1
|
Li J, Yan X, Wu Z, Shen J, Li Y, Zhao Y, Du F, Li M, Wu X, Chen Y, Xiao Z, Wang S. Role of miRNAs in macrophage-mediated kidney injury. Pediatr Nephrol 2024; 39:3397-3410. [PMID: 38801452 DOI: 10.1007/s00467-024-06414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Macrophages, crucial components of the human immune system, can be polarized into M1/M2 phenotypes, each with distinct functions and roles. Macrophage polarization has been reported to be significantly involved in the inflammation and fibrosis observed in kidney injury. MicroRNA (miRNA), a type of short RNA lacking protein-coding function, can inhibit specific mRNA by partially binding to its target mRNA. The intricate association between miRNAs and macrophages has been attracting increasing interest in recent years. This review discusses the role of miRNAs in regulating macrophage-mediated kidney injury. It shows how miRNAs can influence macrophage polarization, thereby altering the biological function of macrophages in the kidney. Furthermore, this review highlights the significance of miRNAs derived from exosomes and extracellular vesicles as a crucial mediator in the crosstalk between macrophages and kidney cells. The potential of miRNAs as treatment applications and biomarkers for macrophage-mediated kidney injury is also discussed.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xida Yan
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Department of Pharmacy, Mianyang Central Hospital, Mianyang, China
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yalin Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
2
|
Diebold M, Mayer KA, Hidalgo L, Kozakowski N, Budde K, Böhmig GA. Chronic Rejection After Kidney Transplantation. Transplantation 2024:00007890-990000000-00858. [PMID: 39192468 DOI: 10.1097/tp.0000000000005187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In kidney transplantation, ongoing alloimmune processes-commonly triggered by HLA incompatibilities-can trigger chronic transplant rejection, affecting the microcirculation and the tubulointerstitium. Continuous inflammation may lead to progressive, irreversible graft injury, culminating in graft dysfunction and accelerated transplant failure. Numerous experimental and translational studies have delineated a complex interplay of different immune mechanisms driving rejection, with antibody-mediated rejection (AMR) being an extensively studied rejection variant. In microvascular inflammation, a hallmark lesion of AMR, natural killer (NK) cells have emerged as pivotal effector cells. Their essential role is supported by immunohistologic evidence, bulk and spatial transcriptomics, and functional genetics. Despite significant research efforts, a substantial unmet need for approved rejection therapies persists, with many trials yielding negative outcomes. However, several promising therapies are currently under investigation, including felzartamab, a monoclonal antibody targeting the surface molecule CD38, which is highly expressed in NK cells and antibody-producing plasma cells. In an exploratory phase 2 trial in late AMR, this compound has demonstrated potential in resolving molecular and morphologic rejection activity and injury, predominantly by targeting NK cell effector function. These findings inspire hope for effective treatments and emphasize the necessity of further pivotal trials focusing on chronic transplant rejection.
Collapse
Affiliation(s)
- Matthias Diebold
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Clinic for Transplantation Immunology and Nephrology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Katharina A Mayer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Luis Hidalgo
- HLA Laboratory, Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | | | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Alexander MP, Zaidi M, Larson N, Mullan A, Pavelko KD, Stegall MD, Bentall A, Wouters BG, McKee T, Taner T. Exploring the single-cell immune landscape of kidney allograft inflammation using imaging mass cytometry. Am J Transplant 2024; 24:549-563. [PMID: 37979921 DOI: 10.1016/j.ajt.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Kidney allograft inflammation, mostly attributed to rejection and infection, is an important cause of graft injury and loss. Standard histopathological assessment of allograft inflammation provides limited insights into biological processes and the immune landscape. Here, using imaging mass cytometry with a panel of 28 validated biomarkers, we explored the single-cell landscape of kidney allograft inflammation in 32 kidney transplant biopsies and 247 high-dimensional histopathology images of various phenotypes of allograft inflammation (antibody-mediated rejection, T cell-mediated rejection, BK nephropathy, and chronic pyelonephritis). Using novel analytical tools, for cell segmentation, we segmented over 900 000 cells and developed a tissue-based classifier using over 3000 manually annotated kidney microstructures (glomeruli, tubules, interstitium, and arteries). Using PhenoGraph, we identified 11 immune and 9 nonimmune clusters and found a high prevalence of memory T cell and macrophage-enriched immune populations across phenotypes. Additionally, we trained a machine learning classifier to identify spatial biomarkers that could discriminate between the different allograft inflammatory phenotypes. Further validation of imaging mass cytometry in larger cohorts and with more biomarkers will likely help interrogate kidney allograft inflammation in more depth than has been possible to date.
Collapse
Affiliation(s)
- Mariam P Alexander
- Department of Pathology and Laboratory Medicine, Mayo Clinic, Rochester, Minnesota, USA.
| | - Mark Zaidi
- Department of Medical Biophysics, University of Toronto, Canada
| | - Nicholas Larson
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Aidan Mullan
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Kevin D Pavelko
- Immune Monitoring Core Laboratory, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark D Stegall
- Departments of Surgery and Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew Bentall
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Bradly G Wouters
- Department of Medical Biophysics, University of Toronto, Canada; Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Trevor McKee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Pathomics Inc., Toronto, Ontario, Canada
| | - Timucin Taner
- Departments of Surgery and Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
4
|
Pang Q, Chen L, An C, Zhou J, Xiao H. Single-cell and bulk RNA sequencing highlights the role of M1-like infiltrating macrophages in antibody-mediated rejection after kidney transplantation. Heliyon 2024; 10:e27865. [PMID: 38524599 PMCID: PMC10958716 DOI: 10.1016/j.heliyon.2024.e27865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Background Antibody-mediated rejection (ABMR) significantly affects transplanted kidney survival, yet the macrophage phenotype, ontogeny, and mechanisms in ABMR remain unclear. Method We analyzed post-transplant sequencing and clinical data from GEO and ArrayExpress. Using dimensionality reduction and clustering on scRNA-seq data, we identified macrophage subpopulations and compared their infiltration in ABMR and non-rejection cases. Cibersort quantified these subpopulations in bulk samples. Cellchat, SCENIC, monocle2, and monocle3 helped explore intercellular interactions, predict transcription factors, and simulate differentiation of cell subsets. The Scissor method linked macrophage subgroups with transplant prognosis. Furthermore, hdWGCNA, nichnet, and lasso regression identified key genes associated with core transcription factors in selected macrophages, validated by external datasets. Results Six macrophage subgroups were identified in five post-transplant kidney biopsies. M1-like infiltrating macrophages, prevalent in ABMR, correlated with pathological injury severity. MIF acted as a primary intercellular signal in these macrophages. STAT1 regulated monocyte-to-M1-like phenotype transformation, impacting transplant prognosis via the IFNγ pathway. The prognostic models built on the upstream and downstream genes of STAT1 effectively predicted transplant survival. The TLR4-STAT1-PARP9 axis may regulate the pro-inflammatory phenotype of M1-like infiltrating macrophages, identifying PARP9 as a potential target for mitigating ABMR inflammation. Conclusion Our study delineates the macrophage landscape in ABMR post-kidney transplantation, underscoring the detrimental impact of M1-like infiltrating macrophages on ABMR pathology and prognosis.
Collapse
Affiliation(s)
- Qidan Pang
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Liang Chen
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Changyong An
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Juan Zhou
- Department of Nephrology, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| | - Hanyu Xiao
- Department of General Surgery/Gastrointestinal Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 402760, China
| |
Collapse
|
5
|
Wang J, Lou W, Zhu M, Tu Y, Chen D, Qiu D, Xu F, Liang D, Cheng Z, Zhang H. Prediction of treatment response in lupus nephritis using density of tubulointerstitial macrophage infiltration. Front Immunol 2024; 15:1321507. [PMID: 38415246 PMCID: PMC10896899 DOI: 10.3389/fimmu.2024.1321507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Background Lupus nephritis (LN) is a common disease with diverse clinical and pathological manifestations. A major challenge in the management of LN is the inability to predict its treatment response at an early stage. The objective of this study was to determine whether the density of tubulointerstitial macrophage infiltration can be used to predict treatment response in LN and whether its addition to clinicopathological data at the time of biopsy would improve risk prediction. Methods In this retrospective cohort study, 430 patients with LN in our hospital from January 2010 to December 2017 were included. We used immunohistochemistry to show macrophage and lymphocyte infiltration in their biopsy specimens, followed by quantification of the infiltration density. The outcome was the treatment response, defined as complete or partial remission at 12 months of immunosuppression. Results The infiltration of CD68+ macrophages in the interstitium increased in patients with LN. High levels of CD68+ macrophage infiltration in the interstitium were associated with a low probability of treatment response in the adjusted analysis, and verse vice. The density of CD68+ macrophage infiltration in the interstitium alone predicted the response to immunosuppression (area under the curve [AUC], 0.70; 95% CI, 0.63 to 0.76). The addition of CD68+cells/interstitial field to the pathological and clinical data at biopsy in the prediction model resulted in an increased AUC of 0.78 (95% CI, 0.73 to 0.84). Conclusion The density of tubulointerstitial macrophage infiltration is an independent predictor for treatment response in LN. Adding tubulointerstitial macrophage infiltration density to clinicopathological data at the time of biopsy significantly improves risk prediction of treatment response in LN patients.
Collapse
Affiliation(s)
- Jingjing Wang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenyuan Lou
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengyue Zhu
- Northern Jiangsu People’s Hospital, Yangzhou University, Yangzhou, China
| | - Yuanmao Tu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Duqun Chen
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dandan Qiu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Feng Xu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dandan Liang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhen Cheng
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haitao Zhang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Manoharan J, Rana R, Kuenze G, Gupta D, Elwakiel A, Ambreen S, Wang H, Banerjee K, Zimmermann S, Singh K, Gupta A, Fatima S, Kretschmer S, Schaefer L, Zeng-Brouwers J, Schwab C, Al-Dabet MM, Gadi I, Altmann H, Koch T, Poitz DM, Baber R, Kohli S, Shahzad K, Geffers R, Lee-Kirsch MA, Kalinke U, Meiler J, Mackman N, Isermann B. Tissue factor binds to and inhibits interferon-α receptor 1 signaling. Immunity 2024; 57:68-85.e11. [PMID: 38141610 DOI: 10.1016/j.immuni.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/02/2023] [Accepted: 11/28/2023] [Indexed: 12/25/2023]
Abstract
Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.
Collapse
Affiliation(s)
- Jayakumar Manoharan
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Georg Kuenze
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Saira Ambreen
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Hongjie Wang
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kuheli Banerjee
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Silke Zimmermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Kunal Singh
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Sameen Fatima
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Stefanie Kretschmer
- Department of Pediatrics, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Jinyang Zeng-Brouwers
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Constantin Schwab
- Tissue Bank of the National Center for Tumor Diseases, Heidelberg, Germany
| | - Moh'd Mohanad Al-Dabet
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Ihsan Gadi
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Heidi Altmann
- Dresden Integrated Liquid Biobank, Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany; Medical Department I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Thea Koch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - David M Poitz
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ronny Baber
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany; Leipzig Medical Biobank, Leipzig University, Leipzig, Germany
| | - Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany
| | - Robert Geffers
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, 30625 Hannover, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostic, University Hospital, Leipzig, Germany.
| |
Collapse
|
7
|
Schrezenmeier E, Dörner T, Halleck F, Budde K. Cellular Immunobiology and Molecular Mechanisms in Alloimmunity-Pathways of Immunosuppression. Transplantation 2024; 108:148-160. [PMID: 37309030 DOI: 10.1097/tp.0000000000004646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Current maintenance immunosuppression commonly comprises a synergistic combination of tacrolimus as calcineurin inhibitor (CNI), mycophenolic acid, and glucocorticoids. Therapy is often individualized by steroid withdrawal or addition of belatacept or inhibitors of the mechanistic target of rapamycin. This review provides a comprehensive overview of their mode of action, focusing on the cellular immune system. The main pharmacological action of CNIs is suppression of the interleukin-2 pathway that leads to inhibition of T cell activation. Mycophenolic acid inhibits the purine pathway and subsequently diminishes T and B cell proliferation but also exerts a variety of effects on almost all immune cells, including inhibition of plasma cell activity. Glucocorticoids exert complex regulation via genomic and nongenomic mechanisms, acting mainly by downregulating proinflammatory cytokine signatures and cell signaling. Belatacept is potent in inhibiting B/T cell interaction, preventing formation of antibodies; however, it lacks the potency of CNIs in preventing T cell-mediated rejections. Mechanistic target of rapamycin inhibitors have strong antiproliferative activity on all cell types interfering with multiple metabolic pathways, partly explaining poor tolerability, whereas their superior effector T cell function might explain their benefits in the case of viral infections. Over the past decades, clinical and experimental studies provided a good overview on the underlying mechanisms of immunosuppressants. However, more data are needed to delineate the interaction between innate and adaptive immunity to better achieve tolerance and control of rejection. A better and more comprehensive understanding of the mechanistic reasons for failure of immunosuppressants, including individual risk/benefit assessments, may permit improved patient stratification.
