1
|
Yang CR, Park E, Chen L, Datta A, Chou CL, Knepper MA. Proteomics and AQP2 regulation. J Physiol 2024; 602:3011-3023. [PMID: 36571566 PMCID: PMC10686537 DOI: 10.1113/jp283899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022] Open
Abstract
The advent of modern quantitative protein mass spectrometry techniques around the turn of the 21st century has contributed to a revolution in biology referred to as 'systems biology'. These methods allow identification and quantification of thousands of proteins in a biological specimen, as well as detection and quantification of post-translational protein modifications including phosphorylation. Here, we discuss these methodologies and show how they can be applied to understand the effects of the peptide hormone vasopressin to regulate the molecular water channel aquaporin-2. The emerging picture provides a detailed framework for understanding the molecular mechanisms involved in water balance disorders.
Collapse
Affiliation(s)
- Chin-Rang Yang
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Euijung Park
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Arnab Datta
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
- Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore, India
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Roskosch J, Huynh-Do U, Rudloff S. Lectin-mediated, time-efficient, and high-yield sorting of different morphologically intact nephron segments. Pflugers Arch 2024; 476:379-393. [PMID: 38091061 PMCID: PMC10847228 DOI: 10.1007/s00424-023-02894-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 02/08/2024]
Abstract
The kidney is a highly complex organ equipped with a multitude of miniscule filter-tubule units called nephrons. Each nephron can be subdivided into multiple segments, each with its own morphology and physiological function. To date, conventional manual approaches to isolate specific nephron segments are very laborious, time-consuming, often limited to only a specific segment, and typically have low yield. Here, we describe a novel, unconventional method that is superior in many aspects to previous protocols by combining low-cost fluorophore-conjugated lectins or agglutinins (Flaggs) with flow sorting. This allows the simultaneous separation of different nephron segments with preserved 3D morphology from mouse or human samples in under 3 h. Using a 200-µm nozzle and 5 psi, glomeruli, proximal, or distal convoluted tubules are sorted with Cy3-labeled Sambucus Nigra agglutinin (SNA-Cy3), Fluorescein-labeled Lotus Tetragonolobus lectin (LTL-FITC), or Pacific Blue-labeled soybean agglutinin (SBA-PB), respectively. Connecting tubules and collecting ducts are sorted by double-positive SBA-PB and SNA-Cy3 signals, while thick ascending limb segments are characterized by the absence of any Flaggs labeling. From two mouse kidneys, this yields 37-521 ng protein/s or 0.71-16.71 ng RNA/s, depending on the specific nephron segment. The purity of sorted segments, as assessed by mRNA expression level profiling of 15 genes, is very high with a 96.1-fold median enrichment across all genes and sorted segments. In summary, our method represents a simple, straightforward, cost-effective, and widely applicable tool yielding high amounts of pure and morphologically largely intact renal tubule materials with the potential to propel nephron segment-specific research.
Collapse
Affiliation(s)
- Jessica Roskosch
- Division of Nephrology and Hypertension, University of Bern and University Hospital Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Uyen Huynh-Do
- Division of Nephrology and Hypertension, University of Bern and University Hospital Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Stefan Rudloff
- Division of Nephrology and Hypertension, University of Bern and University Hospital Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland.
| |
Collapse
|
3
|
Mutchler SM, Whelan SCM, Marciszyn A, Chen J, Kleyman TR, Shi S. Role of paraoxonase 3 in regulating ENaC-mediated Na + transport in the distal nephron. J Physiol 2024; 602:737-757. [PMID: 38345534 PMCID: PMC10940207 DOI: 10.1113/jp285034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/11/2024] [Indexed: 02/18/2024] Open
Abstract
Paraoxonase 3 (PON3) is expressed in the aldosterone-sensitive distal nephron, where filtered Na+ is reabsorbed mainly via the epithelial Na+ channel (ENaC) and Na+ -coupled co-transporters. We previously showed that PON3 negatively regulates ENaC through a chaperone mechanism. The present study aimed to determine the physiological role of PON3 in renal Na+ and K+ homeostasis. Pon3 knockout (KO) mice had higher amiloride-induced natriuresis and lower plasma [K+ ] at baseline. Single channel recordings in split-open tubules showed that the number of active channels per patch was significantly higher in KO mice, resulting in a higher channel activity in the absence of PON3. Although whole kidney abundance of ENaC subunits was not altered in Pon3 KOs, ENaC gamma subunit was more apically distributed within the connecting tubules and cortical collecting ducts of Pon3 KO kidneys. Additionally, small interfering RNA-mediated knockdown of PON3 in cultured mouse cortical collecting duct cells led to an increased surface abundance of ENaC gamma subunit. As a result of lower plasma [K+ ], sodium chloride co-transporter phosphorylation was enhanced in the KO kidneys, a phenotype that was corrected by a high K+ diet. Finally, PON3 expression was upregulated in mouse kidneys under dietary K+ restriction, potentially providing a mechanism to dampen ENaC activity and associated K+ secretion. Taken together, our results show that PON3 has a role in renal Na+ and K+ homeostasis through regulating ENaC functional expression in the distal nephron. KEY POINTS: Paraoxonase 3 (PON3) is expressed in the distal nephron of mouse kidneys and functions as a molecular chaperone to reduce epithelial Na+ channel (ENaC) expression and activity in heterologous expression systems. We examined the physiological role of PON3 in renal Na+ and K+ handling using a Pon3 knockout (KO) mouse model. At baseline, Pon3 KO mice had lower blood [K+ ], more functional ENaC in connecting tubules/cortical collecting ducts, higher amiloride-induced natriuresis, and enhanced sodium chloride co-transporter (NCC) phosphorylation. Upon challenge with a high K+ diet, Pon3 KO mice had normalized blood [K+ ] and -NCC phosphorylation but lower circulating aldosterone levels compared to their littermate controls. Kidney PON3 abundance was altered in mice under dietary K+ loading or K+ restriction, providing a potential mechanism for regulating ENaC functional expression and renal Na+ and K+ homeostasis in the distal nephron.
