1
|
Pan S, Yin L, Liu J, Tong J, Wang Z, Zhao J, Liu X, Chen Y, Miao J, Zhou Y, Zeng S, Xu T. Metabolomics-driven approaches for identifying therapeutic targets in drug discovery. MedComm (Beijing) 2024; 5:e792. [PMID: 39534557 PMCID: PMC11555024 DOI: 10.1002/mco2.792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Identification of therapeutic targets can directly elucidate the mechanism and effect of drug therapy, which is a central step in drug development. The disconnect between protein targets and phenotypes under complex mechanisms hampers comprehensive target understanding. Metabolomics, as a systems biology tool that captures phenotypic changes induced by exogenous compounds, has emerged as a valuable approach for target identification. A comprehensive overview was provided in this review to illustrate the principles and advantages of metabolomics, delving into the application of metabolomics in target identification. This review outlines various metabolomics-based methods, such as dose-response metabolomics, stable isotope-resolved metabolomics, and multiomics, which identify key enzymes and metabolic pathways affected by exogenous substances through dose-dependent metabolite-drug interactions. Emerging techniques, including single-cell metabolomics, artificial intelligence, and mass spectrometry imaging, are also explored for their potential to enhance target discovery. The review emphasizes metabolomics' critical role in advancing our understanding of disease mechanisms and accelerating targeted drug development, while acknowledging current challenges in the field.
Collapse
Affiliation(s)
- Shanshan Pan
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Luan Yin
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Jie Liu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Jie Tong
- Department of Radiology and Biomedical ImagingPET CenterYale School of MedicineNew HavenConnecticutUSA
| | - Zichuan Wang
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Jiahui Zhao
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Xuesong Liu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouZhejiangChina
| | - Yong Chen
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouZhejiangChina
| | - Jing Miao
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Yuan Zhou
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Su Zeng
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Tengfei Xu
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
2
|
Talukder MA, Layek MA, Kazi M, Uddin MA, Aryal S. Empowering COVID-19 detection: Optimizing performance through fine-tuned EfficientNet deep learning architecture. Comput Biol Med 2024; 168:107789. [PMID: 38042105 DOI: 10.1016/j.compbiomed.2023.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
The worldwide COVID-19 pandemic has profoundly influenced the health and everyday experiences of individuals across the planet. It is a highly contagious respiratory disease requiring early and accurate detection to curb its rapid transmission. Initial testing methods primarily revolved around identifying the genetic composition of the coronavirus, exhibiting a relatively low detection rate and requiring a time-intensive procedure. To address this challenge, experts have suggested using radiological imagery, particularly chest X-rays, as a valuable approach within the diagnostic protocol. This study investigates the potential of leveraging radiographic imaging (X-rays) with deep learning algorithms to swiftly and precisely identify COVID-19 patients. The proposed approach elevates the detection accuracy by fine-tuning with appropriate layers on various established transfer learning models. The experimentation was conducted on a COVID-19 X-ray dataset containing 2000 images. The accuracy rates achieved were impressive of 99.55%, 97.32%, 99.11%, 99.55%, 99.11% and 100% for Xception, InceptionResNetV2, ResNet50 , ResNet50V2, EfficientNetB0 and EfficientNetB4 respectively. The fine-tuned EfficientNetB4 achieved an excellent accuracy score, showcasing its potential as a robust COVID-19 detection model. Furthermore, EfficientNetB4 excelled in identifying Lung disease using Chest X-ray dataset containing 4,350 Images, achieving remarkable performance with an accuracy of 99.17%, precision of 99.13%, recall of 99.16%, and f1-score of 99.14%. These results highlight the promise of fine-tuned transfer learning for efficient lung detection through medical imaging, especially with X-ray images. This research offers radiologists an effective means of aiding rapid and precise COVID-19 diagnosis and contributes valuable assistance for healthcare professionals in accurately identifying affected patients.
Collapse
Affiliation(s)
- Md Alamin Talukder
- Department of Computer Science and Engineering, Jagannath University, Dhaka, Bangladesh.
| | - Md Abu Layek
- Department of Computer Science and Engineering, Jagannath University, Dhaka, Bangladesh.
