1
|
Barosa M, Ioannidis JPA, Prasad V. Evidence base for yearly respiratory virus vaccines: Current status and proposed improved strategies. Eur J Clin Invest 2024; 54:e14286. [PMID: 39078026 DOI: 10.1111/eci.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/22/2024] [Indexed: 07/31/2024]
Abstract
Annual vaccination is widely recommended for influenza and SARS-CoV-2. In this essay, we analyse and question the prevailing policymaking approach to these respiratory virus vaccines, especially in the United States. Every year, licensed influenza vaccines are reformulated to include specific strains expected to dominate in the season ahead. Updated vaccines are rapidly manufactured and approved without further regulatory requirement of clinical data. Novel vaccines (i.e. new products) typically undergo clinical trials, though generally powered for clinically unimportant outcomes (e.g. lab-confirmed infections, regardless of symptomatology or antibody levels). Eventually, the current and future efficacy of influenza and COVID-19 vaccines against hospitalization or death carries considerable uncertainty. The emergence of highly transmissible SARS-CoV-2 variants and waning vaccine-induced immunity led to plummeting vaccine effectiveness, at least against symptomatic infection, and booster doses have since been widely recommended. No further randomized trials were performed for clinically important outcomes for licensed updated boosters. In both cases, annual vaccine effectiveness estimates are generated by observational research, but observational studies are particularly susceptible to confounding and bias. Well-conducted experimental studies, particularly randomized trials, are necessary to address persistent uncertainties about influenza and COVID-19 vaccines. We propose a new research framework which would render results relevant to the current or future respiratory viral seasons. We demonstrate that experimental studies are feasible by adopting a more pragmatic approach and provide strategies on how to do so. When it comes to implementing policies that seriously impact people's lives, require substantial public resources and/or rely on widespread public acceptance, high evidence standards are desirable.
Collapse
Affiliation(s)
- Mariana Barosa
- NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
| | - John P A Ioannidis
- Departments of Medicine, of Epidemiology and Population Health, of Biomedical Data Science, and of Statistics, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
| | - Vinay Prasad
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Shoemaker K, Soboleva K, Branche A, Shankaran S, Theodore DA, Bari M, Ezeh V, Green J, Kelly E, Lan D, Olsson U, Saminathan S, Shankar NK, Villegas B, Villafana T, Falsey AR, Sobieszczyk ME. Long-Term Safety and Immunogenicity of AZD1222 (ChAdOx1 nCoV-19): 2-Year Follow-Up from a Phase 3 Study. Vaccines (Basel) 2024; 12:883. [PMID: 39204009 PMCID: PMC11359581 DOI: 10.3390/vaccines12080883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
A better understanding of the long-term safety, efficacy, and immunogenicity of COVID-19 vaccines is needed. This phase 3, randomized, placebo-controlled study for AZD1222 (ChAdOx1 nCoV-19) primary-series vaccination enrolled 32,450 participants in the USA, Chile, and Peru between August 2020 and January 2021 (NCT04516746). Endpoints included the 2-year follow-up assessment of safety, efficacy, and immunogenicity. After 2 years, no emergent safety signals were observed for AZD1222, and no cases of thrombotic thrombocytopenia syndrome were reported. The assessment of anti-SARS-CoV-2 nucleocapsid antibody titers confirmed the durability of AZD1222 efficacy for up to 6 months, after which infection rates in the AZD1222 group increased over time. Despite this, all-cause and COVID-19-related mortality remained low through the study end, potentially reflecting the post-Omicron decoupling of SARS-CoV-2 infection rates and severe COVID-19 outcomes. Geometric mean titers were elevated for anti-SARS-CoV-2 neutralizing antibodies at the 1-year study visit and the anti-spike antibodies were elevated at year 2, providing further evidence of increasing SARS-CoV-2 infections over long-term follow-up. Overall, this 2-year follow-up of the AZD1222 phase 3 study confirms that the long-term safety profile remains consistent with previous findings and supports the continued need for COVID-19 booster vaccinations due to waning efficacy and humoral immunity.