Collapse
Affiliation(s)
| | | | - Allison Marciszyn
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingxin Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thomas R. Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shujie Shi
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Huynh NV, Rehage C, Hyndman KA. Mild dehydration effects on the murine kidney single-nucleus transcriptome and chromatin accessibility. Am J Physiol Renal Physiol 2023; 325:F717-F732. [PMID: 37767569 PMCID: PMC11550884 DOI: 10.1152/ajprenal.00161.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Daily, we may experience mild dehydration with a rise in plasma osmolality that triggers the release of vasopressin. Although the effect of dehydration is well characterized in collecting duct principal cells (CDPCs), we hypothesized that mild dehydration (<12 h) results in many kidney cell-specific changes in transcriptomes and chromatin accessibility. Single-nucleus (sn) multiome (RNA-assay for transposase-accessible chromatin) sequencing and bulk RNA sequencing of kidneys from male and female mice that were mildly water deprived or not were compared. Water-deprived mice had a significant increase in plasma osmolality. sn-multiome-seq resulted in 19,837 nuclei that were annotated into 33 clusters. In CDPCs, aquaporin 2 (Aqp2) and aquaporin 3 (Apq3) were greater in dehydrated mice, but there were novel genes like gremlin 2 (Grem2; a cytokine) that were increased compared with ad libitum mice. The transcription factor cAMP-responsive element modulator (Crem) was greater in CDPCs of dehydrated mice, and the Crem DNA motif was more accessible. There were hundreds of sex- and dehydration-specific differentially expressed genes (DEGs) throughout the kidney, especially in the proximal tubules and thin limbs. In male mice, DEGs were enriched in pathways related to lipid metabolism, whereas female DEGs were enriched in organic acid metabolism. Many highly expressed genes had a positive correlation with increased chromatin accessibility, and mild dehydration exerted many transcriptional changes that we detected at the chromatin level. Even with a rise in plasma osmolality, male and female kidneys have distinct transcriptomes suggesting that there may be diverse mechanisms used to remain in fluid balance.NEW & NOTEWORTHY The kidney consists of >30 cell types that work collectively to maintain fluid-electrolyte balance. Kidney single-nucleus transcriptomes and chromatin accessibility profiles from male and female control (ad libitum water and food) or mildly dehydrated mice (ad libitum food, water deprivation) were determined. Mild dehydration caused hundreds of cell- and sex-specific transcriptomic changes, even though the kidney function to conserve water was the same.
Collapse
Affiliation(s)
- Nha Van Huynh
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cassidy Rehage
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kelly A Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
5
|
Krmar RT, Franzén S, Karlsson L, Strandberg H, Törnroth‐Horsefield S, Andresen JK, Jensen BL, Carlström M, Frithiof R. Effect of controlled hypotensive hemorrhage on plasma sodium levels in anesthetized pigs: An exploratory study. Physiol Rep 2023; 11:e15886. [PMID: 38010195 PMCID: PMC10680582 DOI: 10.14814/phy2.15886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Perioperative hyponatremia, due to non-osmotic release of the antidiuretic hormone arginine vasopressin, is a serious electrolyte disorder observed in connection with many types of surgery. Since blood loss during surgery contributes to the pathogenesis of hyponatremia, we explored the effect of bleeding on plasma sodium using a controlled hypotensive hemorrhage pig model. After 30-min baseline period, hemorrhage was induced by aspiration of blood during 30 min at mean arterial pressure <50 mmHg. Thereafter, the animals were resuscitated with retransfused blood and a near-isotonic balanced crystalloid solution and monitored for 180 min. Electrolyte and water balances, cardiovascular response, renal hemodynamics, and markers of volume regulation and osmoregulation were investigated. All pigs (n = 10) developed hyponatremia. All animals retained hypotonic fluid, and none could excrete net-free water. Urinary excretion of aquaporin 2, a surrogate marker of collecting duct responsiveness to antidiuretic hormone, was significantly reduced at the end of the study, whereas lysine vasopressin, i.e., the pig antidiuretic hormone remained high. In this animal model, hyponatremia developed due to net positive fluid balance and generation of electrolyte-free water by the kidneys. A decreased urinary aquaporin 2 excretion may indicate an escape from antidiuresis.