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia.
| | - Md Ashraf Uddin
- School of Information Technology, Deakin University, Waurn Ponds Campus, Geelong, Australia.
| | - Sunil Aryal
- School of Information Technology, Deakin University, Waurn Ponds Campus, Geelong, Australia.
| |
Collapse
|
3
|
Moitra M, Alafeef M, Narasimhan A, Kakaria V, Moitra P, Pan D. Diagnosis of COVID-19 with simultaneous accurate prediction of cardiac abnormalities from chest computed tomographic images. PLoS One 2023; 18:e0290494. [PMID: 38096254 PMCID: PMC10721010 DOI: 10.1371/journal.pone.0290494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/09/2023] [Indexed: 12/17/2023] Open
Abstract
COVID-19 has potential consequences on the pulmonary and cardiovascular health of millions of infected people worldwide. Chest computed tomographic (CT) imaging has remained the first line of diagnosis for individuals infected with SARS-CoV-2. However, differentiating COVID-19 from other types of pneumonia and predicting associated cardiovascular complications from the same chest-CT images have remained challenging. In this study, we have first used transfer learning method to distinguish COVID-19 from other pneumonia and healthy cases with 99.2% accuracy. Next, we have developed another CNN-based deep learning approach to automatically predict the risk of cardiovascular disease (CVD) in COVID-19 patients compared to the normal subjects with 97.97% accuracy. Our model was further validated against cardiac CT-based markers including cardiac thoracic ratio (CTR), pulmonary artery to aorta ratio (PA/A), and presence of calcified plaque. Thus, we successfully demonstrate that CT-based deep learning algorithms can be employed as a dual screening diagnostic tool to diagnose COVID-19 and differentiate it from other pneumonia, and also predicts CVD risk associated with COVID-19 infection.
Collapse
Affiliation(s)
- Moumita Moitra
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Maha Alafeef
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, Jordan
- Department of Nuclear Engineering, The Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Arjun Narasimhan
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Vikram Kakaria
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Parikshit Moitra
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
- Department of Nuclear Engineering, The Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Dipanjan Pan
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
- Department of Nuclear Engineering, The Pennsylvania State University, State College, Pennsylvania, United States of America
- Department of Materials Science & Engineering, The Pennsylvania State University, State College, Pennsylvania, United States of America
- Huck Institutes of the Life Sciences, State College, Pennsylvania, United States of America
| |
Collapse
|
4
|
Chakraborty GS, Batra S, Singh A, Muhammad G, Torres VY, Mahajan M. A Novel Deep Learning-Based Classification Framework for COVID-19 Assisted with Weighted Average Ensemble Modeling. Diagnostics (Basel) 2023; 13:diagnostics13101806. [PMID: 37238290 DOI: 10.3390/diagnostics13101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
COVID-19 is an infectious disease caused by the deadly virus SARS-CoV-2 that affects the lung of the patient. Different symptoms, including fever, muscle pain and respiratory syndrome, can be identified in COVID-19-affected patients. The disease needs to be diagnosed in a timely manner, otherwise the lung infection can turn into a severe form and the patient's life may be in danger. In this work, an ensemble deep learning-based technique is proposed for COVID-19 detection that can classify the disease with high accuracy, efficiency, and reliability. A weighted average ensemble (WAE) prediction was performed by combining three CNN models, namely Xception, VGG19 and ResNet50V2, where 97.25% and 94.10% accuracy was achieved for binary and multiclass classification, respectively. To accurately detect the disease, different test methods have been proposed and developed, some of which are even being used in real-time situations. RT-PCR is one of the most successful COVID-19 detection methods, and is being used worldwide with high accuracy and sensitivity. However, complexity and time-consuming manual processes are limitations of this method. To make the detection process automated, researchers across the world have started to use deep learning to detect COVID-19 applied on medical imaging. Although most of the existing systems offer high accuracy, different limitations, including high variance, overfitting and generalization errors, can be found that can degrade the system performance. Some of the reasons behind those limitations are a lack of reliable data resources, missing preprocessing techniques, a lack of proper model selection, etc., which eventually create reliability issues. Reliability is an important factor for any healthcare system. Here, transfer learning with better preprocessing techniques applied on two benchmark datasets makes the work more reliable. The weighted average ensemble technique with hyperparameter tuning ensures better accuracy than using a randomly selected single CNN model.