Collapse
Affiliation(s)
- Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Dörner
- Department of Rheumatology and Clinical Immunology - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Fabian Halleck
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
8
|
Nevarez-Mejia J, Jin YP, Pickering H, Parmar R, Valenzuela NM, Sosa RA, Heidt S, Fishbein GA, Rozengurt E, William MB, Fairchild RL, Reed EF. HLA class I antibody-activated endothelium promotes CD206+ M2-macrophage polarization and MMP9 secretion through TLR4 signaling and P-selectin in a model of antibody-mediated rejection and allograft vasculopathy. Am J Transplant 2023; 24:S1600-6135(23)00822-5. [PMID: 39491096 PMCID: PMC11110958 DOI: 10.1016/j.ajt.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 02/22/2024]
Abstract
HLA donor-specific antibodies (DSA) elicit alloimmune responses against the graft vasculature, leading to endothelial cell (EC) activation and monocyte infiltration during antibody-mediated rejection (AMR). AMR promotes chronic inflammation and remodeling, leading to thickening of the arterial intima termed transplant vasculopathy (TV) or cardiac allograft vasculopathy (CAV) in heart transplants. Intragraft-recipient macrophages serve as a diagnostic marker in AMR however, their polarization and function remain unclear. In this study, we utilized an in vitro transwell co-culture system to explore the mechanisms of monocyte-to-macrophage polarization induced by HLA I DSA activated ECs. Anti-HLA I (IgG or F(ab')2) antibody-activated ECs induced the polarization of M2-macrophages with increased CD206 expression and MMP9 secretion. However, inhibition of TLR4 signaling or PSGL-1-P-selectin interactions significantly decreased both CD206 and MMP9. Monocyte adherence to Fc-P-selectin coated plates induced M2-macrophages with increased CD206 and MMP9. Moreover, Fc-receptor and IgG interactions synergistically enhanced active-MMP9 in conjunction with P-selectin. Transcriptomic analysis of arteries from DSA+CAV+ rejected cardiac allografts and multiplex-immunofluorescent staining illustrated the expression of CD68+CD206+CD163+MMP9+ M2-macrophages within the neointima of CAV affected lesions. These findings reveal a novel mechanism linking HLA I antibody-activated endothelium to the generation of M2-macrophages which secrete vascular remodeling proteins contributing to AMR and CAV pathogenesis.
Collapse
Affiliation(s)
- Jessica Nevarez-Mejia
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Rajesh Parmar
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Rebecca A Sosa
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Gregory A Fishbein
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA
| | - Enrique Rozengurt
- Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, CA
| | - M Baldwin William
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic, OH
| | - Robert L Fairchild
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic, OH
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA.
| |
Collapse
|
9
|
Shah AM, Aral AM, Zamora R, Gharpure N, El-Dehaibi F, Zor F, Kulahci Y, Karagoz H, Barclay DA, Yin J, Breidenbach W, Tuder D, Gorantla VS, Vodovotz Y. Peripheral nerve repair is associated with augmented cross-tissue inflammation following vascularized composite allotransplantation. Front Immunol 2023; 14:1151824. [PMID: 37251389 PMCID: PMC10213935 DOI: 10.3389/fimmu.2023.1151824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Vascularized composite allotransplantation (VCA), with nerve repair/coaptation (NR) and tacrolimus (TAC) immunosuppressive therapy, is used to repair devastating traumatic injuries but is often complicated by inflammation spanning multiple tissues. We identified the parallel upregulation of transcriptional pathways involving chemokine signaling, T-cell receptor signaling, Th17, Th1, and Th2 pathways in skin and nerve tissue in complete VCA rejection compared to baseline in 7 human hand transplants and defined increasing complexity of protein-level dynamic networks involving chemokine, Th1, and Th17 pathways as a function of rejection severity in 5 of these patients. We next hypothesized that neural mechanisms may regulate the complex spatiotemporal evolution of rejection-associated inflammation post-VCA. Methods For mechanistic and ethical reasons, protein-level inflammatory mediators in tissues from Lewis rats (8 per group) receiving either syngeneic (Lewis) or allogeneic (Brown-Norway) orthotopic hind limb transplants in combination with TAC, with and without sciatic NR, were compared to human hand transplant samples using computational methods. Results In cross-correlation analyses of these mediators, VCA tissues from human hand transplants (which included NR) were most similar to those from rats undergoing VCA + NR. Based on dynamic hypergraph analyses, NR following either syngeneic or allogeneic transplantation in rats was associated with greater trans-compartmental localization of early inflammatory mediators vs. no-NR, and impaired downregulation of mediators including IL-17A at later times. Discussion Thus, NR, while considered necessary for restoring graft function, may also result in dysregulated and mis-compartmentalized inflammation post-VCA and therefore necessitate mitigation strategies. Our novel computational pipeline may also yield translational, spatiotemporal insights in other contexts.
Collapse
Affiliation(s)
- Ashti M. Shah
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ali Mubin Aral
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nitin Gharpure
- Department of Surgery, Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - Fayten El-Dehaibi
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fatih Zor
- Department of Surgery, Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - Yalcin Kulahci
- Department of Surgery, Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - Huseyin Karagoz
- Department of Surgery, Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - Derek A. Barclay
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jinling Yin
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Dmitry Tuder
- Plastic Surgery, San Antonio Military Medical Center, Fort Sam Houston, San Antonio, TX, United States
| | - Vijay S. Gorantla
- Department of Surgery, Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Kervella D, Mesnard B, Prudhomme T, Bruneau S, Masset C, Cantarovich D, Blancho G, Branchereau J. Sterile Pancreas Inflammation during Preservation and after Transplantation. Int J Mol Sci 2023; 24:ijms24054636. [PMID: 36902067 PMCID: PMC10003374 DOI: 10.3390/ijms24054636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
The pancreas is very susceptible to ischemia-reperfusion injury. Early graft losses due to pancreatitis and thrombosis represent a major issue after pancreas transplantation. Sterile inflammation during organ procurement (during brain death and ischemia-reperfusion) and after transplantation affects organ outcomes. Sterile inflammation of the pancreas linked to ischemia-reperfusion injury involves the activation of innate immune cell subsets such as macrophages and neutrophils, following tissue damage and release of damage-associated molecular patterns and pro-inflammatory cytokines. Macrophages and neutrophils favor tissue invasion by other immune cells, have deleterious effects or functions, and promote tissue fibrosis. However, some innate cell subsets may promote tissue repair. This outburst of sterile inflammation promotes adaptive immunity activation via antigen exposure and activation of antigen-presenting cells. Better controlling sterile inflammation during pancreas preservation and after transplantation is of utmost interest in order to decrease early allograft loss (in particular thrombosis) and increase long-term allograft survival. In this regard, perfusion techniques that are currently being implemented represent a promising tool to decrease global inflammation and modulate the immune response.
Collapse
Affiliation(s)
- Delphine Kervella
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
- Correspondence:
| | - Benoît Mesnard
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Service d’Urologie, ITUN, F-44000 Nantes, France
| | - Thomas Prudhomme
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Sarah Bruneau
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
| | - Christophe Masset
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Diego Cantarovich
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Gilles Blancho
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Néphrologie et Immunologie Clinique, ITUN, F-44000 Nantes, France
| | - Julien Branchereau
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, F-44000 Nantes, France
- Centre Hospitalier Universitaire de Nantes, Nantes Université, Service d’Urologie, ITUN, F-44000 Nantes, France
| |
Collapse
|
11
|
Smith B, Grande J, Ryan M, Smith M, Denic A, Hermsen M, Park W, Kremers W, Stegall M. Automated scoring of total inflammation in renal allograft biopsies. Clin Transplant 2023; 37:e14837. [PMID: 36259615 DOI: 10.1111/ctr.14837] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 10/13/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Computer-assisted scoring is gaining prominence in the evaluation of renal histology; however, much of the focus has been on identifying larger objects such as glomeruli. Total inflammation impacts graft outcome, and its quantification requires tools to identify objects at the cellular level or smaller. The goal of the current study was to use CD45 stained slides coupled with image analysis tools to quantify the amount of non-glomerular inflammation within the cortex. METHODS Sixty renal transplant whole slide images were used for digital image analysis. Multiple thresholding methods using pixel intensity and object size were used to identify inflammation in the cortex. Additionally, convolutional neural networks were used to separate glomeruli from other objects in the cortex. This combined measure of inflammation was then correlated with rescored Banff total inflammation classification and outcomes. RESULTS Identification of glomeruli on biopsies had high fidelity (mean pixelwise dice coefficient of .858). Continuous total inflammation scores correlated well with Banff rescoring (maximum Pearson correlation .824). A separate set of thresholds resulted in a significant correlation with alloimmune graft loss. CONCLUSIONS Automated scoring of inflammation showed a high correlation with Banff scoring. Digital image analysis provides a powerful tool for analysis of renal pathology, not only because it is reproducible and can be automated, but also because it provides much more granular data for studies.
Collapse
Affiliation(s)
- Byron Smith
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Joseph Grande
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Maggie Ryan
- Department of Anatomic Pathology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Maxwell Smith
- Department of Anatomic Pathology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Aleksandar Denic
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Meyke Hermsen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Walter Park
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA.,Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Walter Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark Stegall
- William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA.,Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
12
|
Pfenning MB, Schmitz J, Scheffner I, Schulte K, Khalifa A, Tezval H, Weidemann A, Kulschewski A, Kunzendorf U, Dietrich S, Haller H, Kielstein JT, Gwinner W, Bräsen JH. High Macrophage Densities in Native Kidney Biopsies Correlate With Renal Dysfunction and Promote ESRD. Kidney Int Rep 2022; 8:341-356. [PMID: 36815108 PMCID: PMC9939427 DOI: 10.1016/j.ekir.2022.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Macrophages and monocytes are main players in innate immunity. The relevance of mononuclear phagocyte infiltrates on clinical outcomes remains to be determined in native kidney diseases. Methods Our cross-sectional study included 324 patients with diagnostic renal biopsies comprising 17 disease entities and normal renal tissues for comparison. All samples were stained for CD68+ macrophages. Selected groups were further subtyped for CD14+ monocytes and CD163+ alternatively activated macrophages. Using precise pixel-based digital measurements, we quantified cell densities as positively stained areas in renal cortex and medulla as well as whole renal tissue. Laboratory and clinical data of all cases at the time of biopsy and additional follow-up data in 158 cases were accessible. Results Biopsies with renal disease consistently revealed higher CD68+-macrophage densities and CD163+-macrophage densities in cortex and medulla compared to controls. High macrophage densities correlated with impaired renal function at biopsy and at follow-up in all diseases and in diseases analyzed separately. High cortical CD68+-macrophage densities preceded shorter renal survival, defined as requirement of permanent dialysis. CD14+ monocyte densities showed no difference compared to controls and did not correlate with renal function. Conclusion Precise quantification of macrophage densities in renal biopsies may contribute to risk stratification to identify patients with high risk for end-stage renal disease (ESRD) and might be a promising therapeutic target in renal disease.