Collapse
Affiliation(s)
- Rafael T. Krmar
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Stephanie Franzén
- Department of Surgical Sciences, anesthesiology and Intensive CareUppsala UniversityUppsalaSweden
| | - Leif Karlsson
- Department of Women's and Children's HealthKarolinska Institutet, Pediatric Endocrinology Unit, Karolinska University HospitalStockholmSweden
| | - Helin Strandberg
- Department of Biochemistry and Structural BiologyLund UniversityLundSweden
| | | | - Jesper K. Andresen
- Department of Cardiovascular and Renal ResearchInstitute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
- Department of UrologyOdense University HospitalOdenseDenmark
| | - Boye L. Jensen
- Department of Cardiovascular and Renal ResearchInstitute of Molecular Medicine, University of Southern DenmarkOdenseDenmark
- Department of UrologyOdense University HospitalOdenseDenmark
| | - Mattias Carlström
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Robert Frithiof
- Department of Surgical Sciences, anesthesiology and Intensive CareUppsala UniversityUppsalaSweden
| |
Collapse
|
6
|
Wang Y, LaRocque LM, Ruiz JA, Rodriguez EL, Sands JM, Klein JD. Aldosterone Contributes to Vasopressin Escape through Changes in Water and Urea Transport. Biomedicines 2023; 11:1844. [PMID: 37509484 PMCID: PMC10376660 DOI: 10.3390/biomedicines11071844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Hyponatremia (hypo-osmolality) is a disorder of water homeostasis due to abnormal renal diluting capacity. The body limits the degree to which serum sodium concentration falls through a mechanism called "vasopressin escape". Vasopressin escape is a process that prevents the continuous decrease in serum sodium concentration even under conditions of sustained high plasma vasopressin levels. Previous reports suggest that aldosterone may be involved in the vasopressin escape mechanism. The abilities of aldosterone synthase (Cyp11b2) knockout and wild-type mice to escape from vasopressin were compared. Wild-type mice escaped while the aldosterone synthase knockout mice did not. Both the water channel aquaporin 2 (AQP2) and the urea transporter UT-A1 protein abundances were higher in aldosterone synthase knockout than in wild-type mice at the end of the escape period. Vasopressin escape was also blunted in rats given spironolactone, a mineralocorticoid receptor blocker. Next, the role of the phosphatase, calcineurin (protein phosphatase 2B, PP2B), in vasopressin escape was studied since aldosterone activates calcineurin in rat cortical collecting ducts. Tacrolimus, a calcineurin inhibitor, blunted vasopressin escape in rats compared with the control rats, increased UT-A1, AQP2, and pS256-AQP2, and decreased pS261-AQP2 protein abundances. Our results indicate that aldosterone regulates vasopressin escape through calcineurin-mediated protein changes in UT-A1 and AQP2.
Collapse
Affiliation(s)
- Yanhua Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Lauren M LaRocque
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Joseph A Ruiz
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Eva L Rodriguez
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jeff M Sands
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Janet D Klein
- Renal Division, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Kikuchi H, Chou CL, Yang CR, Chen L, Jung HJ, Park E, Limbutara K, Carter B, Yang ZH, Kun JF, Remaley AT, Knepper MA. Signaling mechanisms in renal compensatory hypertrophy revealed by multi-omics. Nat Commun 2023; 14:3481. [PMID: 37328470 PMCID: PMC10276015 DOI: 10.1038/s41467-023-38958-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/24/2023] [Indexed: 06/18/2023] Open
Abstract
Loss of a kidney results in compensatory growth of the remaining kidney, a phenomenon of considerable clinical importance. However, the mechanisms involved are largely unknown. Here, we use a multi-omic approach in a unilateral nephrectomy model in male mice to identify signaling processes associated with renal compensatory hypertrophy, demonstrating that the lipid-activated transcription factor peroxisome proliferator-activated receptor alpha (PPARα) is an important determinant of proximal tubule cell size and is a likely mediator of compensatory proximal tubule hypertrophy.
Collapse
Affiliation(s)
- Hiroaki Kikuchi
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kavee Limbutara
- The Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Benjamin Carter
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julia F Kun
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan T Remaley
- Lipoprotein Metabolism Section, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Zuchowski Y, Carty J, Terker AS, Bock F, Trapani JB, Bhave G, Watts JA, Keller S, Zhang M, Zent R, Harris RC, Arroyo JP. Insulin-regulated aminopeptidase is required for water excretion in response to acute hypotonic stress. Am J Physiol Renal Physiol 2023; 324:F521-F531. [PMID: 36995926 PMCID: PMC10202483 DOI: 10.1152/ajprenal.00318.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 03/31/2023] Open
Abstract
The objective of this study was to understand the response of mice lacking insulin-regulated aminopeptidase (IRAP) to an acute water load. For mammals to respond appropriately to acute water loading, vasopressin activity needs to decrease. IRAP degrades vasopressin in vivo. Therefore, we hypothesized that mice lacking IRAP have an impaired ability to degrade vasopressin and, thus, have persistent urinary concentration. Age-matched 8- to 12-wk-old IRAP wild-type (WT) and knockout (KO) male mice were used for all experiments. Blood electrolytes and urine osmolality were measured before and 1 h after water load (∼2 mL sterile water via intraperitoneal injection). Urine was collected from IRAP WT and KO mice for urine osmolality measurements at baseline and after 1 h administration of the vasopressin type 2 receptor antagonist OPC-31260 (10 mg/kg ip). Immunofluorescence and immunoblot analysis were performed on kidneys at baseline and after 1 h acute water load. IRAP was expressed in the glomerulus, thick ascending loop of Henle, distal tubule, connecting duct, and collecting duct. IRAP KO mice had elevated urine osmolality compared with WT mice due to higher membrane expression of aquaporin 2 (AQP2), which was restored to that of controls after administration of OPC-31260. IRAP KO mice developed hyponatremia after an acute water load because they were unable to increase free water excretion due to increased surface expression of AQP2. In conclusion, IRAP is required to increase water excretion in response to an acute water load due to persistent vasopressin stimulation of AQP2.NEW & NOTEWORTHY Insulin-regulated aminopeptidase (IRAP) degrades vasopressin, but its role in urinary concentration and dilution is unknown. Here, we show that IRAP-deficient mice have a high urinary osmolality at baseline and are unable to excrete free water in response to water loading. These results reveal a novel regulatory role for IRAP in urine concentration and dilution.