Collapse
Affiliation(s)
- Gouri Shankar Chakraborty
- Department of Computer Science and Engineering, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Salil Batra
- Department of Computer Science and Engineering, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aman Singh
- Higher Polytechnic School, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain
- Department of Engineering, Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Ghulam Muhammad
- Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
| | - Vanessa Yelamos Torres
- Department of Engineering, Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA
- Engineering Research & Innovation Group, Universidad Europea del Atlántico, C/Isabel Torres 21, 39011 Santander, Spain
- Department of Project Management, Universidad Internacional Iberoamericana, Campeche C.P. 24560, Mexico
| | - Makul Mahajan
- Department of Computer Science and Engineering, Lovely Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
5
|
Türk F, Kökver Y. Detection of Lung Opacity and Treatment Planning with Three-Channel Fusion CNN Model. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023:1-13. [PMID: 37361471 PMCID: PMC10103673 DOI: 10.1007/s13369-023-07843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/20/2023] [Indexed: 06/28/2023]
Abstract
Lung opacities are extremely important for physicians to monitor and can have irreversible consequences for patients if misdiagnosed or confused with other findings. Therefore, long-term monitoring of the regions of lung opacity is recommended by physicians. Tracking the regional dimensions of images and classifying differences from other lung cases can provide significant ease to physicians. Deep learning methods can be easily used for the detection, classification, and segmentation of lung opacity. In this study, a three-channel fusion CNN model is applied to effectively detect lung opacity on a balanced dataset compiled from public datasets. The MobileNetV2 architecture is used in the first channel, the InceptionV3 model in the second channel, and the VGG19 architecture in the third channel. The ResNet architecture is used for feature transfer from the previous layer to the current layer. In addition to being easy to implement, the proposed approach can also provide significant cost and time advantages to physicians. Our accuracy values for two, three, four, and five classes on the newly compiled dataset for lung opacity classifications are found to be 92.52%, 92.44%, 87.12%, and 91.71%, respectively.
Collapse
Affiliation(s)
- Fuat Türk
- Department of Computer Engineering, Çankırı Karatekin University, 18100 Çankırı, Turkey
| | - Yunus Kökver
- Department of Computer Technologies, Elmadağ Vocational School, Ankara University, 06780 Ankara, Turkey
| |
Collapse
|
6
|
Farrahi V, Muhammad U, Rostami M, Oussalah M. AccNet24: A deep learning framework for classifying 24-hour activity behaviours from wrist-worn accelerometer data under free-living environments. Int J Med Inform 2023; 172:105004. [PMID: 36724729 DOI: 10.1016/j.ijmedinf.2023.105004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Although machine learning techniques have been repeatedly used for activity prediction from wearable devices, accurate classification of 24-hour activity behaviour categories from accelerometry data remains a challenge. We developed and validated a deep learning-based framework for classifying 24-hour activity behaviours from wrist-worn accelerometers. METHODS Using an openly available dataset with free-living wrist-based raw accelerometry data from 151 participants (aged 18-91 years), we developed a deep learning framework named AccNet24 to classify 24-hour activity behaviours. First, the acceleration signal (x, y, and z-axes) was segmented into 30-second nonoverlapping windows, and signal-to-image conversion was performed for each segment. Deep features were automatically extracted from the signal images using transfer learning and transformed into a lower-dimensional feature space. These transformed features were then employed to classify the activity behaviours as sleep, sedentary behaviour, and light-intensity (LPA) and moderate-to-vigorous physical activity (MVPA) using a bidirectional long short-term memory (BiLSTM) recurrent neural network. AccNet24 was trained and validated with data from 101 and 25 randomly selected participants and tested with the remaining unseen 25 participants. We also extracted 112 hand-crafted time and frequency domain features from 30-second windows and used them as inputs to five commonly used machine learning classifiers, including random forest, support vector machines, artificial neural networks, decision tree, and naïve Bayes to classify the 24-hour activity behaviour categories. RESULTS Using the same training, validation, and test data and window size, the classification accuracy of AccNet24 outperformed the accuracy of the other five machine learning classification algorithms by 16%-30% on unseen data. CONCLUSION AccNet24, relying on signal-to-image conversion, deep feature extraction, and BiLSTM achieved consistently high accuracy (>95 %) in classifying the 24-hour activity behaviour categories as sleep, sedentary, LPA, and MVPA. The next generation accelerometry analytics may rely on deep learning techniques for activity prediction.