Collapse
Affiliation(s)
- Kathryn Shoemaker
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (K.S.); (D.L.)
| | - Karina Soboleva
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (K.S.); (V.E.)
| | - Angela Branche
- Division of Infectious Diseases, Department of Medicine, University of Rochester, Rochester, NY 14627, USA;
| | - Shivanjali Shankaran
- Division of Infectious Diseases, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Deborah A. Theodore
- Division of Infectious Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, USA; (D.A.T.)
| | - Muhammad Bari
- Formerly Patient Safety, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK;
| | - Victor Ezeh
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (K.S.); (V.E.)
| | - Justin Green
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK
| | - Elizabeth Kelly
- Formerly Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA;
| | - Dongmei Lan
- Biometrics, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (K.S.); (D.L.)
| | - Urban Olsson
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden;
| | - Senthilkumar Saminathan
- Patient Safety, Chief Medical Office, R&D, AstraZeneca, Bangalore 560045, India; (S.S.); (N.K.S.)
| | - Nirmal Kumar Shankar
- Patient Safety, Chief Medical Office, R&D, AstraZeneca, Bangalore 560045, India; (S.S.); (N.K.S.)
| | - Berta Villegas
- Clinical Operations, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Mississauga, ON L4Y 1M4, Canada;
| | - Tonya Villafana
- Clinical Development, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA; (K.S.); (V.E.)
| | - Ann R. Falsey
- Department of Medicine, Infectious Diseases, University of Rochester School of Medicine and Dentistry, Rochester, New York, NY 14642, USA;
- Infectious Disease, Rochester Regional Health, Rochester, New York, NY 14617, USA
| | - Magdalena E. Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, USA; (D.A.T.)
| |
Collapse
|
3
|
Song S, Madewell ZJ, Liu M, Miao Y, Xiang S, Huo Y, Sarkar S, Chowdhury A, Longini IM, Yang Y. A systematic review and meta-analysis on the effectiveness of bivalent mRNA booster vaccines against Omicron variants. Vaccine 2024; 42:3389-3396. [PMID: 38653679 DOI: 10.1016/j.vaccine.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND A global shift to bivalent mRNA vaccines is ongoing to counterbalance the diminishing effectiveness of the original monovalent vaccines due to the evolution of SARS-CoV-2 variants, yet substantial variation in the bivalent vaccine effectiveness (VE) exists across studies and a complete picture is lacking. METHODS We searched papers evaluating absolute or relative effectiveness of SARS-CoV-2 BA.1 type or BA.4/5 type bivalent mRNA vaccines on eight publication databases published from September 1st, 2022, to November 8th, 2023. Pooled VE against Omicron-associated infection and severe events (hospitalization and/or death) was estimated in reference to unvaccinated, ≥2 original monovalent doses, and ≥ 3 original monovalent doses. RESULTS From 630 citations identified, 28 studies were included, involving 55,393,303 individuals. Bivalent boosters demonstrated higher effectiveness against symptomatic or any infection for all ages combined, with an absolute VE of 53.5 % (95 % CI: -22.2-82.3 %) when compared to unvaccinated and relative VE of 30.8 % (95 % CI: 22.5-38.2 %) and 28.4 % (95 % CI: 10.2-42.9 %) when compared to ≥ 2 and ≥ 3 original monovalent doses, respectively. The corresponding VE estimates for adults ≥ 60 years old were 22.5 % (95 % CI: 16.8-39.8 %), 31.4 % (95 % CI: 27.7-35.0 %), and 30.6 % (95 % CI: -13.2-57.5 %). Pooled bivalent VE estimates against severe events were higher, 72.9 % (95 % CI: 60.5-82.4 %), 57.6 % (95 % CI: 42.4-68.8 %), and 62.1 % (95 % CI: 54.6-68.3 %) for all ages, and 72.0 % (95 % CI: 51.4-83.9 %), 63.4 % (95 % CI: 41.0-77.3 %), and 60.7 % (95 % CI: 52.4-67.6 %) for adults ≥ 60 years old, compared to unvaccinated, ≥2 original monovalent doses, and ≥ 3 original monovalent doses, respectively. CONCLUSIONS The bivalent boosters demonstrated superior protection against severe outcomes than the original monovalent boosters across age groups, highlighting the critical need for improving vaccine coverage, especially among the vulnerable older subpopulation.