Collapse
Affiliation(s)
- Yvonne Zuchowski
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Joshua Carty
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Andrew S Terker
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jonathan B Trapani
- Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Gautam Bhave
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jason A Watts
- Epigenetics and Stem Cell Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States
| | - Susanna Keller
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States
| | - Mingzhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, United States
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, United States
| | - Juan Pablo Arroyo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
9
|
Sung CC, Poll BG, Lin SH, Murillo-de-Ozores AR, Chou CL, Chen L, Yang CR, Chen MH, Hsu YJ, Knepper MA. Early Molecular Events Mediating Loss of Aquaporin-2 during Ureteral Obstruction in Rats. J Am Soc Nephrol 2022; 33:2040-2058. [PMID: 35918145 PMCID: PMC9678028 DOI: 10.1681/asn.2022050601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Ureteral obstruction is marked by disappearance of the vasopressin-dependent water channel aquaporin-2 (AQP2) in the renal collecting duct and polyuria upon reversal. Most studies of unilateral ureteral obstruction (UUO) models have examined late time points, obscuring the early signals that trigger loss of AQP2. METHODS We performed RNA-Seq on microdissected rat cortical collecting ducts (CCDs) to identify early signaling pathways after establishment of UUO. RESULTS Vasopressin V2 receptor (AVPR2) mRNA was decreased 3 hours after UUO, identifying one cause of AQP2 loss. Collecting duct principal cell differentiation markers were lost, including many not regulated by vasopressin. Immediate early genes in CCDs were widely induced 3 hours after UUO, including Myc, Atf3, and Fos (confirmed at the protein level). Simultaneously, expression of NF-κB signaling response genes known to repress Aqp2 increased. RNA-Seq for CCDs at an even earlier time point (30 minutes) showed widespread mRNA loss, indicating a "stunned" profile. Immunocytochemical labeling of markers of mRNA-degrading P-bodies DDX6 and 4E-T indicated an increase in P-body formation within 30 minutes. CONCLUSIONS Immediately after establishment of UUO, collecting ducts manifest a stunned state with broad disappearance of mRNAs. Within 3 hours, there is upregulation of immediate early and inflammatory genes and disappearance of the V2 vasopressin receptor, resulting in loss of AQP2 (confirmed by lipopolysaccharide administration). The inflammatory response seen rapidly after UUO establishment may be relevant to both UUO-induced polyuria and long-term development of fibrosis in UUO kidneys.
Collapse
Affiliation(s)
- Chih-Chien Sung
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Brian G. Poll
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Adrian R. Murillo-de-Ozores
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Min-Hsiu Chen
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Ecelbarger CM, Lan HY. Editorial: Insights in renal and epithelial physiology: 2021. Front Physiol 2022; 13:998358. [PMID: 36105298 PMCID: PMC9465846 DOI: 10.3389/fphys.2022.998358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
|
11
|
Yang HH, Su SH, Ho CH, Yeh AH, Lin YJ, Yu MJ. Glucocorticoid Receptor Maintains Vasopressin Responses in Kidney Collecting Duct Cells. Front Physiol 2022; 13:816959. [PMID: 35685285 PMCID: PMC9173664 DOI: 10.3389/fphys.2022.816959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
Water permeability of the kidney collecting ducts is regulated in part by the amount of the molecular water channel protein aquaporin-2 (AQP2), whose expression, in turn, is regulated by the pituitary peptide hormone vasopressin. We previously showed that stable glucocorticoid receptor knockdown diminished the vasopressin-induced Aqp2 gene expression in the collecting duct cell model mpkCCD. Here, we investigated the pathways regulated by the glucocorticoid receptor by comparing transcriptomes of the mpkCCD cells with or without stable glucocorticoid receptor knockdown. Glucocorticoid receptor knockdown downregulated 5,394 transcripts associated with 55 KEGG pathways including "vasopressin-regulated water reabsorption," indicative of positive regulatory roles of these pathways in the vasopressin-induced Aqp2 gene expression. Quantitative RT-PCR confirmed the downregulation of the vasopressin V2 receptor transcript upon glucocorticoid receptor knockdown. Glucocorticoid receptor knockdown upregulated 3,785 transcripts associated with 42 KEGG pathways including the "TNF signaling pathway" and "TGFβ signaling pathway," suggesting the negative regulatory roles of these pathways in the vasopressin-induced Aqp2 gene expression. Quantitative RT-PCR confirmed the upregulation of TNF and TGFβ receptor transcripts upon glucocorticoid receptor knockdown. TNF or TGFβ inhibitor alone, in the absence of vasopressin, did not induce Aqp2 gene transcription. However, TNF or TGFβ blunted the vasopressin-induced Aqp2 gene expression. In particular, TGFβ reduced vasopressin-induced increases in Akt phosphorylation without inducing epithelial-to-mesenchymal transition or interfering with vasopressin-induced apical AQP2 trafficking. In summary, our RNA-seq transcriptomic comparison revealed positive and negative regulatory pathways maintained by the glucocorticoid receptor for the vasopressin-induced Aqp2 gene expression.
