of cleaning and disinfecting products to protect against viral infection and the overuse of certain drugs to protect against virus or novel mental problems and panic to COVID-19 and consequently their presence in wastewater. This unexpected situation leads to changes in the quality of wastewater and brings adverse and harmful effects for the human, aquatic organisms, and the environment. Therefore, applying effective wastewater treatment technologies with low toxic by-products in wastewater treatment plants will be helpful to prevent the increasing occurrence of these extra contaminants in the environment.
Collapse
Affiliation(s)
- Termeh Teymoorian
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran
| | - Targol Teymourian
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran
| | - Elaheh Kowsari
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| |
Collapse
|