Collapse
Affiliation(s)
- Shangchen Song
- Department of Biostatistics, College of Public Health and health Professions, University of Florida, Gainesville, FL, USA
| | - Zachary J Madewell
- Department of Biostatistics, College of Public Health and health Professions, University of Florida, Gainesville, FL, USA
| | - Mingjin Liu
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Yu Miao
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Shaolin Xiang
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Yanan Huo
- Gilead Sciences, Inc, Foster City, CA, USA
| | - Shoumi Sarkar
- Department of Biostatistics, College of Public Health and health Professions, University of Florida, Gainesville, FL, USA
| | - Amily Chowdhury
- Department of Computer Science, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Ira M Longini
- Department of Biostatistics, College of Public Health and health Professions, University of Florida, Gainesville, FL, USA
| | - Yang Yang
- Department of Statistics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Hyun H, Nham E, Seong H, Yoon JG, Noh JY, Cheong HJ, Kim WJ, Yoon SK, Park SJ, Gwak W, Lee JW, Kim B, Song JY. Long-term humoral and cellular immunity against vaccine strains and Omicron subvariants (BQ.1.1, BN.1, XBB.1, and EG.5) after bivalent COVID-19 vaccination. Front Immunol 2024; 15:1385135. [PMID: 38756783 PMCID: PMC11096540 DOI: 10.3389/fimmu.2024.1385135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Background The assessment of long-term humoral and cellular immunity post-vaccination is crucial for establishing an optimal vaccination strategy. Methods This prospective cohort study evaluated adults (≥18 years) who received a BA.4/5 bivalent vaccine. We measured the anti-receptor binding domain immunoglobulin G antibody and neutralizing antibodies (NAb) against wild-type and Omicron subvariants (BA.5, BQ.1.1, BN.1, XBB.1 and EG.5) up to 9 months post-vaccination. T-cell immune responses were measured before and 4 weeks after vaccination. Results A total of 108 (28 SARS-CoV-2-naïve and 80 previously infected) participants were enrolled. Anti-receptor binding domain immunoglobulin G (U/mL) levels were higher at 9 months post-vaccination than baseline in SAR-CoV-2-naïve individuals (8,339 vs. 1,834, p<0.001). NAb titers against BQ.1.1, BN.1, and XBB.1 were significantly higher at 9 months post-vaccination than baseline in both groups, whereas NAb against EG.5 was negligible at all time points. The T-cell immune response (median spot forming unit/106 cells) was highly cross-reactive at both baseline (wild-type/BA.5/XBB.1.5, 38.3/52.5/45.0 in SARS-CoV-2-naïve individuals; 51.6/54.9/54.9 in SARS-CoV-2-infected individuals) and 4 weeks post-vaccination, with insignificant boosting post-vaccination. Conclusion Remarkable cross-reactive neutralization was observed against BQ.1.1, BN.1, and XBB.1 up to 9 months after BA.4/5 bivalent vaccination, but not against EG.5. The T-cell immune response was highly cross-reactive.
Collapse
Affiliation(s)
- Hakjun Hyun
- Department of Infectious Diseases, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Eliel Nham
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Research and Development, Vaccine Innovation Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hye Seong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Research and Development, Vaccine Innovation Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jin Gu Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Research and Development, Vaccine Innovation Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Yun Noh
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Research and Development, Vaccine Innovation Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Research and Development, Vaccine Innovation Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woo Joo Kim
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Research and Development, Vaccine Innovation Center, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sun Kyung Yoon
- Division of Vaccine Clinical Research, Center for Vaccine Research National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Se-Jin Park
- Division of Vaccine Clinical Research, Center for Vaccine Research National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - WonSeok Gwak
- Division of Vaccine Clinical Research, Center for Vaccine Research National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - June-Woo Lee
- Division of Vaccine Clinical Research, Center for Vaccine Research National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Byoungguk Kim
- Division of Vaccine Clinical Research, Center for Vaccine Research National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
- Asia Pacific Influenza Institute, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Research and Development, Vaccine Innovation Center, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
de Rioja VL, Basile L, Perramon-Malavez A, Martínez-Solanas É, López D, Medina Maestro S, Coma E, Fina F, Prats C, Mendioroz Peña J, Alvarez-Lacalle E. Severity of Omicron Subvariants and Vaccine Impact in Catalonia, Spain. Vaccines (Basel) 2024; 12:466. [PMID: 38793717 PMCID: PMC11125683 DOI: 10.3390/vaccines12050466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
In the current COVID-19 landscape dominated by Omicron subvariants, understanding the timing and efficacy of vaccination against emergent lineages is crucial for planning future vaccination campaigns, yet detailed studies stratified by subvariant, vaccination timing, and age groups are scarce. This retrospective study analyzed COVID-19 cases from December 2021 to January 2023 in Catalonia, Spain, focusing on vulnerable populations affected by variants BA.1, BA.2, BA.5, and BQ.1 and including two national booster campaigns. Our database includes detailed information such as dates of diagnosis, hospitalization and death, last vaccination, and cause of death, among others. We evaluated the impact of vaccination on disease severity by age, variant, and vaccination status, finding that recent vaccination significantly mitigated severity across all Omicron subvariants, although efficacy waned six months post-vaccination, except for BQ.1, which showed more stable levels. Unvaccinated individuals had higher hospitalization and mortality rates. Our results highlight the importance of periodic vaccination to reduce severe outcomes, which are influenced by variant and vaccination timing. Although the seasonality of COVID-19 is uncertain, our analysis suggests the potential benefit of annual vaccination in populations >60 years old, probably in early fall, if COVID-19 eventually exhibits a major peak similar to other respiratory viruses.