Collapse
Affiliation(s)
| | | | | | | | | | - Ming-Jiun Yu
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Chen L, Jung HJ, Datta A, Park E, Poll BG, Kikuchi H, Leo KT, Mehta Y, Lewis S, Khundmiri SJ, Khan S, Chou CL, Raghuram V, Yang CR, Knepper MA. Systems Biology of the Vasopressin V2 Receptor: New Tools for Discovery of Molecular Actions of a GPCR. Annu Rev Pharmacol Toxicol 2022; 62:595-616. [PMID: 34579536 PMCID: PMC10676752 DOI: 10.1146/annurev-pharmtox-052120-011012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Systems biology can be defined as the study of a biological process in which all of the relevant components are investigated together in parallel to discover the mechanism. Although the approach is not new, it has come to the forefront as a result of genome sequencing projects completed in the first few years of the current century. It has elements of large-scale data acquisition (chiefly next-generation sequencing-based methods and protein mass spectrometry) and large-scale data analysis (big data integration and Bayesian modeling). Here we discuss these methodologies and show how they can be applied to understand the downstream effects of GPCR signaling, specifically looking at how the neurohypophyseal peptide hormone vasopressin, working through the V2 receptor and PKA activation, regulates the water channel aquaporin-2. The emerging picture provides a detailedframework for understanding the molecular mechanisms involved in water balance disorders, pointing the way to improved treatment of both polyuric disorders and water-retention disorders causing dilutional hyponatremia.
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Hyun Jun Jung
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Arnab Datta
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
- Yenepoya Research Center, Yenepoya, Mangalore 575018, Karnataka, India
| | - Euijung Park
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Brian G Poll
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Hiroaki Kikuchi
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Kirby T Leo
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Yash Mehta
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Spencer Lewis
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Syed J Khundmiri
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Shaza Khan
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20814, USA;
| |
Collapse
|
13
|
Kikuchi H, Jung HJ, Raghuram V, Leo KT, Park E, Yang CR, Chou CL, Chen L, Knepper MA. Bayesian identification of candidate transcription factors for the regulation of Aqp2 gene expression. Am J Physiol Renal Physiol 2021; 321:F389-F401. [PMID: 34308668 DOI: 10.1152/ajprenal.00204.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aquaporin-2 (Aqp2) gene transcription is strongly regulated by vasopressin in the renal collecting duct. However, the transcription factors (TFs) responsible for the regulation of expression of Aqp2 remain largely unknown. We used Bayes' theorem to integrate several -omics data sets to stratify the 1,344 TFs present in the mouse genome with regard to probabilities of regulating Aqp2 gene transcription. Also, we carried out new RNA sequencing experiments mapping the time course of vasopressin-induced changes in the transcriptome of mpkCCD cells to identify TFs that change in tandem with Aqp2. The analysis identified 17 of 1,344 TFs that are most likely to be involved in the regulation of Aqp2 gene transcription. These TFs included eight that have been proposed in prior studies to play a role in Aqp2 regulation, viz., Cebpb, Elf1, Elf3, Ets1, Jun, Junb, Nfkb1, and Sp1. The remaining nine represent new candidates for future studies (Atf1, Irf3, Klf5, Klf6, Mef2d, Nfyb, Nr2f6, Stat3, and Nr4a1). Conspicuously absent is CREB (Creb1), which has been widely proposed to mediate vasopressin-induced regulation of Aqp2 gene transcription (Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Physiol Rev 82: 205-244, 2002; Kortenoeven ML, Fenton RA. Biochim Biophys Acta 1840: 1533-1549, 2014; Bockenhauer D, Bichet DG. Nat Rev Nephrol 11: 576-588, 2015; Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PM, Kohan DE. Clin J Am Soc Nephrol 10: 135-146, 2015). Instead, another CREB-like TF, Atf1, ranked fourth among all TFs. RNA sequencing time-course experiments showed a rapid increase in Aqp2 mRNA, within 3 h of vasopressin exposure. This response was matched by an equally rapid increase in the abundance of the mRNA coding for Cebpb, which we have shown by chromatin immunoprecipitation-sequencing studies to bind downstream from the Aqp2 gene. The identified TFs provide a roadmap for future studies to understand regulation of Aqp2 gene expression.NEW & NOTEWORTHY Abetted by the advent of systems biology-based ("-omics") techniques in the 21st century, there has been a massive expansion of published data relevant to virtually every physiological question. The authors have developed a large-scale data integration approach based on the application of Bayes'' theorem. In the current work, they integrated 12 different -omics data sets to identify the transcription factors most likely to mediate vasopressin-dependent regulation of transcription of the aquaporin-2 gene.