Collapse
Affiliation(s)
- Maren B. Pfenning
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Lower Saxony, Germany,Medical Department I, Gastroenterology, Hepatology and Nephrology, Clinics Passau, Passau, Bavaria, Germany
| | - Jessica Schmitz
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Irina Scheffner
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Kevin Schulte
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Abedalrazag Khalifa
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Hossein Tezval
- Department of Urology and Urological Oncology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Alexander Weidemann
- Medical Clinic III – Nephrology and Dialysis, St. Vinzenz Hospital, Paderborn, North Rhine-Westphalia, Germany
| | - Anke Kulschewski
- Clinic for Nephrology and Hypertension, University Hospital Oldenburg, Oldenburg, Lower Saxony, Germany
| | - Ulrich Kunzendorf
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Sebastian Dietrich
- Clinic for Nephrology and Hypertension, Christian-Albrechts-University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Schleswig-Holstein, Germany
| | - Hermann Haller
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Jan T. Kielstein
- Medical Clinic V, Nephrology, Rheumatology and Blood Purification, Academic Teaching Hospital Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Wilfried Gwinner
- Clinic for Kidney and Hypertension Diseases, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Jan H. Bräsen
- Nephropathology Unit, Institute of Pathology, Hannover Medical School, Hannover, Lower Saxony, Germany,Correspondence: Jan Hinrich Bräsen, Nephropathology Unit, Institute of Pathology, Hannover Medical School, OE 5110, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
13
|
Muacevic A, Adler JR. Classic and Current Opinions in Human Organ and Tissue Transplantation. Cureus 2022; 14:e30982. [PMID: 36337306 PMCID: PMC9624478 DOI: 10.7759/cureus.30982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 11/30/2022] Open
Abstract
Graft tolerance is a pathophysiological condition heavily reliant on the dynamic interaction of the innate and adaptive immune systems. Genetic polymorphism determines immune responses to tissue/organ transplantation, and intricate humoral and cell-mediated mechanisms control these responses. In transplantation, the clinician's goal is to achieve a delicate equilibrium between the allogeneic immune response, undesired effects of the immunosuppressive drugs, and the existing morbidities that are potentially life-threatening. Transplant immunopathology involves sensitization, effector, and apoptosis phases which recruit and engages immunological cells like natural killer cells, lymphocytes, neutrophils, and monocytes. Similarly, these cells are involved in the transfer of normal or genetically engineered T cells. Advances in tissue transplantation would involve a profound knowledge of the molecular mechanisms that underpin the respective immunopathology involved and the design of precision medicines that are safe and effective.
Collapse
|
14
|
Lai C, Chadban SJ, Loh YW, Kwan TKT, Wang C, Singer J, Niewold P, Ling Z, Spiteri A, Getts D, King NJC, Wu H. Targeting inflammatory monocytes by immune-modifying nanoparticles prevents acute kidney allograft rejection. Kidney Int 2022; 102:1090-1102. [PMID: 35850291 DOI: 10.1016/j.kint.2022.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 05/22/2022] [Accepted: 06/17/2022] [Indexed: 12/31/2022]
Abstract
Inflammatory monocytes are a major component of the cellular infiltrate in acutely rejecting human kidney allografts. Since immune-modifying nanoparticles (IMPs) bind to circulating inflammatory monocytes via the specific scavenger receptor MARCO, causing diversion to the spleen and subsequent apoptosis, we investigated the therapeutic potential of negatively charged, 500-nm diameter polystyrene IMPs to prevent kidney allograft rejection. Kidney transplants were performed from BALB/c (H2d) to C57BL/6 (H2b) mice in two groups: controls (allo) and allo mice infused with IMPs. Groups were studied for 14 (acute rejection) or 100 (chronic rejection) days. Allo mice receiving IMPs exhibited superior survival and markedly less acute rejection, with better kidney function, less tubulitis, and diminished inflammatory cell density, cytokine and cytotoxic molecule expression in the allograft and lower titers of donor-specific IgG2c antibody in serum at day 14, as compared to allo mice. Cells isolated from kidneys from allo mice receiving IMPs showed reduced Ly6Chi monocytes, CD11b+ cells and NKT+ cells compared to allo mice. IMPs predominantly bound CD11b+ cells in the bloodstream and CD11b+ and CD11c-B220+ marginal zone B cells in the spleen. In the spleen, IMPs were found predominantly in red pulp, colocalized with MARCO and expression of cleaved caspase-3. At day 100, allo mice receiving IMPs exhibited reduced macrophage M1 responses but were not protected from chronic rejection. IMPs afforded significant protection from acute rejection, inhibiting both innate and adaptive alloimmunity. Thus, our current experimental findings, coupled with our earlier demonstration of IMP-induced protection in kidney ischemia-reperfusion injury, identify IMPs as a potential induction agent in kidney transplantation.
Collapse
Affiliation(s)
- Christina Lai
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Renal Medicine, Kidney Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Steven J Chadban
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Renal Medicine, Kidney Centre, Royal Prince Alfred Hospital, Sydney, Australia.
| | - Yik Wen Loh
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Tony King-Tak Kwan
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Chuanmin Wang
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Julian Singer
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Renal Medicine, Kidney Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Paula Niewold
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Zheng Ling
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Alanna Spiteri
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Daniel Getts
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Nicholas Jonathan Cole King
- The Discipline of Pathology, the Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The University of Sydney Nano Institute, University of Sydney, Sydney, Australia
| | - Huiling Wu
- Kidney Node Laboratory, the Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Renal Medicine, Kidney Centre, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
15
|
Dangi A, Husain I, Jordan CZ, Yu S, Natesh N, Shen X, Kwun J, Luo X. Blocking CCL8-CCR8-Mediated Early Allograft Inflammation Improves Kidney Transplant Function. J Am Soc Nephrol 2022; 33:1876-1890. [PMID: 35973731 PMCID: PMC9528333 DOI: 10.1681/asn.2022020139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/27/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND In kidney transplantation, early allograft inflammation impairs long-term allograft function. However, precise mediators of early kidney allograft inflammation are unclear, making it challenging to design therapeutic interventions. METHODS We used an allogeneic murine kidney transplant model in which CD45.2 BALB/c kidneys were transplanted to CD45.1 C57BL/6 recipients. RESULTS Donor kidney resident macrophages within the allograft expanded rapidly in the first 3 days. During this period, they were also induced to express a high level of Ccl8, which, in turn, promoted recipient monocyte graft infiltration, their differentiation to resident macrophages, and subsequent expression of Ccl8. Enhanced graft infiltration of recipient CCR8+ T cells followed, including CD4, CD8, and γδ T cells. Consequently, blocking CCL8-CCR8 or depleting donor kidney resident macrophages significantly inhibits early allograft immune cell infiltration and promotes superior short-term allograft function. CONCLUSIONS Targeting the CCL8-CCR8 axis is a promising measure to reduce early kidney allograft inflammation.
Collapse
Affiliation(s)
- Anil Dangi
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Irma Husain
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Collin Z. Jordan
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Shuangjin Yu
- Division of Organ Transplantation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Naveen Natesh
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina
| | - Xiling Shen
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, North Carolina
- Terasaki Institute, Los Angeles, California
| | - Jean Kwun
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Duke Transplant Center, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
16
|
van Alem CMA, Bank JR, de Vries DK, Bajema IM, Mallat MJK, de Fijter JW, Rotmans JI, van Kooten C. Presence of CD163 + macrophages in DCD kidneys with high DGF reduces the risk for acute cellular rejection in 6 months after kidney transplantation. Transpl Immunol 2022; 75:101714. [PMID: 36108808 DOI: 10.1016/j.trim.2022.101714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/19/2022]
Abstract
Acute cellular rejection (ACR) occurs in 10% of renal allograft recipients and is characterized by leukocyte infiltration as observed in needle biopsies. ACR onset is subject to several risk factors, including delayed graft function (DGF). As the impact of DGF on the etiology of ACR remains unclear, this study analyzed the association between presence of leukocyte subsets and ACR onset, in DCD kidney biopsies with extensive DGF following transplantation. Immunohistochemical analysis of protocol biopsies taken 10 days after kidney transplantation revealed that patients with high levels of renal CD163+ macrophages have a decreased risk (OR = 0.021, P = 0.008) for ACR in the first 6 months after transplantation. In pre-transplant biopsies of a comparable DCD cohort, with >80% DGF, presence of donor CD163+ macrophages showed no effect on ACR risk. Therefore, leukocyte infiltrate present during the inflammatory response at the time of DGF may contain anti-inflammatory macrophages that exert a protective effect against ACR development.
Collapse
Affiliation(s)
- C M A van Alem
- Department of Internal Medicine, Nephrology Section, Leiden University Medical Center, Leiden, the Netherlands
| | - J R Bank
- Department of Internal Medicine, Nephrology Section, Leiden University Medical Center, Leiden, the Netherlands
| | - D K de Vries
- Transplant Center, Leiden University Medical Center, Leiden, the Netherlands; Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - I M Bajema
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - M J K Mallat
- Department of Internal Medicine, Nephrology Section, Leiden University Medical Center, Leiden, the Netherlands; Transplant Center, Leiden University Medical Center, Leiden, the Netherlands
| | - J W de Fijter
- Department of Internal Medicine, Nephrology Section, Leiden University Medical Center, Leiden, the Netherlands
| | - J I Rotmans
- Department of Internal Medicine, Nephrology Section, Leiden University Medical Center, Leiden, the Netherlands
| | - C van Kooten
- Department of Internal Medicine, Nephrology Section, Leiden University Medical Center, Leiden, the Netherlands; Transplant Center, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
17
|
Bräsen JH. [Current insights on monitoring of renal transplants-Banff and beyond]. PATHOLOGIE (HEIDELBERG, GERMANY) 2022; 43:134-136. [PMID: 36378289 DOI: 10.1007/s00292-022-01148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Renal transplantation represents the best treatment for end-stage renal disease. Much effort has been invested in improvement of longevity of the transplanted organ including a comprehensive and regularly updated histological scoring system (Banff classification) for surveillance; however, survival of transplanted kidneys is still limited to median 15 years. Molecular analyses have increased the understanding of damaging mechanisms within the transplant, especially antibody-mediated rejection, which can be difficult to identify using histological methods. Changes in the Banff classification necessitate to reclassify biopsies included in studies according to current consensus. Digital and molecular innovations as well as new immunologic mechanisms are anticipated.
Collapse
Affiliation(s)
- Jan Hinrich Bräsen
- Bereichsleitung Nephropathologie, Institut für Pathologie, OE 5110, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| |
Collapse
|
18
|
Schmitz J, Brauns N, Hüsing AM, Flechsig M, Glomb T, Bräsen JH, Haller H, von Vietinghoff S. Renal medullary osmolytes NaCl and urea differentially modulate human tubular cell cytokine expression and monocyte recruitment. Eur J Immunol 2022; 52:1258-1272. [DOI: 10.1002/eji.202149723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/20/2022] [Accepted: 05/06/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Jessica Schmitz
- Nephropathology Unit Institute for Pathology University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Nicolas Brauns
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Anne M. Hüsing
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Martina Flechsig
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Thorsten Glomb
- Core Facility Transcriptomics Hannover Medical School Hannover Germany
| | - Jan Hinrich Bräsen
- Nephropathology Unit Institute for Pathology University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Hermann Haller
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| | - Sibylle von Vietinghoff
- Department of Internal Medicine Division of Nephrology and Hypertension University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
- Nephrology Section First Medical Clinic University Clinic and Rheinische Friedrich‐Wilhelms Universität Bonn Bonn Germany
| |
Collapse
|
19
|
Lebraud E, Eloudzeri M, Rabant M, Lamarthée B, Anglicheau D. Microvascular Inflammation of the Renal Allograft: A Reappraisal of the Underlying Mechanisms. Front Immunol 2022; 13:864730. [PMID: 35392097 PMCID: PMC8980419 DOI: 10.3389/fimmu.2022.864730] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/22/2022] [Indexed: 12/26/2022] Open
Abstract
Antibody-mediated rejection (ABMR) is associated with poor transplant outcomes and was identified as a leading cause of graft failure after kidney transplantation. Although the hallmark histological features of ABMR (ABMRh), i.e., microvascular inflammation (MVI), usually correlate with the presence of anti-human leukocyte antigen donor-specific antibodies (HLA-DSAs), it is increasingly recognized that kidney transplant recipients can develop ABMRh in the absence of HLA-DSAs. In fact, 40-60% of patients with overt MVI have no circulating HLA-DSAs, suggesting that other mechanisms could be involved. In this review, we provide an update on the current understanding of the different pathogenic processes underpinning MVI. These processes include both antibody-independent and antibody-dependent mechanisms of endothelial injury and ensuing MVI. Specific emphasis is placed on non-HLA antibodies, for which we discuss the ontogeny, putative targets, and mechanisms underlying endothelial toxicity in connection with their clinical impact. A better understanding of these emerging mechanisms of allograft injury and all the effector cells involved in these processes may provide important insights that pave the way for innovative diagnostic tools and highly tailored therapeutic strategies.