Collapse
Affiliation(s)
- Víctor López de Rioja
- Department of Physics, Universitat Politècnica de Catalunya, Castelldefels, 08860 Barcelona, Spain; (A.P.-M.); (C.P.); (E.A.-L.)
| | - Luca Basile
- Public Health Agency of Catalonia, Department of Health, 08005 Barcelona, Spain; (L.B.); (S.M.M.); (J.M.P.)
| | - Aida Perramon-Malavez
- Department of Physics, Universitat Politècnica de Catalunya, Castelldefels, 08860 Barcelona, Spain; (A.P.-M.); (C.P.); (E.A.-L.)
| | | | - Daniel López
- Department of Physics, Universitat Politècnica de Catalunya, Castelldefels, 08860 Barcelona, Spain; (A.P.-M.); (C.P.); (E.A.-L.)
| | - Sergio Medina Maestro
- Public Health Agency of Catalonia, Department of Health, 08005 Barcelona, Spain; (L.B.); (S.M.M.); (J.M.P.)
| | - Ermengol Coma
- Primary Care Services Information System (SISAP), Institut Català de la Salut, 08007 Barcelona, Spain; (E.C.)
| | - Francesc Fina
- Primary Care Services Information System (SISAP), Institut Català de la Salut, 08007 Barcelona, Spain; (E.C.)
| | - Clara Prats
- Department of Physics, Universitat Politècnica de Catalunya, Castelldefels, 08860 Barcelona, Spain; (A.P.-M.); (C.P.); (E.A.-L.)
| | - Jacobo Mendioroz Peña
- Public Health Agency of Catalonia, Department of Health, 08005 Barcelona, Spain; (L.B.); (S.M.M.); (J.M.P.)
- University of Vic—Central University of Catalonia (UVic-UCC), 08500 Vic, Spain
| | - Enric Alvarez-Lacalle
- Department of Physics, Universitat Politècnica de Catalunya, Castelldefels, 08860 Barcelona, Spain; (A.P.-M.); (C.P.); (E.A.-L.)
| |
Collapse
|
6
|
Kontoghiorghes GJ, Kolnagou A, Kontoghiorghe CN. Post COVID-19 Reflections and Questions: How Prepared Are We for the Next Pandemic? Int J Mol Sci 2024; 25:859. [PMID: 38255933 PMCID: PMC11326220 DOI: 10.3390/ijms25020859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
While the end of the COVID-19 pandemic was announced earlier in 2023 by WHO, the currently dominating COVID-19 virus variants, such as the omicron sub-lineages XBB [...].