Collapse
Affiliation(s)
- Hiroaki Kikuchi
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Hyun Jun Jung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.,Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Kirby T Leo
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chun-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
14
|
Al-Qusairi L, Grimm PR, Zapf AM, Welling PA. Rapid development of vasopressin resistance in dietary K + deficiency. Am J Physiol Renal Physiol 2021; 320:F748-F760. [PMID: 33749322 PMCID: PMC8174811 DOI: 10.1152/ajprenal.00655.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The association between diabetes insipidus (DI) and chronic dietary K+ deprivation is well known, but it remains uncertain how the disorder develops and whether it is influenced by the sexual dimorphism in K+ handling. Here, we determined the plasma K+ (PK) threshold for DI in male and female mice and ascertained if DI is initiated by polydipsia or by a central or nephrogenic defect. C57BL6J mice were randomized to a control diet or to graded reductions in dietary K+ for 8 days, and kidney function and transporters involved in water balance were characterized. We found that male and female mice develop polyuria and secondary polydipsia. Altered water balance coincided with a decrease in aquaporin-2 (AQP2) phosphorylation and apical localization despite increased levels of the vasopressin surrogate marker copeptin. No change in the protein abundance of urea transporter-A1 was observed. The Na+-K+-2Cl- cotransporter decreased only in males. Desmopressin treatment failed to reverse water diuresis in K+-restricted mice. These findings indicate that even a small fall in PK is associated with nephrogenic DI (NDI), coincident with the development of altered AQP2 regulation, implicating low PK as a causal trigger of NDI. We found that PK decreased more in females, and, consequently, females were more prone to develop NDI. Together, these data indicate that AQP2 regulation is disrupted by a small decrease in PK and that the response is influenced by sexual dimorphism in K+ handling. These findings provide new insights into the mechanisms linking water and K+ balances and support defining the disorder as "potassium-dependent NDI."NEW & NOTEWORTHY This study shows that aquaporin-2 regulation is disrupted by a small fall in plasma potassium levels and the response is influenced by sexual dimorphism in renal potassium handling. The findings provided new insights into the mechanisms by which water balance is altered in dietary potassium deficiency and support defining the disorder as "potassium-dependent nephrogenic diabetes insipidus."
Collapse
Affiliation(s)
- Lama Al-Qusairi
- Departments of Medicine, Nephrology, and Physiology, Johns Hopkins University Medical School, Baltimore, Maryland
| | - P Richard Grimm
- Departments of Medicine, Nephrology, and Physiology, Johns Hopkins University Medical School, Baltimore, Maryland
| | - Ava M Zapf
- Graduate Program in Life Sciences, University of Maryland, Baltimore, Maryland
| | - Paul A Welling
- Departments of Medicine, Nephrology, and Physiology, Johns Hopkins University Medical School, Baltimore, Maryland
| |
Collapse
|
15
|
Kawakami T, Fujisawa H, Nakayama S, Yoshino Y, Hattori S, Seino Y, Takayanagi T, Miyakawa T, Suzuki A, Sugimura Y. Vasopressin escape and memory impairment in a model of chronic syndrome of inappropriate secretion of antidiuretic hormone in mice. Endocr J 2021; 68:31-43. [PMID: 32879162 DOI: 10.1507/endocrj.ej20-0289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recently, chronic hyponatremia, even mild, has shown to be associated with poor quality of life and high mortality. The mechanism by which hyponatremia contributes to those symptoms, however, remains to be elucidated. Syndrome of inappropriate secretion of antidiuretic hormone (SIADH) is a primary cause of hyponatremia. Appropriate animal models are crucial for investigating the pathophysiology of SIADH. A rat model of SIADH has been generally used and mouse models have been rarely used. In this study, we developed a mouse model of chronic SIADH in which stable and sustained hyponatremia occurred after 3-week continuous infusion of the vasopressin V2 receptor agonist 1-desamino-8-D-arginine vasopressin (dDAVP) and liquid diet feeding to produce chronic water loading. Weight gain in chronic SIADH mice at week 2 and 3 after starting dDAVP injection was similar to that of control mice, suggesting that the animals adapted to chronic hyponatremia and grew up normally. AQP2 expression in the kidney, which reflects the renal action of vasopressin, was decreased in dDAVP-infused water-loaded mice as compared with control mice that received the same dDAVP infusion but were fed pelleted chow. These results suggest that "vasopressin escape" occurred, which is an important process for limiting potentially fatal severe hyponatremia. Behavioral analyses using the contextual and cued fear conditioning test and T-maze test demonstrated cognitive impairment, especially working memory impairment, in chronic SIADH mice, which was partially restored after correcting hyponatremia. Our results suggest that vasopressin escape occurred in chronic SIADH mice and that chronic hyponatremia contributed to their memory impairment.