Collapse
Affiliation(s)
- Emilie Lebraud
- Necker-Enfants Malades Institute, Inserm U1151, Université de Paris, Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
| | - Maëva Eloudzeri
- Necker-Enfants Malades Institute, Inserm U1151, Université de Paris, Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
| | - Marion Rabant
- Department of Renal Pathology, Necker Hospital, AP-HP, Paris, France
| | - Baptiste Lamarthée
- Université Bourgogne Franche-Comté, EFS BFC, Inserm UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Dany Anglicheau
- Necker-Enfants Malades Institute, Inserm U1151, Université de Paris, Department of Nephrology and Kidney Transplantation, Necker Hospital, AP-HP, Paris, France
| |
Collapse
|
20
|
Guo L, Shen J, Lei W, Yan P, Wang M, Zhou Q, Wang H, Wu J, Chen J, Wang R. Plasma Donor-Derived Cell-Free DNA Levels Are Associated With the Inflammatory Burden and Macrophage Extracellular Trap Activity in Renal Allografts. Front Immunol 2022; 13:796326. [PMID: 35386710 PMCID: PMC8977515 DOI: 10.3389/fimmu.2022.796326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/22/2022] [Indexed: 11/23/2022] Open
Abstract
Recent studies have confirmed the role of plasma donor-derived cell-free DNA (ddcfDNA) as a reliable non-invasive biomarker for allograft injury after kidney transplantation. Whereas the variability of plasma ddcfDNA levels among recipients has limited their clinical use. This study aimed to explore the intrinsic factors associated with plasma ddcfDNA elevation by investigating the impact of Banff lesions and inflammatory infiltrates on ddcfDNA levels in kidney transplant recipients. From March 2017 to September 2019, a total of 106 kidney transplant recipients with matched allograft biopsies were included, consisting of 13 recipients with normal/nonspecific changes, 13 recipients with borderline changes, 60 with T cell-mediated rejection, and 20 with antibody-mediated rejection. Histologic classification was performed according to the Banff 2017 criteria by two experienced pathologists. Plasma ddcfDNA fractions ranged from 0.12% to 10.22%, with a median level of 0.91%. Banff histology subelements including glomerulitis, intimal arteritis, and severe interstitial inflammation were correlated with increased plasma ddcfDNA levels. The inflammatory cell infiltrate in the allografts was phenotyped by immunochemistry and automatically counted by digital image recognition. Pearson correlation analysis revealed a significant positive correlation between macrophage infiltrations in allografts and plasma ddcfDNA levels. Additionally, macrophage extracellular trap (MET) activity was significantly associated with the rise in plasma ddcfDNA levels. Our findings demonstrated that plasma ddcfDNA could reflect the inflammatory state in renal allografts and suggested the potential role of METs in the pathogenesis of allograft injury.
Collapse
Affiliation(s)
- Luying Guo
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jia Shen
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Wenhua Lei
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Pengpeng Yan
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Meifang Wang
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Qin Zhou
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Huiping Wang
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianyong Wu
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Rending Wang
- Kidney Disease Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China.,National Key Clinical Department of Kidney Diseases, Hangzhou, China.,Institute of Nephrology, Zhejiang University, Hangzhou, China.,Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| |
Collapse
|
21
|
Abstract
Macrophages have emerged at the forefront of research in immunology and transplantation because of recent advances in basic science. New findings have illuminated macrophage populations not identified previously, expanded upon traditional macrophage phenotypes, and overhauled macrophage ontogeny. These advances have major implications for the field of transplant immunology. Macrophages are known to prime adaptive immune responses, perpetuate T-cell-mediated rejection and antibody-mediated rejection, and promote allograft fibrosis. In this review, macrophage phenotypes and their role in allograft injury of solid organ transplants will be discussed with an emphasis on kidney transplantation. Additionally, consideration will be given to the prospect of manipulating macrophage phenotypes as cell-based therapy. Innate immunity and macrophages represent important players in allograft injury and a promising target to improve transplant outcomes.
Collapse
Affiliation(s)
- Sarah E. Panzer
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
22
|
Callemeyn J, Lamarthée B, Koenig A, Koshy P, Thaunat O, Naesens M. Allorecognition and the spectrum of kidney transplant rejection. Kidney Int 2021; 101:692-710. [PMID: 34915041 DOI: 10.1016/j.kint.2021.11.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/05/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
Detection of mismatched human leukocyte antigens by adaptive immune cells is considered as the main cause of transplant rejection, leading to either T-cell mediated rejection or antibody-mediated rejection. This canonical view guided the successful development of immunosuppressive therapies and shaped the diagnostic Banff classification for kidney transplant rejection that is used in clinics worldwide. However, several observations have recently emerged that question this dichotomization between T-cell mediated rejection and antibody-mediated rejection, related to heterogeneity in the serology, histology, and prognosis of the rejection phenotypes. In parallel, novel insights were obtained concerning the dynamics of donor-specific anti-human leukocyte antigen antibodies, the immunogenicity of donor-recipient non-human leukocyte antigen mismatches, and the autoreactivity against self-antigens. Moreover, the potential of innate allorecognition was uncovered, as exemplified by natural killer cell-mediated microvascular inflammation through missing self, and by the emerging evidence on monocyte-driven allorecognition. In this review, we highlight the gaps in the current classification of rejection, provide an overview of the expanding insights into the mechanisms of allorecognition, and critically appraise how these could improve our understanding and clinical approach to kidney transplant rejection. We argue that consideration of the complex interplay of various allorecognition mechanisms can foster a more integrated view of kidney transplant rejection and can lead to improved risk stratification, targeted therapies, and better outcome after kidney transplantation.
Collapse
Affiliation(s)
- Jasper Callemeyn
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Baptiste Lamarthée
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Necker-Enfants Malades Institute, French National Institute of Health and Medical Research (INSERM) Unit 1151, Paris, France
| | - Alice Koenig
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University Lyon, Lyon, France; Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France; Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Priyanka Koshy
- Department of Morphology and Molecular Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Olivier Thaunat
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, University Lyon, Lyon, France; Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France; Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Maarten Naesens
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium; Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
23
|
Cho JH, Ju WS, Seo SY, Kim BH, Kim JS, Kim JG, Park SJ, Choo YK. The Potential Role of Human NME1 in Neuronal Differentiation of Porcine Mesenchymal Stem Cells: Application of NB-hNME1 as a Human NME1 Suppressor. Int J Mol Sci 2021; 22:ijms222212194. [PMID: 34830075 PMCID: PMC8619003 DOI: 10.3390/ijms222212194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022] Open
Abstract
This study aimed to investigate the effects of the human macrophage (MP) secretome in cellular xenograft rejection. The role of human nucleoside diphosphate kinase A (hNME1), from the secretome of MPs involved in the neuronal differentiation of miniature pig adipose tissue-derived mesenchymal stem cells (mp AD-MSCs), was evaluated by proteomic analysis. Herein, we first demonstrate that hNME1 strongly binds to porcine ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 (pST8SIA1), which is a ganglioside GD3 synthase. When hNME1 binds with pST8SIA1, it induces degradation of pST8SIA1 in mp AD-MSCs, thereby inhibiting the expression of ganglioside GD3 followed by decreased neuronal differentiation of mp AD-MSCs. Therefore, we produced nanobodies (NBs) named NB-hNME1 that bind to hNME1 specifically, and the inhibitory effect of NB-hNME1 was evaluated for blocking the binding between hNME1 and pST8SIA1. Consequently, NB-hNME1 effectively blocked the binding of hNME1 to pST8SIA1, thereby recovering the expression of ganglioside GD3 and neuronal differentiation of mp AD-MSCs. Our findings suggest that mp AD-MSCs could be a potential candidate for use as an additive, such as an immunosuppressant, in stem cell transplantation.
Collapse
Affiliation(s)
- Jin Hyoung Cho
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- GreenBio Corp. Central Research, 201-19, Bubaljungand-ro, Bubal-eup, Icheon-si 17321, Korea
| | - Won Seok Ju
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- Institute for Glycoscience, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea
| | - Sang Young Seo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Bo Hyun Kim
- CHA Fertility Center Bundang, 59, Yatap-ro, Bundang-gu, Seongnam-si 13496, Korea;
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology, 181, Ipsin-gil, Jeongeup-si 56216, Korea;
| | - Jong-Geol Kim
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Soon Ju Park
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea; (J.H.C.); (W.S.J.); (S.Y.S.); (J.-G.K.); (S.J.P.)
- Institute for Glycoscience, Wonkwang University, 460, Iksan-daero, Iksan-si 54538, Korea
- Correspondence: ; Tel.: +82-63-850-6087; Fax: +82-63-857-8837
| |
Collapse
|
24
|
Charreau B. Cellular and Molecular Crosstalk of Graft Endothelial Cells During AMR: Effector Functions and Mechanisms. Transplantation 2021; 105:e156-e167. [PMID: 33724240 DOI: 10.1097/tp.0000000000003741] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Graft endothelial cell (EC) injury is central to the pathogenesis of antibody-mediated rejection (AMR). The ability of donor-specific antibodies (DSA) to bind C1q and activate the classical complement pathway is an efficient predictor of graft rejection highlighting complement-dependent cytotoxicity as a key process operating during AMR. In the past 5 y, clinical studies further established the cellular and molecular signatures of AMR revealing the key contribution of other, IgG-dependent and -independent, effector mechanisms mediated by infiltrating NK cells and macrophages. Beyond binding to alloantigens, DSA IgG can activate NK cells and mediate antibody-dependent cell cytotoxicity through interacting with Fcγ receptors (FcγRs) such as FcγRIIIa (CD16a). FcRn, a nonconventional FcγR that allows IgG recycling, is highly expressed on ECs and may contribute to the long-term persistence of DSA in blood. Activation of NK cells and macrophages results in the production of proinflammatory cytokines such as TNF and IFNγ that induce transient and reversible changes in the EC phenotype and functions promoting coagulation, inflammation, vascular permeability, leukocyte trafficking. MHC class I mismatch between transplant donor and recipient can create a situation of "missing self" allowing NK cells to kill graft ECs. Depending on the microenvironment, cellular proximity with ECs may participate in macrophage polarization toward an M1 proinflammatory or an M2 phenotype favoring inflammation or vascular repair. Monocytes/macrophages participate in the loss of endothelial specificity in the process of endothelial-to-mesenchymal transition involved in renal and cardiac fibrosis and AMR and may differentiate into ECs enabling vessel and graft (re)-endothelialization.
Collapse
Affiliation(s)
- Béatrice Charreau
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et en Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
25
|
Merveille O, Lampert T, Schmitz J, Forestier G, Feuerhake F, Wemmert C. An automatic framework for fusing information from differently stained consecutive digital whole slide images: A case study in renal histology. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 208:106157. [PMID: 34091100 DOI: 10.1016/j.cmpb.2021.106157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE This article presents an automatic image processing framework to extract quantitative high-level information describing the micro-environment of glomeruli in consecutive whole slide images (WSIs) processed with different staining modalities of patients with chronic kidney rejection after kidney transplantation. METHODS This four-step framework consists of: 1) approximate rigid registration, 2) cell and anatomical structure segmentation 3) fusion of information from different stainings using a newly developed registration algorithm 4) feature extraction. RESULTS Each step of the framework is validated independently both quantitatively and qualitatively by pathologists. An illustration of the different types of features that can be extracted is presented. CONCLUSION The proposed generic framework allows for the analysis of the micro-environment surrounding large structures that can be segmented (either manually or automatically). It is independent of the segmentation approach and is therefore applicable to a variety of biomedical research questions. SIGNIFICANCE Chronic tissue remodelling processes after kidney transplantation can result in interstitial fibrosis and tubular atrophy (IFTA) and glomerulosclerosis. This pipeline provides tools to quantitatively analyse, in the same spatial context, information from different consecutive WSIs and help researchers understand the complex underlying mechanisms leading to IFTA and glomerulosclerosis.