Collapse
Affiliation(s)
- Vahid Farrahi
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Center of Machine Vision and Signal Analysis, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland.
| | - Usman Muhammad
- Center of Machine Vision and Signal Analysis, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
| | - Mehrdad Rostami
- Center of Machine Vision and Signal Analysis, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
| | - Mourad Oussalah
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Center of Machine Vision and Signal Analysis, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
| |
Collapse
|
7
|
PDAtt-Unet: Pyramid Dual-Decoder Attention Unet for Covid-19 infection segmentation from CT-scans. Med Image Anal 2023; 86:102797. [PMID: 36966605 PMCID: PMC10027962 DOI: 10.1016/j.media.2023.102797] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/10/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023]
Abstract
Since the emergence of the Covid-19 pandemic in late 2019, medical imaging has been widely used to analyse this disease. Indeed, CT-scans of the lungs can help diagnose, detect, and quantify Covid-19 infection. In this paper, we address the segmentation of Covid-19 infection from CT-scans. To improve the performance of the Att-Unet architecture and maximize the use of the Attention Gate, we propose the PAtt-Unet and DAtt-Unet architectures. PAtt-Unet aims to exploit the input pyramids to preserve the spatial awareness in all of the encoder layers. On the other hand, DAtt-Unet is designed to guide the segmentation of Covid-19 infection inside the lung lobes. We also propose to combine these two architectures into a single one, which we refer to as PDAtt-Unet. To overcome the blurry boundary pixels segmentation of Covid-19 infection, we propose a hybrid loss function. The proposed architectures were tested on four datasets with two evaluation scenarios (intra and cross datasets). Experimental results showed that both PAtt-Unet and DAtt-Unet improve the performance of Att-Unet in segmenting Covid-19 infections. Moreover, the combination architecture PDAtt-Unet led to further improvement. To Compare with other methods, three baseline segmentation architectures (Unet, Unet++, and Att-Unet) and three state-of-the-art architectures (InfNet, SCOATNet, and nCoVSegNet) were tested. The comparison showed the superiority of the proposed PDAtt-Unet trained with the proposed hybrid loss (PDEAtt-Unet) over all other methods. Moreover, PDEAtt-Unet is able to overcome various challenges in segmenting Covid-19 infections in four datasets and two evaluation scenarios.
Collapse
|
8
|
Rehman A, Khan A, Fatima G, Naz S, Razzak I. Review on chest pathogies detection systems using deep learning techniques. Artif Intell Rev 2023; 56:1-47. [PMID: 37362896 PMCID: PMC10027283 DOI: 10.1007/s10462-023-10457-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Chest radiography is the standard and most affordable way to diagnose, analyze, and examine different thoracic and chest diseases. Typically, the radiograph is examined by an expert radiologist or physician to decide about a particular anomaly, if exists. Moreover, computer-aided methods are used to assist radiologists and make the analysis process accurate, fast, and more automated. A tremendous improvement in automatic chest pathologies detection and analysis can be observed with the emergence of deep learning. The survey aims to review, technically evaluate, and synthesize the different computer-aided chest pathologies detection systems. The state-of-the-art of single and multi-pathologies detection systems, which are published in the last five years, are thoroughly discussed. The taxonomy of image acquisition, dataset preprocessing, feature extraction, and deep learning models are presented. The mathematical concepts related to feature extraction model architectures are discussed. Moreover, the different articles are compared based on their contributions, datasets, methods used, and the results achieved. The article ends with the main findings, current trends, challenges, and future recommendations.
Collapse
Affiliation(s)
- Arshia Rehman
- COMSATS University Islamabad, Abbottabad-Campus, Abbottabad, Pakistan
| | - Ahmad Khan
- COMSATS University Islamabad, Abbottabad-Campus, Abbottabad, Pakistan
| | - Gohar Fatima
- The Islamia University of Bahawalpur, Bahawal Nagar Campus, Bahawal Nagar, Pakistan
| | - Saeeda Naz
- Govt Girls Post Graduate College No.1, Abbottabad, Pakistan
| | - Imran Razzak
- School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
9
|
Gupta K, Bajaj V. Deep learning models-based CT-scan image classification for automated screening of COVID-19. Biomed Signal Process Control 2023; 80:104268. [PMID: 36267466 PMCID: PMC9556167 DOI: 10.1016/j.bspc.2022.104268] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 02/01/2023]
Abstract
COVID-19 is the most transmissible disease, caused by the SARS-CoV-2 virus that severely infects the lungs and the upper respiratory tract of the human body. This virus badly affected the lives and wellness of millions of people worldwide and spread widely. Early diagnosis, timely treatment, and proper confinement of the infected patients are some possible ways to control the spreading of coronavirus. Computed tomography (CT) scanning has proven useful in diagnosing several respiratory lung problems, including COVID-19 infections. Automated detection of COVID-19 using chest CT-scan images may reduce the clinician's load and save the lives of thousands of people. This study proposes a robust framework for the automated screening of COVID-19 using chest CT-scan images and deep learning-based techniques. In this work, a publically accessible CT-scan image dataset (contains the 1252 COVID-19 and 1230 non-COVID chest CT images), two pre-trained deep learning models (DLMs) namely, MobileNetV2 and DarkNet19, and a newly-designed lightweight DLM, are utilized for the automated screening of COVID-19. A repeated ten-fold holdout validation method is utilized for the training, validation, and testing of DLMs. The highest classification accuracy of 98.91% is achieved using transfer-learned DarkNet19. The proposed framework is ready to be tested with more CT images. The simulation results with the publicly available COVID-19 CT scan image dataset are included to show the effectiveness of the presented study.