Collapse
Affiliation(s)
- Tsukasa Kawakami
- Department of Endocrinology and Metabolism, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Haruki Fujisawa
- Department of Endocrinology and Metabolism, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Shogo Nakayama
- Department of Endocrinology and Metabolism, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yasumasa Yoshino
- Department of Endocrinology and Metabolism, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yusuke Seino
- Department of Endocrinology and Metabolism, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Takeshi Takayanagi
- Department of Endocrinology and Metabolism, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Atsushi Suzuki
- Department of Endocrinology and Metabolism, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoshihisa Sugimura
- Department of Endocrinology and Metabolism, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
16
|
Laszczyk AM, Higashi AY, Patel SR, Johnson CN, Soofi A, Abraham S, Dressler GR. Pax2 and Pax8 Proteins Regulate Urea Transporters and Aquaporins to Control Urine Concentration in the Adult Kidney. J Am Soc Nephrol 2020; 31:1212-1225. [PMID: 32381599 PMCID: PMC7269349 DOI: 10.1681/asn.2019090962] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/29/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND As the glomerular filtrate passes through the nephron and into the renal medulla, electrolytes, water, and urea are reabsorbed through the concerted actions of solute carrier channels and aquaporins at various positions along the nephron and in the outer and inner medulla. Proliferating stem cells expressing the nuclear transcription factor Pax2 give rise to renal epithelial cells. Pax2 expression ends once the epithelial cells differentiate into mature proximal and distal tubules, whereas expression of the related Pax8 protein continues. The collecting tubules and renal medulla are derived from Pax2-positive ureteric bud epithelia that continue to express Pax2 and Pax8 in adult kidneys. Despite the crucial role of Pax2 in renal development, functions for Pax2 or Pax8 in adult renal epithelia have not been established. METHODS To examine the roles of Pax2 and Pax8 in the adult mouse kidney, we deleted either Pax2, Pax8, or both genes in adult mice and examined the resulting phenotypes and changes in gene expression patterns. We also explored the mechanism of Pax8-mediated activation of potential target genes in inner medullary collecting duct cells. RESULTS Mice with induced deletions of both Pax2 and Pax8 exhibit severe polyuria that can be attributed to significant changes in the expression of solute carriers, such as the urea transporters encoded by Slc14a2, as well as aquaporins within the inner and outer medulla. Furthermore, Pax8 expression is induced by high-salt levels in collecting duct cells and activates the Slc14a2 gene by recruiting a histone methyltransferase complex to the promoter. CONCLUSIONS These data reveal novel functions for Pax proteins in adult renal epithelia that are essential for retaining water and concentrating urine.
Collapse
Affiliation(s)
- Ann M Laszczyk
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Atsuko Y Higashi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | | | - Craig N Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Abdul Soofi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Saji Abraham
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
17
|
Sung CC, Chen L, Limbutara K, Jung HJ, Gilmer GG, Yang CR, Lin SH, Khositseth S, Chou CL, Knepper MA. RNA-Seq and protein mass spectrometry in microdissected kidney tubules reveal signaling processes initiating lithium-induced nephrogenic diabetes insipidus. Kidney Int 2019; 96:363-377. [PMID: 31146973 PMCID: PMC6650374 DOI: 10.1016/j.kint.2019.02.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/17/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022]
Abstract
Lithium salts, used for treating bipolar disorder, frequently induce nephrogenic diabetes insipidus (NDI) thereby limiting therapeutic success. NDI is associated with loss of expression of the gene coding for the molecular water channel, aquaporin-2, in the renal collecting duct (CD). Here, we use systems biology methods in a well-established rat model of lithium-induced NDI to identify signaling pathways activated at the onset of polyuria. Using single-tubule RNA-Seq, full transcriptomes were determined in microdissected cortical collecting ducts (CCDs) of rats after 72 hours without or with initiation of lithium chloride administration. Transcriptome-wide changes in mRNA abundances were mapped to gene sets associated with curated canonical signaling pathways, showing evidence for activation of NF-κB signaling with induction of genes coding for multiple chemokines and most components of the Major Histocompatibility Complex Class I antigen-presenting complex. Administration of anti-inflammatory doses of dexamethasone to lithium chloride-treated rats countered the loss of aquaporin-2. RNA-Seq also confirmed prior evidence of a shift from quiescence into the cell cycle with arrest. Time course studies demonstrated an early (12 hour) increase in multiple immediate early response genes including several transcription factors. Protein mass spectrometry in microdissected CCDs provided corroborative evidence and identified decreased abundance of several anti-oxidant proteins. Thus, in the context of prior observations, our study can be best explained by a model in which lithium increases ERK activation leading to induction of NF-κB signaling and an inflammatory-like response that represses Aqp2 transcription.