Collapse
Affiliation(s)
- Odyssee Merveille
- ICube, University of Strasbourg, CNRS (UMR 7357), Strasbourg, France; Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69100, LYON, France.
| | - Thomas Lampert
- ICube, University of Strasbourg, CNRS (UMR 7357), Strasbourg, France
| | | | | | - Friedrich Feuerhake
- Institute of Pathology, Hannover Medical School, Germany; University Clinic, Freiburg, Germany
| | - Cédric Wemmert
- ICube, University of Strasbourg, CNRS (UMR 7357), Strasbourg, France
| |
Collapse
|
26
|
Hermsen M, Volk V, Bräsen JH, Geijs DJ, Gwinner W, Kers J, Linmans J, Schaadt NS, Schmitz J, Steenbergen EJ, Swiderska-Chadaj Z, Smeets B, Hilbrands LB, Feuerhake F, van der Laak JAWM. Quantitative assessment of inflammatory infiltrates in kidney transplant biopsies using multiplex tyramide signal amplification and deep learning. J Transl Med 2021; 101:970-982. [PMID: 34006891 PMCID: PMC8292146 DOI: 10.1038/s41374-021-00601-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Delayed graft function (DGF) is a strong risk factor for development of interstitial fibrosis and tubular atrophy (IFTA) in kidney transplants. Quantitative assessment of inflammatory infiltrates in kidney biopsies of DGF patients can reveal predictive markers for IFTA development. In this study, we combined multiplex tyramide signal amplification (mTSA) and convolutional neural networks (CNNs) to assess the inflammatory microenvironment in kidney biopsies of DGF patients (n = 22) taken at 6 weeks post-transplantation. Patients were stratified for IFTA development (<10% versus ≥10%) from 6 weeks to 6 months post-transplantation, based on histopathological assessment by three kidney pathologists. One mTSA panel was developed for visualization of capillaries, T- and B-lymphocytes and macrophages and a second mTSA panel for T-helper cell and macrophage subsets. The slides were multi spectrally imaged and custom-made python scripts enabled conversion to artificial brightfield whole-slide images (WSI). We used an existing CNN for the detection of lymphocytes with cytoplasmatic staining patterns in immunohistochemistry and developed two new CNNs for the detection of macrophages and nuclear-stained lymphocytes. F1-scores were 0.77 (nuclear-stained lymphocytes), 0.81 (cytoplasmatic-stained lymphocytes), and 0.82 (macrophages) on a test set of artificial brightfield WSI. The CNNs were used to detect inflammatory cells, after which we assessed the peritubular capillary extent, cell density, cell ratios, and cell distance in the two patient groups. In this cohort, distance of macrophages to other immune cells and peritubular capillary extent did not vary significantly at 6 weeks post-transplantation between patient groups. CD163+ cell density was higher in patients with ≥10% IFTA development 6 months post-transplantation (p < 0.05). CD3+CD8-/CD3+CD8+ ratios were higher in patients with <10% IFTA development (p < 0.05). We observed a high correlation between CD163+ and CD4+GATA3+ cell density (R = 0.74, p < 0.001). Our study demonstrates that CNNs can be used to leverage reliable, quantitative results from mTSA-stained, multi spectrally imaged slides of kidney transplant biopsies.
Collapse
Affiliation(s)
- Meyke Hermsen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Valery Volk
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | | | - Daan J Geijs
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wilfried Gwinner
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Jesper Kers
- Department of Pathology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Analytical Sciences Amsterdam (CASA), Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands
| | - Jasper Linmans
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nadine S Schaadt
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Jessica Schmitz
- Institute for Pathology, Hannover Medical School, Hannover, Germany
| | - Eric J Steenbergen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zaneta Swiderska-Chadaj
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
- Faculty of Electrical Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Bart Smeets
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Friedrich Feuerhake
- Institute for Pathology, Hannover Medical School, Hannover, Germany
- Institute for Neuropathology, University Clinic Freiburg, Freiburg, Germany
| | - Jeroen A W M van der Laak
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands.
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| |
Collapse
|
27
|
Gao T, Wu Y, Wang W, Deng C, Chen Y, Yi L, Song Y, Li W, Xu L, Xie Y, Fang L, Jin Q, Zhang L, Tang BZ, Xie M. Biomimetic Glucan Particles with Aggregation-Induced Emission Characteristics for Noninvasive Monitoring of Transplant Immune Response. ACS NANO 2021; 15:11908-11928. [PMID: 34264052 DOI: 10.1021/acsnano.1c03029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Real-time monitoring of post-transplant immune response is critical to prolong the survival of grafts. The current gold standard for assessing the immune response to graft is biopsy. However, such a method is invasive and prone to false negative results due to limited tissue size available and the heterogeneity of the rejection site. Herein, we report biomimetic glucan particles with aggregation-induced emission (AIE) characteristics (HBTTPEP/GPs) for real-time noninvasive monitoring of post-transplant immune response. We have found that the positively charged near-infrared AIEgens can effectively aggregate in the confined space of glucan particles (GPs), thereby turning on the fluorescence emission. HBTTPEP/GPs can track macrophages for 7 days without hampering the bioactivity. Oral administration of HBTTPEP/GPs can specially target macrophages by mimicking yeast, which then migrate to the transplant rejection site. The fluorescence emitted from HBTTPEP/GPs correlated well with the infiltration of macrophages and the degree of allograft rejection. Furthermore, a single oral HBTTPEP/GPs dose can dynamically evaluate the therapeutic response to immunosuppressive therapy. Consequently, the biomimetic AIE-active glucan particles can be developed as a promising probe for immune-monitoring in solid organ transplantation.
Collapse
Affiliation(s)
- Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ya Wu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenyuan Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Luyang Yi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yishu Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Wenqu Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lingling Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yuji Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Lingyun Fang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
28
|
Reese SR, Wilson NA, Huang Y, Ptak L, Degner KR, Xiang D, Redfield RR, Zhong W, Panzer SE. B-cell Deficiency Attenuates Transplant Glomerulopathy in a Rat Model of Chronic Active Antibody-mediated Rejection. Transplantation 2021; 105:1516-1529. [PMID: 33273321 PMCID: PMC8106694 DOI: 10.1097/tp.0000000000003530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Transplant glomerulopathy (TG) is a pathological feature of chronic active antibody-mediated rejection (cAMR) and is associated with renal allograft failure. The specific role of B cells in the pathogenesis of TG is unclear. METHODS We used a minor mismatched rat kidney transplant model with B cell-deficient recipients, generated by clustered regularly interspaced short palindromic repeats/Cas9 technology, to investigate the impact of B-cell depletion on the pathogenesis of TG. We hypothesized that B-cell deficiency would prevent TG in the rat kidney transplant model of cAMR. Treatment groups included syngeneic, allogeneic, sensitized allogeneic, and B cell-deficient allogeneic transplant recipients. RESULTS B cell-deficient recipients demonstrated reduced TG lesions, decreased microvascular inflammation, reduced allograft infiltrating macrophages, and reduced interferon gamma transcripts within the allograft. Allograft transcript levels of interferon gamma, monocyte chemoattractant protein-1, and interleukin-1β correlated with numbers of intragraft macrophages. B cell-deficient recipients lacked circulating donor-specific antibodies and had an increased splenic regulatory T-cell population. CONCLUSIONS In this model of cAMR, B-cell depletion attenuated the development of TG with effects on T cell and innate immunity.
Collapse
Affiliation(s)
- Shannon R. Reese
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, WI, United States
| | - Nancy A. Wilson
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, WI, United States
| | - Yabing Huang
- Department of Pathology, Renmin Hospital of Wuhan University, China
| | - Lucille Ptak
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, WI, United States
| | - Kenna R. Degner
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, WI, United States
| | - Ding Xiang
- Department of Organ Transplantation, Xiangya Hospital, Central South University, China
| | - Robert R. Redfield
- Department of Surgery, Division of Transplant Surgery, University of Wisconsin, Madison, WI, United States
| | - Weixiong Zhong
- Department of Pathology, University of Wisconsin, Madison, WI, United States
| | - Sarah E. Panzer
- Department of Medicine, Division of Nephrology, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
29
|
von Vietinghoff S, Kurts C. Regulation and function of CX3CR1 and its ligand CX3CL1 in kidney disease. Cell Tissue Res 2021; 385:335-344. [PMID: 34009468 PMCID: PMC8523406 DOI: 10.1007/s00441-021-03473-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
Attraction, retention, and differentiation of leukocytes to and within the kidney are governed by chemokines. The chemokine CX3CL1 (fractalkine) and its receptor CX3CR1 are exemplary in this regard as they are highly expressed and further upregulated in a range of kidney diseases. CX3CL1 is chiefly produced by renal endothelium and tubular epithelium, where it promotes leukocyte attraction. Recent data suggest that in addition to established soluble mediators, cellular interactions may enhance CX3CL1 expression. The receptor CX3CR1 is essential in myeloid phagocyte homing to the kidney at homeostasis, after acute cell depletion and in inflammation. CX3CR1 and its ligand are highly regulated in human kidney diseases such as IgA nephritis, systemic lupus erythematosus, and inflammatory conditions such as transplant rejection. A mechanistic role of CX3CR1 has been established in experimental models of nephrotoxic nephritis and renal candidiasis. It is debated in fibrosis. Recent publications demonstrate a role for CX3CR1+ myeloid cells in radio-contrast-agent and sepsis-induced kidney damage. Systemically, circulating CX3CR1+ monocytes reversibly increase in individuals with renal impairment and correlate with their cardiovascular risk. In this review, we discuss role and regulatory mechanisms of the CX3CL1-CX3CR1 axis in both localized and systemic effects of renal inflammation.
Collapse
Affiliation(s)
- Sibylle von Vietinghoff
- First Medical Clinic, Nephrology Section, University Clinic of the Rheinische Friedrich Wilhelms University Bonn, Venusberg Campus 1, 53127, Bonn, Germany. .,Institute for Molecular Medicine and Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms University Bonn, Biomedical Center II, Venusberg Campus 1, 53127, Bonn, Germany.
| | - Christian Kurts
- Institute for Molecular Medicine and Experimental Immunology, University Clinic of the Rheinische Friedrich Wilhelms University Bonn, Biomedical Center II, Venusberg Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
30
|
Lee YH, Kim KP, Park SH, Kim DJ, Kim YG, Moon JY, Jung SW, Kim JS, Jeong KH, Lee SY, Yang DH, Lim SJ, Woo JT, Rhee SY, Chon S, Choi HY, Park HC, Jo YI, Yi JH, Han SW, Lee SH. Urinary chemokine C-X-C motif ligand 16 and endostatin as predictors of tubulointerstitial fibrosis in patients with advanced diabetic kidney disease. Nephrol Dial Transplant 2021; 36:295-305. [PMID: 31598726 DOI: 10.1093/ndt/gfz168] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/19/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Interstitial fibrosis and tubular atrophy (IFTA) is a well-recognized risk factor for poor renal outcome in patients with diabetic kidney disease (DKD). However, a noninvasive biomarker for IFTA is currently lacking. The purpose of this study was to identify urinary markers of IFTA and to determine their clinical relevance as predictors of renal prognosis. METHODS Seventy patients with biopsy-proven isolated DKD were enrolled in this study. We measured multiple urinary inflammatory cytokines and chemokines by multiplex enzyme-linked immunosorbent assay in these patients and evaluated their association with various pathologic features and renal outcomes. RESULTS Patients enrolled in this study exhibited advanced DKD at the time of renal biopsy, characterized by moderate to severe renal dysfunction [mean estimated glomerular filtration rate (eGFR) 36.1 mL/min/1.73 m2] and heavy proteinuria (mean urinary protein:creatinine ratio 7.8 g/g creatinine). Clinicopathologic analysis revealed that higher IFTA scores were associated with worse baseline eGFR (P < 0.001) and poor renal outcome (P = 0.002), whereas glomerular injury scores were not. Among measured urinary inflammatory markers, C-X-C motif ligand 16 (CXCL16) and endostatin showed strong correlations with IFTA scores (P = 0.001 and P < 0.001, respectively), and patients with higher levels of urinary CXCL16 and/or endostatin experienced significantly rapid renal progression compared with other patients (P < 0.001). Finally, increased urinary CXCL16 and endostatin were independent risk factors for poor renal outcome after multivariate adjustments (95% confidence interval 1.070-3.455, P = 0.029). CONCLUSIONS Urinary CXCL16 and endostatin could reflect the degree of IFTA and serve as biomarkers of renal outcome in patients with advanced DKD.