Collapse
|
10
|
Khan A, Khan SH, Saif M, Batool A, Sohail A, Waleed Khan M. A Survey of Deep Learning Techniques for the Analysis of COVID-19 and their usability for Detecting Omicron. J EXP THEOR ARTIF IN 2023. [DOI: 10.1080/0952813x.2023.2165724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Asifullah Khan
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
- PIEAS Artificial Intelligence Center (PAIC), Pakistan Institute of Engineering & Applied Sciences, Islamabad, Pakistan
- Center for Mathematical Sciences, Pakistan Institute of Engineering & Applied Sciences, Islamabad, Pakistan
| | - Saddam Hussain Khan
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
- Department of Computer Systems Engineering, University of Engineering and Applied Sciences (UEAS), Swat, Pakistan
| | - Mahrukh Saif
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
| | - Asiya Batool
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
| | - Anabia Sohail
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
- Department of Computer Science, Faculty of Computing & Artificial Intelligence, Air University, Islamabad, Pakistan
| | - Muhammad Waleed Khan
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
- Department of Mechanical and Aerospace Engineering, Columbus, OH, USA
| |
Collapse
|
11
|
Zhang N, Zeng Z, Jin Y. Guest editorial: Robust, explainable, and privacy-preserving deep learning. Knowl Based Syst 2023. [DOI: 10.1016/j.knosys.2023.110287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Patro KK, Allam JP, Hammad M, Tadeusiewicz R, Pławiak P. SCovNet: A skip connection-based feature union deep learning technique with statistical approach analysis for the detection of COVID-19. Biocybern Biomed Eng 2023; 43:352-368. [PMID: 36819118 PMCID: PMC9928742 DOI: 10.1016/j.bbe.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023]
Abstract
Background and Objective The global population has been heavily impacted by the COVID-19 pandemic of coronavirus. Infections are spreading quickly around the world, and new spikes (Delta, Delta Plus, and Omicron) are still being made. The real-time reverse transcription-polymerase chain reaction (RT-PCR) is the method most often used to find viral RNA in a nasopharyngeal swab. However, these diagnostic approaches require human involvement and consume more time per prediction. Moreover, the existing conventional test mainly suffers from false negatives, so there is a chance for the virus to spread quickly. Therefore, a rapid and early diagnosis of COVID-19 patients is needed to overcome these problems. Methods Existing approaches based on deep learning for COVID detection are suffering from unbalanced datasets, poor performance, and gradient vanishing problems. A customized skip connection-based network with a feature union approach has been developed in this work to overcome some of the issues mentioned above. Gradient information from chest X-ray (CXR) images to subsequent layers is bypassed through skip connections. In the script's title, "SCovNet" refers to a skip-connection-based feature union network for detecting COVID-19 in a short notation. The performance of the proposed model was tested with two publicly available CXR image databases, including balanced and unbalanced datasets. Results A modified skip connection-based CNN model was suggested for a small unbalanced dataset (Kaggle) and achieved remarkable performance. In addition, the proposed model was also tested with a large GitHub database of CXR images and obtained an overall best accuracy of 98.67% with an impressive low false-negative rate of 0.0074. Conclusions The results of the experiments show that the proposed method works better than current methods at finding early signs of COVID-19. As an additional point of interest, we must mention the innovative hierarchical classification strategy provided for this work, which considered both balanced and unbalanced datasets to get the best COVID-19 identification rate.