Collapse
Affiliation(s)
- Chih-Chien Sung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kavee Limbutara
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hyun Jun Jung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabrielle G Gilmer
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sookkasem Khositseth
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Department of Pediatrics, Faculty of Medicine, Thammasat University (Rangsit Campus), Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
18
|
Clark JZ, Chen L, Chou CL, Jung HJ, Lee JW, Knepper MA. Representation and relative abundance of cell-type selective markers in whole-kidney RNA-Seq data. Kidney Int 2019; 95:787-796. [PMID: 30826016 DOI: 10.1016/j.kint.2018.11.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/22/2018] [Accepted: 11/08/2018] [Indexed: 01/08/2023]
Abstract
Bulk-tissue RNA-Seq is increasingly being used in the study of physiological and pathophysiological processes in the kidney; however, the presence of multiple cell types in kidney tissue complicates data interpretation. We addressed the question of which cell types are represented in whole-kidney RNA-Seq data in order to identify circumstances in which bulk-kidney RNA-Seq can be successfully interpreted. We carried out RNA-Seq in mouse whole kidneys and in microdissected renal tubule segments. To aid in the interpretation of the data, we compiled a database of cell-type selective protein markers for 43 cell types believed to be present in kidney tissue. The whole-kidney RNA-Seq analysis identified transcripts corresponding to 17,742 genes, distributed over 5 orders of magnitude of expression level. Markers for all 43 curated cell types were detectable. Analysis of the cellular makeup of mouse and rat kidney, calculated from published literature, suggests that proximal tubule cells account for more than half of the mRNA in a kidney. Comparison of RNA-Seq data from microdissected proximal tubules with data from whole kidney supports this view. RNA-Seq data for cell-type selective markers in bulk-kidney samples provide a valid means to identify changes in minority-cell abundances in kidney tissue. Because proximal tubules make up a substantial fraction of whole-kidney samples, changes in proximal tubule gene expression can be assessed presumptively by bulk-kidney RNA-Seq, although results could potentially be complicated by the presence of mRNA from other cell types.
Collapse
Affiliation(s)
- Jevin Z Clark
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hyun Jun Jung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jae Wook Lee
- Nephrology Clinic, National Cancer Center, Goyang, South Korea
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
19
|
Ranieri M, Di Mise A, Tamma G, Valenti G. Vasopressin-aquaporin-2 pathway: recent advances in understanding water balance disorders. F1000Res 2019; 8. [PMID: 30800291 PMCID: PMC6364380 DOI: 10.12688/f1000research.16654.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2019] [Indexed: 12/11/2022] Open
Abstract
The alteration of water balance and related disorders has emerged as being strictly linked to the state of activation of the vasopressin–aquaporin-2
(vasopressin–AQP2) pathway. The lack of responsiveness of the kidney to the vasopressin action impairs its ability to concentrate the urine, resulting in polyuria, polydipsia, and risk of severe dehydration for patients. Conversely, non-osmotic release of vasopressin is associated with an increase in water permeability in the renal collecting duct, producing water retention and increasing the circulatory blood volume. This review highlights some of the new insights and recent advances in therapeutic intervention targeting the dysfunctions in the vasopressin–AQP2 pathway causing diseases characterized by water balance disorders such as congenital nephrogenic diabetes insipidus, syndrome of inappropriate antidiuretic hormone secretion, nephrogenic syndrome of inappropriate antidiuresis, and autosomal dominant polycystic kidney disease. The recent clinical data suggest that targeting the vasopressin–AQP2 axis can provide therapeutic benefits in patients with water balance disorders.
Collapse
Affiliation(s)
- Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy, 70125, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy, 70125, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy, 70125, Italy.,Istituto Nazionale di Biostrutture e Biosistemi, Rome, Roma, Italy, 00136, Italy
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy, 70125, Italy.,Istituto Nazionale di Biostrutture e Biosistemi, Rome, Roma, Italy, 00136, Italy.,Center of Excellence in Comparative Genomics (CEGBA), University of Bari, Bari, Italy, 70125, Italy
| |
Collapse
|
20
|
Rinschen MM, Limbutara K, Knepper MA, Payne DM, Pisitkun T. From Molecules to Mechanisms: Functional Proteomics and Its Application to Renal Tubule Physiology. Physiol Rev 2019; 98:2571-2606. [PMID: 30182799 DOI: 10.1152/physrev.00057.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Classical physiological studies using electrophysiological, biophysical, biochemical, and molecular techniques have created a detailed picture of molecular transport, bioenergetics, contractility and movement, and growth, as well as the regulation of these processes by external stimuli in cells and organisms. Newer systems biology approaches are beginning to provide deeper and broader understanding of these complex biological processes and their dynamic responses to a variety of environmental cues. In the past decade, advances in mass spectrometry-based proteomic technologies have provided invaluable tools to further elucidate these complex cellular processes, thereby confirming, complementing, and advancing common views of physiology. As one notable example, the application of proteomics to study the regulation of kidney function has yielded novel insights into the chemical and physical processes that tightly control body fluids, electrolytes, and metabolites to provide optimal microenvironments for various cellular and organ functions. Here, we systematically review, summarize, and discuss the most significant key findings from functional proteomic studies in renal epithelial physiology. We also identify further improvements in technological and bioinformatics methods that will be essential to advance precision medicine in nephrology.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| | - Kavee Limbutara
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| | - Mark A Knepper
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| | - D Michael Payne
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| | - Trairak Pisitkun
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| |
Collapse
|