Collapse
Affiliation(s)
- Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea.,Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Ki Pyo Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea.,Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sun-Hwa Park
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Dong-Jin Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Yang-Gyun Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Ju-Young Moon
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Su-Woong Jung
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Jin Sug Kim
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Kyung-Hwan Jeong
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - So-Young Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Dong-Ho Yang
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Sung-Jig Lim
- Department of Pathology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea
| | - Jeong-Taek Woo
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Sang Youl Rhee
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Suk Chon
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Hoon-Young Choi
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyeong-Cheon Park
- Division of Nephrology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Young-Il Jo
- Division of Nephrology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Korea
| | - Joo-Hark Yi
- Division of Nephrology, Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Sang-Woong Han
- Division of Nephrology, Department of Internal Medicine, Hanyang University Guri Hospital, Guri, Korea
| | - Sang-Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, Korea.,Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, Korea
| |
Collapse
|
31
|
Zhan P, Li H, Han M, Wang Z, Zhao J, Tu J, Shi X, Fu Y. PSMP Is Discriminative for Chronic Active Antibody-Mediated Rejection and Associate With Intimal Arteritis in Kidney Transplantation. Front Immunol 2021; 12:661911. [PMID: 33897709 PMCID: PMC8062877 DOI: 10.3389/fimmu.2021.661911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/08/2021] [Indexed: 01/06/2023] Open
Abstract
Chronic active antibody-mediated rejection (CAAMR) is an intermediate process that occurs during the development of chronic antibody-mediated rejection (CAMR), which is a key problem associated with the long-term kidney grafts survival. This study investigated the role played by PC3-secreted microprotein (PSMP) in the progression of CAAMR and CAMR. We showed that CAAMR and CAMR patients’ allografts dysfunction with declined survival rate, which suggested that earlier diagnosis and treatment of CAAMR might be important to prevent irreversible chronic injury of CAMR progression. We found PSMP was an important factor in the development of chronic antibody-mediated rejection. The PSMP expression increased significantly in CAAMR biopsy samples but not in CAMR and control patients, which distinguished CAAMR patients from CAMR and non-rejection patients. Moreover, our results showed that infiltration of CD68+ macrophages in CAAMR increased, and the correlation between CD68+ macrophages and PSMP expression in CAAMR patients was significant. Additionally, our data also revealed that intimal arteritis (v-lesion) accompanied by increased macrophage infiltration might have contributed to more graft loss in CAAMR, and PSMP expression was significantly associated with the v-lesion score. These results indicated that PSMP played an important role in the recruitment of macrophages and promote intimal arteritis inducing allograft lost in CAAMR progression. In future study PSMP could be a potential histopathological diagnostic biomarker and treatment target for CAAMR in kidney transplantation.
Collapse
Affiliation(s)
- Panpan Zhan
- Department of Kidney Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.,Department of Kidney Transplantation and Kidney Transplantation Research Laboratory, Tianjin First Central Hospital, Tianjin, China.,Key Laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, China
| | - Haizheng Li
- First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Mingzhe Han
- Institute of Hematology & Blood Diseases Hospital, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhen Wang
- Department of Kidney Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jie Zhao
- Department of Kidney Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jinpeng Tu
- Department of Kidney Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Xiaofeng Shi
- Department of Kidney Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yingxin Fu
- Department of Kidney Transplantation, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.,Department of Kidney Transplantation and Kidney Transplantation Research Laboratory, Tianjin First Central Hospital, Tianjin, China.,Key Laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
32
|
Girolami I, Marletta S, Eccher A. Commentary: The Digital Fate of Glomeruli in Renal Biopsy. J Pathol Inform 2021; 12:14. [PMID: 34012718 PMCID: PMC8112342 DOI: 10.4103/jpi.jpi_102_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/09/2021] [Accepted: 01/09/2021] [Indexed: 11/04/2022] Open
Affiliation(s)
- Ilaria Girolami
- Division of Pathology, Central Hospital Bolzano, Bolzano, Italy
| | - Stefano Marletta
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| | - Albino Eccher
- Department of Pathology and Diagnostics, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
33
|
Puthumana J, Thiessen-Philbrook H, Xu L, Coca SG, Garg AX, Himmelfarb J, Bhatraju PK, Ikizler TA, Siew ED, Ware LB, Liu KD, Go AS, Kaufman JS, Kimmel PL, Chinchilli VM, Cantley LG, Parikh CR. Biomarkers of inflammation and repair in kidney disease progression. J Clin Invest 2021; 131:139927. [PMID: 33290282 PMCID: PMC7843225 DOI: 10.1172/jci139927] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTIONAcute kidney injury and chronic kidney disease (CKD) are common in hospitalized patients. To inform clinical decision making, more accurate information regarding risk of long-term progression to kidney failure is required.METHODSWe enrolled 1538 hospitalized patients in a multicenter, prospective cohort study. Monocyte chemoattractant protein 1 (MCP-1/CCL2), uromodulin (UMOD), and YKL-40 (CHI3L1) were measured in urine samples collected during outpatient follow-up at 3 months. We followed patients for a median of 4.3 years and assessed the relationship between biomarker levels and changes in estimated glomerular filtration rate (eGFR) over time and the development of a composite kidney outcome (CKD incidence, CKD progression, or end-stage renal disease). We paired these clinical studies with investigations in mouse models of renal atrophy and renal repair to further understand the molecular basis of these markers in kidney disease progression.RESULTSHigher MCP-1 and YKL-40 levels were associated with greater eGFR decline and increased incidence of the composite renal outcome, whereas higher UMOD levels were associated with smaller eGFR declines and decreased incidence of the composite kidney outcome. A multimarker score increased prognostic accuracy and reclassification compared with traditional clinical variables alone. The mouse model of renal atrophy showed greater Ccl2 and Chi3l1 mRNA expression in infiltrating macrophages and neutrophils, respectively, and evidence of progressive renal fibrosis compared with the repair model. The repair model showed greater Umod expression in the loop of Henle and correspondingly less fibrosis.CONCLUSIONSBiomarker levels at 3 months after hospitalization identify patients at risk for kidney disease progression.FUNDINGNIH.
Collapse
Affiliation(s)
- Jeremy Puthumana
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Leyuan Xu
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Steven G. Coca
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amit X. Garg
- Division of Nephrology, Department of Medicine, Western University, London, Ontario, Canada
| | | | - Pavan K. Bhatraju
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - T. Alp Ikizler
- Division of Nephrology & Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Edward D. Siew
- Division of Nephrology & Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Tennessee Valley Health Services, Nashville Veterans Affairs Hospital, Nashville, Tennessee, USA
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kathleen D. Liu
- Division of Nephrology, UCSF School of Medicine, San Francisco, California, USA
| | - Alan S. Go
- Division of Nephrology, UCSF School of Medicine, San Francisco, California, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - James S. Kaufman
- Division of Nephrology, Veterans Affairs New York Harbor Health Care System, New York University School of Medicine, New York, New York, USA
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Vernon M. Chinchilli
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Lloyd G. Cantley
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Chirag R. Parikh
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Enhancing the Value of Histopathological Assessment of Allograft Biopsy Monitoring. Transplantation 2020; 103:1306-1322. [PMID: 30768568 DOI: 10.1097/tp.0000000000002656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traditional histopathological allograft biopsy evaluation provides, within hours, diagnoses, prognostic information, and mechanistic insights into disease processes. However, proponents of an array of alternative monitoring platforms, broadly classified as "invasive" or "noninvasive" depending on whether allograft tissue is needed, question the value proposition of tissue histopathology. The authors explore the pros and cons of current analytical methods relative to the value of traditional and illustrate advancements of next-generation histopathological evaluation of tissue biopsies. We describe the continuing value of traditional histopathological tissue assessment and "next-generation pathology (NGP)," broadly defined as staining/labeling techniques coupled with digital imaging and automated image analysis. Noninvasive imaging and fluid (blood and urine) analyses promote low-risk, global organ assessment, and "molecular" data output, respectively; invasive alternatives promote objective, "mechanistic" insights by creating gene lists with variably increased/decreased expression compared with steady state/baseline. Proponents of alternative approaches contrast their preferred methods with traditional histopathology and: (1) fail to cite the main value of traditional and NGP-retention of spatial and inferred temporal context available for innumerable objective analyses and (2) belie an unfamiliarity with the impact of advances in imaging and software-guided analytics on emerging histopathology practices. Illustrative NGP examples demonstrate the value of multidimensional data that preserve tissue-based spatial and temporal contexts. We outline a path forward for clinical NGP implementation where "software-assisted sign-out" will enable pathologists to conduct objective analyses that can be incorporated into their final reports and improve patient care.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Although organ transplantation has become the standard life-saving strategy for patients with end-stage organ failure and those with malignancies, effective and safe therapeutic strategies to combat allograft loss remain to be established. With the emerging evidence suggesting the critical role of innate immunity in the mechanism of allograft injury, we summarize the latest understanding of macrophage-neutrophil cross-communication and discuss therapeutic prospects of their targeting in transplant recipients. RECENT FINDINGS Macrophages and neutrophils contribute to the pathogenesis of early peritransplant ischemia-reperfusion injury and subsequent allograft rejection immune cascade, primarily by exacerbating inflammatory response and tissue damage. Noteworthy, recent advances enabled to elucidate multifaceted functions of innate immune cells, which are not only deleterious but may also prove graft-protective. Indeed, the efficacy of macrophage polarizing regimens or macrophage-targeted migration have been recognized to create graft-protective local environment. Moreover, novel molecular mechanisms in the neutrophil function have been identified, such as neutrophil extracellular traps, tissue-repairing capability, crosstalk with macrophages and T cells as well as reverse migration into the circulation. SUMMARY As efficient strategies to manage allograft rejection and improve transplant outcomes are lacking, newly discovered, and therapeutically attractive innate immune cell functions warrant comprehensive preclinical and clinical attention.
Collapse
|
36
|
Calvani J, Terada M, Lesaffre C, Eloudzeri M, Lamarthée B, Burger C, Tinel C, Anglicheau D, Vermorel A, Couzi L, Loupy A, Duong Van Huyen JP, Bruneval P, Rabant M. In situ multiplex immunofluorescence analysis of the inflammatory burden in kidney allograft rejection: A new tool to characterize the alloimmune response. Am J Transplant 2020; 20:942-953. [PMID: 31715060 DOI: 10.1111/ajt.15699] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/10/2019] [Accepted: 11/04/2019] [Indexed: 01/25/2023]
Abstract
The exact composition of leukocyte infiltration during kidney allograft rejection is difficult to comprehend and visualize on the same biopsy slide. Using an innovative technology of multiplex immunofluorescence (mIF), we were able to detect simultaneously NK cells, macrophages, and T cells and to determine their intra- or extravascular localization using an endothelial marker. Twenty antibody-mediated rejection (ABMR), 20 T cell-mediated rejection (TCMR), and five normal biopsies were labeled, with automatic leukocyte quantification and localization. This method was compared to a classic NKp46 immunohistochemistry (IHC) with manual quantification and to mRNA quantification. mIF automatic quantification was strongly correlated to IHC (r = .91, P < .001) and to mRNA expression levels (r > .46, P < .021). T cells and macrophages were the 2 predominant populations involved in rejection (48.0 ± 4.4% and 49.3 ± 4.4%, respectively, in ABMR; 51.8 ± 6.0% and 45.3 ± 5.8% in TCMR). NK cells constituted a rare population in both ABMR (2.7 ± 0.7%) and TCMR (2.9 ± 0.6%). The intravascular compartment was mainly composed of T cells, including during ABMR, in peritubular and glomerular capillaries. However, NK cell and macrophage densities were significantly higher during ABMR in glomerular and peritubular capillaries. To conclude, this study demonstrates the feasibility and utility of mIF imaging to study and better understand the kidney allograft rejection process.