Collapse
Affiliation(s)
- Kiran Kumar Patro
- Department of ECE, Aditya Institute of Technology and Management, Tekkali AP-532201, India
| | - Jaya Prakash Allam
- Department of EC, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Mohamed Hammad
- Information Technology Dept., Faculty of Computers and Information, Menoufia University, Menoufia, Egypt
| | - Ryszard Tadeusiewicz
- Department of Biocybernetics and Biomedical Engineering, AGH University of Science and Technology, Krakow, Poland
| | - Paweł Pławiak
- Department of Computer Science, Faculty of Computer Science and Telecommunications, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
- Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, Poland
| |
Collapse
|
13
|
Dual_Pachi: Attention-based dual path framework with intermediate second order-pooling for Covid-19 detection from chest X-ray images. Comput Biol Med 2022; 151:106324. [PMID: 36423531 PMCID: PMC9671873 DOI: 10.1016/j.compbiomed.2022.106324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022]
Abstract
Numerous machine learning and image processing algorithms, most recently deep learning, allow the recognition and classification of COVID-19 disease in medical images. However, feature extraction, or the semantic gap between low-level visual information collected by imaging modalities and high-level semantics, is the fundamental shortcoming of these techniques. On the other hand, several techniques focused on the first-order feature extraction of the chest X-Ray thus making the employed models less accurate and robust. This study presents Dual_Pachi: Attention Based Dual Path Framework with Intermediate Second Order-Pooling for more accurate and robust Chest X-ray feature extraction for Covid-19 detection. Dual_Pachi consists of 4 main building Blocks; Block one converts the received chest X-Ray image to CIE LAB coordinates (L & AB channels which are separated at the first three layers of a modified Inception V3 Architecture.). Block two further exploit the global features extracted from block one via a global second-order pooling while block three focuses on the low-level visual information and the high-level semantics of Chest X-ray image features using a multi-head self-attention and an MLP Layer without sacrificing performance. Finally, the fourth block is the classification block where classification is done using fully connected layers and SoftMax activation. Dual_Pachi is designed and trained in an end-to-end manner. According to the results, Dual_Pachi outperforms traditional deep learning models and other state-of-the-art approaches described in the literature with an accuracy of 0.96656 (Data_A) and 0.97867 (Data_B) for the Dual_Pachi approach and an accuracy of 0.95987 (Data_A) and 0.968 (Data_B) for the Dual_Pachi without attention block model. A Grad-CAM-based visualization is also built to highlight where the applied attention mechanism is concentrated.
Collapse
|
14
|
Srivastava G, Chauhan A, Jangid M, Chaurasia S. CoviXNet: A novel and efficient deep learning model for detection of COVID-19 using chest X-Ray images. Biomed Signal Process Control 2022; 78:103848. [PMID: 35694696 PMCID: PMC9174225 DOI: 10.1016/j.bspc.2022.103848] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
The Coronavirus (COVID-19) pandemic has created havoc on humanity by causing millions of deaths and adverse physical and mental health effects. To prepare humankind for the fast and efficient detection of the virus and its variants shortly, COVID-19 detection using Artificial Intelligence and Computer-Aided Diagnosis has been the subject of several studies. To detect COVID-19, there are numerous publicly accessible datasets of Chest X-rays that the researchers have combined to solve the problem of inadequate data. The cause for concern here is that in combining two or more datasets, some of the images might be duplicates, so a curated dataset has been used in this study, taken from an author’s paper. This dataset consists of 1281 COVID-19, 3270 Normal X-rays, and 1656 viral-pneumonia infected Chest X-ray images. Dataset has been pre-processed and divided carefully to ensure that there are no duplicate images. A comparative study on many traditional pre-trained models was performed, analyzing top-performing models. Fine-tuned InceptionV3, Modified EfficientNet B0&B1 produced an accuracy of 99.78% on binary classification, i.e., covid-19 infected and normal Chest X-ray image. ResNetV2 had a classification accuracy of 97.90% for 3-class classification i.e., covid-19 infected, normal, and pneumonia. Furthermore, a trailblazing custom CNN-based model, CoviXNet, has been proposed consisting of 15 layers that take efficiency into account. The proposed model CoviXNet exhibited a 10-fold accuracy of 99.47% on binary classification and 96.61% on 3-class. CoviXNet has shown phenomenal performance with exceptional accuracy and minimum computational cost. We anticipate that this comparative study, along with the proposed model CoviXNet, can assist medical centers with the efficient real-life detection of Coronavirus.