Collapse
Affiliation(s)
- Julien Calvani
- INSERM U970, Paris, France.,Department of Pathology, Necker Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Megumi Terada
- INSERM U970, Paris, France.,Department of Pathology, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | | | - Maëva Eloudzeri
- Department of Pathology, Necker Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,INSERM U1151, Paris, France
| | | | - Carole Burger
- INSERM U1151, Paris, France.,Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Claire Tinel
- INSERM U1151, Paris, France.,Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Dany Anglicheau
- INSERM U1151, Paris, France.,Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Paris, France
| | - Agathe Vermorel
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux, France.,INSERM U5164, Bordeaux, France
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux, France.,INSERM U5164, Bordeaux, France
| | - Alexandre Loupy
- INSERM U970, Paris, France.,Department of Nephrology and Kidney Transplantation, Necker Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Paris, France
| | - Jean-Paul Duong Van Huyen
- INSERM U970, Paris, France.,Department of Pathology, Necker Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Paris, France
| | - Patrick Bruneval
- INSERM U970, Paris, France.,Department of Pathology, Georges Pompidou European Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Paris, France
| | - Marion Rabant
- Department of Pathology, Necker Hospital, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France.,INSERM U1151, Paris, France.,Paris Descartes, Sorbonne Paris Cité University, Paris, France
| |
Collapse
|
37
|
Jeong HJ. Diagnosis of renal transplant rejection: Banff classification and beyond. Kidney Res Clin Pract 2020; 39:17-31. [PMID: 32164120 PMCID: PMC7105630 DOI: 10.23876/j.krcp.20.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
Diagnosis of renal transplant rejection is dependent on interpretation of renal allograft biopsies. The Banff Classification of Allograft Pathology, which was developed as a standardized working classification system in 1991, has contributed to the standardization of definitions for histologic injuries resulting from renal allograft rejections and provided a universal grading system for assessing these injuries. It has also helped to provide insight into the underlying pathogenic mechanisms that contribute to transplant rejection. In addition to histological and immunologic parameters, molecular tools are now being used to facilitate the diagnosis of rejection. In this review, I will discuss morphologic features of renal transplant rejections as well as major revisions and pitfalls of the Banff classification system, and provide future perspectives.
Collapse
Affiliation(s)
- Hyeon Joo Jeong
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
38
|
Kidney allograft fibrosis: what we learned from latest translational research studies. J Nephrol 2020; 33:1201-1211. [PMID: 32193834 DOI: 10.1007/s40620-020-00726-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
To add new molecular and pathogenetic insights into the biological machinery associated to kidney allograft fibrosis is a major research target in nephrology and organ transplant translational medicine. Interstitial fibrosis associated to tubular atrophy (IF/TA) is, in fact, an inevitable and progressive process that occurs in almost every type of chronic allograft injury (particularly in grafts from expanded criteria donors) characterized by profound remodeling and excessive production/deposition of fibrillar extracellular matrix (ECM) with a great clinical impact. IF/TA is detectable in more than 50% of kidney allografts at 2 years. However, although well studied, the complete cellular/biological network associated with IF/TA is only partially evaluated. In the last few years, then, thanks to the introduction of new biomolecular technologies, inflammation in scarred/fibrotic parenchyma areas (recently acknowledged by the BANFF classification) has been recognized as a pivotal element able to accelerate the onset and development of the allograft chronic damage. Therefore, in this review, we focused on some new pathogenetic elements involved in graft fibrosis (including epithelial/endothelial to mesenchymal transition, oxidative stress, activation of Wnt and Hedgehog signaling pathways, fatty acids oxidation and cellular senescence) that, in our opinion, could become in future good candidates as potential biomarkers and therapeutic targets.
Collapse
|
39
|
Kim JY. Macrophages in xenotransplantation. KOREAN JOURNAL OF TRANSPLANTATION 2019; 33:74-82. [PMID: 35769982 PMCID: PMC9188951 DOI: 10.4285/jkstn.2019.33.4.74] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 11/25/2022] Open
Abstract
Xenotransplantation refers to organ transplantation across species. Immune rejection of xenografts is stronger and faster than that of allografts because of significant molecular differences between species. Recent studies have revealed the involvement of macrophages in xenograft and allograft rejections. Macrophages have been shown to play a critical role in inflammation, coagulation, and phagocytosis in xenograft rejection. This review presents a recent understanding of the role of macrophages in xenograft rejection and possible strategies to control macrophage-mediated xenograft rejection.
Collapse
Affiliation(s)
- Jae Young Kim
- Department of Life Science, Gachon University, Seongnam, Korea
| |
Collapse
|
40
|
Wilson NA, Dylewski J, Degner KR, O'Neill MA, Reese SR, Hidalgo LG, Blaine J, Panzer SE. An in vitro model of antibody-mediated injury to glomerular endothelial cells: Upregulation of MHC class II and adhesion molecules. Transpl Immunol 2019; 58:101261. [PMID: 31887408 DOI: 10.1016/j.trim.2019.101261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 11/15/2022]
Abstract
Chronic active antibody-mediated rejection is a major cause of allograft failure in kidney transplantation. Microvascular inflammation and transplant glomerulopathy are defining pathologic features of chronic active antibody-mediated rejection and are associated with allograft failure. However, the mechanisms of leukocyte infiltration and glomerular endothelial cell injury remain unclear. We hypothesized MHC class II ligation on glomerular endothelial cells (GEnC) would result in upregulation of adhesion molecules and production of chemoattractants. A model of endothelial cell activation in the presence of antibodies to MHC classes I and II was used to determine the expression of adhesion molecules and chemokines. Murine GEnC were activated with IFNγ, which upregulated gene expression of β2-microglobulin (MHC class I), ICAM1, VCAM1, CCL2, CCL5, and IL-6. IFNγ stimulation of GEnC increased surface expression of MHC class I, MHC class II, ICAM1, and VCAM1. Incubation with antibodies directed at MHC class I or class II did not further enhance adhesion molecule expression. Multispectral imaging flow cytometry and confocal microscopy demonstrated MHC molecules co-localized with the adhesion molecules ICAM1 and VCAM1 on the GEnC surface. GEnC secretion of chemoattractants, CCL2 and CCL5, was increased by IFNγ stimulation. CCL2 production was further enhanced by incubation with sensitized plasma. Endothelial activation induces de novo expression of MHC class II molecules and increases surface expression of MHC class I, ICAM1 and VCAM1, which are all co-localized together. Maintaining the integrity and functionality of the glomerular endothelium is necessary to ensure survival of the allograft. IFNγ stimulation of GEnC propagates an inflammatory response with production of chemokines and co-localization of MHC and adhesion molecules on the GEnC surface, contributing to endothelial cell function as antigen presenting cells and an active player in allograft injury.
Collapse
Affiliation(s)
- Nancy A Wilson
- Division of Nephrology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - James Dylewski
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado-Denver, Aurora, CO, USA
| | - Kenna R Degner
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Megan A O'Neill
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Shannon R Reese
- Division of Nephrology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Luis G Hidalgo
- Division of Transplantation, Department of Surgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Judith Blaine
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado-Denver, Aurora, CO, USA
| | - Sarah E Panzer
- Division of Nephrology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
41
|
Aguado-Domínguez E, Cabrera-Pérez R, Suarez-Benjumea A, Abad-Molina C, Núñez-Roldán A, Aguilera I. Computer-Assisted Definition of the Inflammatory Infiltrates in Patients With Different Categories of Banff Kidney Allograft Rejection. Front Immunol 2019; 10:2605. [PMID: 31781108 PMCID: PMC6856956 DOI: 10.3389/fimmu.2019.02605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/21/2019] [Indexed: 11/13/2022] Open
Abstract
Currently, the diagnosis of kidney allograft rejection relies on individual histological assessments made by expert pathologists according to the Banff classification. In this study, we applied new Computer-Assisted System Technology (newCAST™) by Visiopharm® with the aim of identifying and quantifying the immune cells in inflammatory infiltrates. We searched for distinctive cellular profiles that could be assigned to each rejection category of the Banff schema: antibody-mediated rejection (active and chronic active), borderline, T cell-mediated rejection (TCMR), and mixed rejection. This study was performed with 49 biopsy samples, 42 from patients with rejection and 7 from patients with clinical signs of dysfunction but an absence of histological findings of rejection. Plasma cells, B and T lymphocytes, natural killer cells, and macrophages, with a special focus on the M1 and M2 subsets, were studied. A major difference among the Banff rejection groups was in the total amount of cells/mm2 tissue. Principal component analysis identified some distinctive associations. The borderline category grouped with CD4+ lymphocytes and M1 macrophages, and active antibody-mediated rejection (aAMR) clustered with natural killer cells. Despite these findings, the search for characteristic profiles linked to the rejection types proved to be a very difficult task since the cellular composition varied significantly among individuals within the same diagnostic category. The results of this study will be analyzed from the perspective of reconciling the classic way of diagnosing rejection and the immune situation “in situ” at the time of diagnosis.
Collapse
Affiliation(s)
- Elena Aguado-Domínguez
- Department of Immunology, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Rocío Cabrera-Pérez
- Department of Pathology, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Alejandro Suarez-Benjumea
- Department of Nephrology, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Cristina Abad-Molina
- Department of Immunology, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Antonio Núñez-Roldán
- Department of Immunology, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Isabel Aguilera
- Department of Immunology, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
42
|
Exenatide Reduces Graft Injury in a Rat Transplantation Model Using Kidneys Donated after Cardiac Death. Transplant Proc 2019; 51:2116-2123. [PMID: 31303407 DOI: 10.1016/j.transproceed.2019.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/04/2019] [Accepted: 04/22/2019] [Indexed: 11/21/2022]
Abstract
Besides being used in the therapy of type 2 diabetes, exenatide reduces cerebral ischemia-reperfusion (I/R) injury. We evaluated the potential effects of exenatide on inhibition of apoptosis in kidney grafts donated after cardiac death and on reduction of I/R injury after kidney transplantation (KTx) in a rat model. We used a rat syngeneic KTx model with kidney grafts obtained after cardiac death, and apoptosis was detected in the graft before KTx. Graft function, rat survival, morphologic examination, and activation of inflammatory molecules were analyzed after KTx. By the end of the cold storage, exenatide pretreatment donors had significantly reduced caspase pathway activation, terminal deoxynucleotidyl transferase dUTP nick-end labeling--positive cells, release of mitochondrial porin proteins into the cytosol, and expression of cleaved caspase-3 and poly (ADP-ribose) polymerase in kidney grafts. Exenatide pretreatment improved renal function survival rate with lower scores of acute tubular necrosis, infiltrating macrophages, and interstitial fibrosis as well as reduced messenger RNA expression of inflammatory mediators (tumor necrosis factor α, interleukin-6, interleukin-1β, and intercellular adhesion molecule-1) after KTx. Our study showed that exenatide reduced I/R injury in kidneys donated after cardiac death in a rat transplantation model and improved recipient survival and graft function.
Collapse
|
43
|
Girolami I, Parwani A, Barresi V, Marletta S, Ammendola S, Stefanizzi L, Novelli L, Capitanio A, Brunelli M, Pantanowitz L, Eccher A. The Landscape of Digital Pathology in Transplantation: From the Beginning to the Virtual E-Slide. J Pathol Inform 2019; 10:21. [PMID: 31367473 PMCID: PMC6639852 DOI: 10.4103/jpi.jpi_27_19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background Digital pathology has progressed over the last two decades, with many clinical and nonclinical applications. Transplantation pathology is a highly specialized field in which the majority of practicing pathologists do not have sufficient expertise to handle critical needs. In this context, digital pathology has proven to be useful as it allows for timely access to expert second-opinion teleconsultation. The aim of this study was to review the experience of the application of digital pathology to the field of transplantation. Methods Papers on this topic were retrieved using PubMed as a search engine. Inclusion criteria were the presence of transplantation setting and the use of any type of digital image with or without the use of image analysis tools; the search was restricted to English language papers published in the 25 years until December 31, 2018. Results Literature regarding digital transplant pathology is mostly about the digital interpretation of posttransplant biopsies (75 vs. 19), with 15/75 (20%) articles focusing on agreement/reproducibility. Several papers concentrated on the correlation between biopsy features assessed by digital image analysis (DIA) and clinical outcome (45/75, 60%). Whole-slide imaging (WSI) only appeared in recent publications, starting from 2011 (13/75, 17.3%). Papers dealing with preimplantation biopsy are less numerous, the majority (13/19, 68.4%) of which focus on diagnostic agreement between digital microscopy and light microscopy (LM), with WSI technology being used in only a small quota of papers (4/19, 21.1%). Conclusions Overall, published studies show good concordance between digital microscopy and LM modalities for diagnosis. DIA has the potential to increase diagnostic reproducibility and facilitate the identification and quantification of histological parameters. Thus, with advancing technology such as faster scanning times, better image resolution, and novel image algorithms, it is likely that WSI will eventually replace LM.
Collapse
Affiliation(s)
- Ilaria Girolami
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Anil Parwani
- Department of Pathology, Ohio State University, Columbus, Ohio, USA
| | - Valeria Barresi
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Stefano Marletta
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Serena Ammendola
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Lavinia Stefanizzi
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Novelli
- Department of Translational Medicine and Surgery, Institute of Histopathology and Molecular Diagnosis, Careggi University Hospital, Florence, Italy
| | - Arrigo Capitanio
- Department of Clinical Pathology, and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Matteo Brunelli
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| | - Liron Pantanowitz
- Department of Pathology, UPMC Shadyside Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Albino Eccher
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
44
|
Paoletti E, Bussalino E, Bellino D, Tagliamacco A, Bruzzone M, Ravera M, Parodi A, Fontana I, Gaggero G, Garibotto G, Ravetti JL. Early interstitial macrophage infiltration with mild dysfunction is associated with subsequent kidney graft loss. Clin Transplant 2019; 33:e13579. [PMID: 31034645 DOI: 10.1111/ctr.13579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022]
Abstract
Macrophage infiltration is associated with unfavorable kidney graft outcome in protocol biopsies, but few studies have evaluated its impact on clinical practice. We therefore prospectively evaluated 37 kidney transplant recipients (KTRs) who underwent kidney biopsy due to slight increases in serum creatinine, or mild proteinuria (>0.3 g/24 hr), in the first post-transplant year. Banff score, CD68+ count (score 0-3) by immunohistochemistry, and 1-year DSA were assessed. DGF was reported in 10 (27%) patients, 6 (16%) had normal biopsy, 7 (19%) borderline lesions, 13 (35%) IFTA, and 11 (30%) other lesions. Fifteen KTRs had grade 3 CD68+ infiltration, and 47% developed de novo DSA. During a 6.2 ± 2.7 year follow-up, four patients (11%) suffered from biopsy-proven T-cell rejection, 17 KTRs (46%) lost their graft (12 in the grade 3 CD68+ group). Graft survival was lower in KTRs with grade 3 CD68+ infiltration (P = 0.0074; log-rank test). Grade 3 CD68+ infiltrate was an independent predictor of graft loss (HR 5.41, 95% CI 1.74-16.8; P = 0.003), together with more severe graft dysfunction at biopsy (HR 6.41, 95% CI 2.57-16; P < 0.001). We conclude that grade 3 CD68+ interstitial infiltration is associated with increased risk of subsequent graft loss independent of other factors.
Collapse
Affiliation(s)
- Ernesto Paoletti
- Nephrology, Dialysis, and Transplantation, University of Genova, Ospedale Policlinico San Martino, Genova, Italy
| | - Elisabetta Bussalino
- Nephrology, Dialysis, and Transplantation, University of Genova, Ospedale Policlinico San Martino, Genova, Italy
| | - Diego Bellino
- Nephrology, Dialysis, and Transplantation, University of Genova, Ospedale Policlinico San Martino, Genova, Italy
| | | | - Marco Bruzzone
- Clinical Epidemiology Unit, Ospedale Policlinico San Martino, Genova, Italy
| | - Maura Ravera
- Nephrology, Dialysis, and Transplantation, University of Genova, Ospedale Policlinico San Martino, Genova, Italy
| | - Angelica Parodi
- Nephrology, Dialysis, and Transplantation, University of Genova, Ospedale Policlinico San Martino, Genova, Italy
| | - Iris Fontana
- Renal Transplantation Unit, Ospedale Policlinico San Martino, Genova, Italy
| | | | - Giacomo Garibotto
- Nephrology, Dialysis, and Transplantation, University of Genova, Ospedale Policlinico San Martino, Genova, Italy
| | | |
Collapse
|
45
|
The Evolving Roles of Macrophages in Organ Transplantation. J Immunol Res 2019; 2019:5763430. [PMID: 31179346 PMCID: PMC6507224 DOI: 10.1155/2019/5763430] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/14/2019] [Indexed: 12/24/2022] Open
Abstract
Organ transplantation is a life-saving strategy for patients with end-stage organ failure. Over the past few decades, organ transplantation has achieved an excellent success in short-term survival but only a marginal improvement in long-term graft outcomes. The pathophysiology of graft loss is multifactorial and remains incompletely defined. However, emerging evidence suggests macrophages as crucial mediators of acute and chronic allograft immunopathology. In this process, macrophage-mediated mobilization of first-line defenses, particularly phagocytosis and the release of acute inflammatory mediators, is important, but macrophages also launch adaptive alloimmune reactions against grafts through antigen processing and presentation, as well as providing costimulation. Additionally, crosstalk with other immune cells and graft endothelial cells causes tissue damage or fibrosis in transplanted organs, contributing to graft loss or tolerance resistance. However, some macrophages function as regulatory cells that are capable of suppressing allogeneic T cells, inhibiting DC maturation, inducing the differentiation of Tregs, and subsequently promoting transplant tolerance. This functional diversity of macrophages in organ transplantation is consistent with their heterogeneity. Although our knowledge of the detrimental or beneficial effects of macrophages on transplants has exponentially increased, the exact mechanisms controlling macrophage functions are not yet completely understood. Here, we review recent advances in our understanding of the multifaceted nature of macrophages, focusing on their evolving roles in organ transplantation and the mechanisms involved in their activation and function in allograft transplantation. We also discuss potential therapeutic options and opportunities to target macrophage to improve the outcomes of transplant recipients.
Collapse
|
46
|
Macrophages: versatile players in renal inflammation and fibrosis. Nat Rev Nephrol 2019; 15:144-158. [PMID: 30692665 DOI: 10.1038/s41581-019-0110-2] [Citation(s) in RCA: 555] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Macrophages have important roles in immune surveillance and in the maintenance of kidney homeostasis; their response to renal injury varies enormously depending on the nature and duration of the insult. Macrophages can adopt a variety of phenotypes: at one extreme, M1 pro-inflammatory cells contribute to infection clearance but can also promote renal injury; at the other extreme, M2 anti-inflammatory cells have a reparative phenotype and can contribute to the resolution phase of the response to injury. In addition, bone marrow monocytes can differentiate into myeloid-derived suppressor cells that can regulate T cell immunity in the kidney. However, macrophages can also promote renal fibrosis, a major driver of progression to end-stage renal disease, and the CD206+ subset of M2 macrophages is strongly associated with renal fibrosis in both human and experimental diseases. Myofibroblasts are important contributors to renal fibrosis and recent studies provide evidence that macrophages recruited from the bone marrow can transition directly into myofibroblasts within the injured kidney. This process is termed macrophage-to-myofibroblast transition (MMT) and is driven by transforming growth factor-β1 (TGFβ1)-Smad3 signalling via a Src-centric regulatory network. MMT may serve as a key checkpoint for the progression of chronic inflammation into pathogenic fibrosis.
Collapse
|
47
|
Complete B Cell Deficiency Reduces Allograft Inflammation and Intragraft Macrophages in a Rat Kidney Transplant Model. Transplantation 2018; 102:396-405. [PMID: 29215459 DOI: 10.1097/tp.0000000000002010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Increasingly, it is being appreciated that B cells have broad roles beyond the humoral response and are able to contribute to and regulate inflammation. The specific role of B cells in the pathogenesis of early allograft inflammation remains unclear. METHODS To address this question, we generated B cell-deficient (B) Lewis rats via clustered regularly interspaced short palindromic repeats (CRISPR) technology. In a full mismatch transplant model, kidneys from Brown Norway donors were transplanted into B Lewis recipients or wild type Lewis recipients. T cell-mediated rejection was attenuated with cyclosporine. RESULTS Renal inflammation was reduced at 1 week after transplant (Banff scores for interstitial inflammation, microvascular inflammation, glomerulitis, and C4d) in allografts from B recipients. The reduction in interstitial inflammation was predominantly due to a decline in graft infiltrating macrophages. Intragraft T-cell numbers remained unchanged. In addition, B-cell deficiency was associated with increased T regulatory cells and reduced splenic T follicular helper cells at baseline; and significantly increased intragraft and splenic IL-10 mRNA levels after transplant. In vitro, B and wild type splenic T cells produced similar levels of IFN-γ in response to T cell-specific activation. CONCLUSIONS B-cell deficiency in this model produced an anti-inflammatory phenotype with a shift toward regulatory T-cell populations, production of anti-inflammatory cytokines (IL-10), and a reduction in allograft inflammation. These findings define a role for B cells to influence the cell populations and mediators involved in the pathogenesis of early allograft inflammation.
Collapse
|
48
|
Casper J, Schmitz J, Bräsen JH, Khalifa A, Schmidt BM, Einecke G, Haller H, von Vietinghoff S. Renal transplant recipients receiving loop diuretic therapy have increased urinary tract infection rate and altered medullary macrophage polarization marker expression. Kidney Int 2018; 94:993-1001. [DOI: 10.1016/j.kint.2018.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/28/2018] [Indexed: 01/06/2023]
|
49
|
Papazova DA, Krebber MM, Oosterhuis NR, Gremmels H, van Zuilen AD, Joles JA, Verhaar MC. Dissecting recipient from donor contribution in experimental kidney transplantation: focus on endothelial proliferation and inflammation. Dis Model Mech 2018; 11:11/7/dmm035030. [PMID: 30038062 PMCID: PMC6078404 DOI: 10.1242/dmm.035030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Kidney transplantation (Tx) is considered the only definite treatment for end-stage kidney disease (ESKD) patients. The increasing prevalence of ESKD has necessitated the introduction of transplantation with kidneys from suboptimal donors. There is, however, still a lack of fundamental and longitudinal research on suboptimal kidney transplants. Specifically, there is a demand for accurate pre-Tx predictors of donor kidney function and injury to predict post-Tx outcome. In the present study, we combine rat models of chronic kidney disease (CKD) and renal Tx to dissect the effects of healthy and CKD renal grafts on healthy and CKD recipients. We show that renal function at 6 weeks post-Tx is exclusively determined by donor graft quality. Using cell tracking within enhanced green fluorescent protein-positive (eGFP+) recipients, we furthermore show that most inflammatory cells within the donor kidney originate from the donor. Oxidative and vascular extra-renal damage were, in contrast, determined by the recipient. Post- versus pre-Tx evaluation of grafts showed an increase in glomerular and peritubular capillary rarefaction in healthy but not CKD grafts within a CKD environment. Proliferation of glomerular endothelium was similar in all groups, and influx of eGFP+ recipient-derived cells occurred irrespective of graft or recipient status. Glomerular and peritubular capillary rarefaction, severity of inflammation and macrophage subtype data post-Tx were, however, determined by more complicated effects, warranting further study. Our experimental model could help to further distinguish graft from recipient environment effects, leading to new strategies to improve graft survival of suboptimal Tx kidneys. This article has an associated First Person interview with the first author of the paper. Summary: Using experimental kidney transplantation, we dissected donor graft from recipient environment effects, focusing on the endothelium and inflammation. These results can direct strategies to improve graft survival after suboptimal transplantation.
Collapse
Affiliation(s)
- Diana A Papazova
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands.,Department of Anesthesiology, Amsterdam UMC, Vrije Universiteit Amsterdam, POB 7057, 1007 MB Amsterdam, The Netherlands
| | - Merle M Krebber
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| | - Nynke R Oosterhuis
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| | - Hendrik Gremmels
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| | - Arjan D van Zuilen
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, UMC Utrecht, POB 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|