Collapse
Affiliation(s)
- Gaurav Srivastava
- Department of Computer Science and Engineering, Manipal University Jaipur, 303007, Rajasthan, India
| | - Aninditaa Chauhan
- Department of Computer Science and Engineering, Manipal University Jaipur, 303007, Rajasthan, India
| | - Mahesh Jangid
- Department of Computer Science and Engineering, Manipal University Jaipur, 303007, Rajasthan, India
| | - Sandeep Chaurasia
- Department of Computer Science and Engineering, Manipal University Jaipur, 303007, Rajasthan, India
| |
Collapse
|
15
|
Ascencio-Cabral A, Reyes-Aldasoro CC. Comparison of Convolutional Neural Networks and Transformers for the Classification of Images of COVID-19, Pneumonia and Healthy Individuals as Observed with Computed Tomography. J Imaging 2022; 8:237. [PMID: 36135403 PMCID: PMC9500990 DOI: 10.3390/jimaging8090237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, the performance of five deep learning architectures in classifying COVID-19 in a multi-class set-up is evaluated. The classifiers were built on pretrained ResNet-50, ResNet-50r (with kernel size 5×5 in the first convolutional layer), DenseNet-121, MobileNet-v3 and the state-of-the-art CaiT-24-XXS-224 (CaiT) transformer. The cross entropy and weighted cross entropy were minimised with Adam and AdamW. In total, 20 experiments were conducted with 10 repetitions and obtained the following metrics: accuracy (Acc), balanced accuracy (BA), F1 and F2 from the general Fβ macro score, Matthew's Correlation Coefficient (MCC), sensitivity (Sens) and specificity (Spec) followed by bootstrapping. The performance of the classifiers was compared by using the Friedman-Nemenyi test. The results show that less complex architectures such as ResNet-50, ResNet-50r and DenseNet-121 were able to achieve better generalization with rankings of 1.53, 1.71 and 3.05 for the Matthew Correlation Coefficient, respectively, while MobileNet-v3 and CaiT obtained rankings of 3.72 and 5.0, respectively.
Collapse
|
16
|
Karpiel I, Starcevic A, Urzeniczok M. Database and AI Diagnostic Tools Improve Understanding of Lung Damage, Correlation of Pulmonary Disease and Brain Damage in COVID-19. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22166312. [PMID: 36016071 PMCID: PMC9414394 DOI: 10.3390/s22166312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 05/02/2023]
Abstract
The COVID-19 pandemic caused a sharp increase in the interest in artificial intelligence (AI) as a tool supporting the work of doctors in difficult conditions and providing early detection of the implications of the disease. Recent studies have shown that AI has been successfully applied in the healthcare sector. The objective of this paper is to perform a systematic review to summarize the electroencephalogram (EEG) findings in patients with coronavirus disease (COVID-19) and databases and tools used in artificial intelligence algorithms, supporting the diagnosis and correlation between lung disease and brain damage, and lung damage. Available search tools containing scientific publications, such as PubMed and Google Scholar, were comprehensively evaluated and searched with open databases and tools used in AI algorithms. This work aimed to collect papers from the period of January 2019-May 2022 including in their resources the database from which data necessary for further development of algorithms supporting the diagnosis of the respiratory system can be downloaded and the correlation between lung disease and brain damage can be evaluated. The 10 articles which show the most interesting AI algorithms, trained by using open databases and associated with lung diseases, were included for review with 12 articles related to EEGs, which have/or may be related with lung diseases.
Collapse
Affiliation(s)
- Ilona Karpiel
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, 41-800 Zabrze, Poland
- Correspondence:
| | - Ana Starcevic
- Laboratory for Multimodal Neuroimaging, Institute of Anatomy, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirella Urzeniczok
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, 41-800 Zabrze, Poland
| |
Collapse
|
17
|
Li M, Li X, Jiang Y, Zhang J, Luo H, Yin S. Explainable multi-instance and multi-task learning for COVID-19 diagnosis and lesion segmentation in CT images. Knowl Based Syst 2022; 252:109278. [PMID: 35783000 PMCID: PMC9235304 DOI: 10.1016/j.knosys.2022.109278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) still presents a pandemic trend globally. Detecting infected individuals and analyzing their status can provide patients with proper healthcare while protecting the normal population. Chest CT (computed tomography) is an effective tool for screening of COVID-19. It displays detailed pathology-related information. To achieve automated COVID-19 diagnosis and lung CT image segmentation, convolutional neural networks (CNNs) have become mainstream methods. However, most of the previous works consider automated diagnosis and image segmentation as two independent tasks, in which some focus on lung fields segmentation and the others focus on single-lesion segmentation. Moreover, lack of clinical explainability is a common problem for CNN-based methods. In such context, we develop a multi-task learning framework in which the diagnosis of COVID-19 and multi-lesion recognition (segmentation of CT images) are achieved simultaneously. The core of the proposed framework is an explainable multi-instance multi-task network. The network learns task-related features adaptively with learnable weights, and gives explicable diagnosis results by suggesting local CT images with lesions as additional evidence. Then, severity assessment of COVID-19 and lesion quantification are performed to analyze patient status. Extensive experimental results on real-world datasets show that the proposed framework outperforms all the compared approaches for COVID-19 diagnosis and multi-lesion segmentation.
Collapse
Affiliation(s)
- Minglei Li
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Xiang Li
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Yuchen Jiang
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Jiusi Zhang
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Hao Luo
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Shen Yin
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, 7034, Norway
| |
Collapse
|
18
|
Heidari A, Jafari Navimipour N, Unal M, Toumaj S. Machine learning applications for COVID-19 outbreak management. Neural Comput Appl 2022; 34:15313-15348. [PMID: 35702664 PMCID: PMC9186489 DOI: 10.1007/s00521-022-07424-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Recently, the COVID-19 epidemic has resulted in millions of deaths and has impacted practically every area of human life. Several machine learning (ML) approaches are employed in the medical field in many applications, including detecting and monitoring patients, notably in COVID-19 management. Different medical imaging systems, such as computed tomography (CT) and X-ray, offer ML an excellent platform for combating the pandemic. Because of this need, a significant quantity of study has been carried out; thus, in this work, we employed a systematic literature review (SLR) to cover all aspects of outcomes from related papers. Imaging methods, survival analysis, forecasting, economic and geographical issues, monitoring methods, medication development, and hybrid apps are the seven key uses of applications employed in the COVID-19 pandemic. Conventional neural networks (CNNs), long short-term memory networks (LSTM), recurrent neural networks (RNNs), generative adversarial networks (GANs), autoencoders, random forest, and other ML techniques are frequently used in such scenarios. Next, cutting-edge applications related to ML techniques for pandemic medical issues are discussed. Various problems and challenges linked with ML applications for this pandemic were reviewed. It is expected that additional research will be conducted in the upcoming to limit the spread and catastrophe management. According to the data, most papers are evaluated mainly on characteristics such as flexibility and accuracy, while other factors such as safety are overlooked. Also, Keras was the most often used library in the research studied, accounting for 24.4 percent of the time. Furthermore, medical imaging systems are employed for diagnostic reasons in 20.4 percent of applications.
Collapse
Affiliation(s)
- Arash Heidari
- Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Computer Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | | | - Mehmet Unal
- Department of Computer Engineering, Nisantasi University, Istanbul, Turkey
| | - Shiva Toumaj
- Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
19
|
Appasami G, Nickolas S. A deep learning-based COVID-19 classification from chest X-ray image: case study. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2022; 231:3767-3777. [PMID: 35996535 PMCID: PMC9386662 DOI: 10.1140/epjs/s11734-022-00647-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/26/2022] [Indexed: 05/02/2023]
Abstract
The novel corona virus disease (COVID-19) is a pandemic disease that is currently affecting over 200 countries around the world and more than 6 millions of people died in last 2 years. Early detection of COVID-19 can mitigate and control its spread. Reverse transcription polymerase chain reaction (RT-CPR), Chest X-ray (CXR) scan, and Computerized Tomography (CT) scan are used to identify the COVID-19. Chest X-ray image analysis is relatively time efficient than compared with RT-CPR and CT scan. Its cost-effectiveness make it a good choice for COVID-19 Classification. We propose a deep learning based Convolutional Neural Network model for detection of COVID-19 from CXR. Chest X-ray images are collected from various sources dataset for training with augmentation and evaluating our model, which is widely used for COVID-19 detection and diagnosis. A Deep Convolutional neural network (CNN) based model for analysis of COVID-19 with data augmentation is proposed, which uses the patient's chest X-ray images for the diagnosis of COVID-19 with an aim to help the physicians to assist the diagnostic process among high workload conditions. The overall accuracy of 93 percent for COVID-19 Classification is achieved by choosing best optimizer.
Collapse
Affiliation(s)
- G. Appasami
- National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamilnadu India
| | - S. Nickolas
- National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamilnadu India
| |
Collapse
|