Collapse
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3 Ammochostou Street, Limassol 3021, Cyprus
| | - Annita Kolnagou
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3 Ammochostou Street, Limassol 3021, Cyprus
| | - Christina N Kontoghiorghe
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3 Ammochostou Street, Limassol 3021, Cyprus
| |
Collapse
|
7
|
Antunes L, Mazagatos C, Martínez-Baz I, Gomez V, Borg ML, Petrović G, Duffy R, Dufrasne FE, Dürrwald R, Lazar M, Jancoriene L, Oroszi B, Husa P, Howard J, Melo A, Pozo F, Pérez-Gimeno G, Castilla J, Machado A, Džiugytė A, Karabuva S, Fitzgerald M, Fierens S, Tolksdorf K, Popovici SO, Mickienė A, Túri G, Součková L, Nicolay N, Rose AM. Effectiveness of the adapted bivalent mRNA COVID-19 vaccines against hospitalisation in individuals aged ≥ 60 years during the Omicron XBB lineage-predominant period: VEBIS SARI VE network, Europe, February to August, 2023. Euro Surveill 2024; 29:2300708. [PMID: 38240061 PMCID: PMC10797659 DOI: 10.2807/1560-7917.es.2024.29.3.2300708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 01/22/2024] Open
Abstract
We conducted a multicentre hospital-based test-negative case-control study to measure the effectiveness of adapted bivalent COVID-19 mRNA vaccines against PCR-confirmed SARS-CoV-2 infection during the Omicron XBB lineage-predominant period in patients aged ≥ 60 years with severe acute respiratory infection from five countries in Europe. Bivalent vaccines provided short-term additional protection compared with those vaccinated > 6 months before the campaign: from 80% (95% CI: 50 to 94) for 14-89 days post-vaccination, 15% (95% CI: -12 to 35) at 90-179 days, and lower to no effect thereafter.
Collapse
Affiliation(s)
| | - Clara Mazagatos
- National Centre for Epidemiology, Institute of Health Carlos III, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Iván Martínez-Baz
- Instituto de Salud Pública de Navarra - IdiSNA, Pamplona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Verónica Gomez
- Epidemiology Department, National Health Institute Doutor Ricardo Jorge, Lisbon, Portugal
| | - Maria-Louise Borg
- Infectious Disease Prevention and Control Unit (IDCU), Health Promotion and Disease Prevention, Msida, Malta
| | | | - Róisín Duffy
- Health Service Executive-Health Protection Surveillance Centre (HPSC), Dublin, Ireland
| | - François E Dufrasne
- National Influenza Centre Laboratory of Viral Diseases, Sciensano, Brussels, Belgium
| | - Ralf Dürrwald
- National Reference Centre for Influenza, Robert Koch Institute, Berlin, Germany
| | - Mihaela Lazar
- Cantacuzino National Military-Medical Institute for Research and Development, Bucharest, Romania
| | - Ligita Jancoriene
- Clinic of Infectious Diseases and Dermatovenerology, Institute of Clinical Medicine, Medical Faculty, Vilnius University, Lithuania
| | - Beatrix Oroszi
- National Laboratory for Health Security, Epidemiology and Surveillance Centre, Semmelweis University, Budapest, Hungary
| | - Petr Husa
- University Hospital Brno, Masaryk University, Brno, Czechia
| | | | - Aryse Melo
- Infectious Diseases Department, National Health Institute Doutor Ricardo Jorge, Lisbon, Portugal
| | - Francisco Pozo
- National Centre for Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Gloria Pérez-Gimeno
- National Centre for Epidemiology, Institute of Health Carlos III, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Jesús Castilla
- Instituto de Salud Pública de Navarra - IdiSNA, Pamplona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Ausenda Machado
- Epidemiology Department, National Health Institute Doutor Ricardo Jorge, Lisbon, Portugal
| | - Aušra Džiugytė
- Infectious Disease Prevention and Control Unit (IDCU), Health Promotion and Disease Prevention, Msida, Malta
| | | | - Margaret Fitzgerald
- Health Service Executive-Health Protection Surveillance Centre (HPSC), Dublin, Ireland
| | - Sébastien Fierens
- Service Epidemiology of Infectious Diseases, Sciensano, Brussels, Belgium
| | - Kristin Tolksdorf
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Silvia-Odette Popovici
- National Institute of Public Health, National Centre for Communicable Diseases Surveillance and Control, Bucharest, Romania
| | - Auksė Mickienė
- Department of Infectious Diseases, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gergő Túri
- National Laboratory for Health Security, Epidemiology and Surveillance Centre, Semmelweis University, Budapest, Hungary
| | - Lenka Součková
- University Hospital Brno, Masaryk University, Brno, Czechia
| | - Nathalie Nicolay
- European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | | |
Collapse
|
8
|
Cowling BJ, Sullivan SG. Incremental benefit of booster vaccinations for COVID-19 in the United Kingdom. THE LANCET REGIONAL HEALTH. EUROPE 2023; 35:100790. [PMID: 38115958 PMCID: PMC10730305 DOI: 10.1016/j.lanepe.2023.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Affiliation(s)
- Benjamin J. Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong Special Administrative Region, China
| | - Sheena G. Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, Royal Melbourne Hospital, and Department of Infectious Diseases, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Epidemiology, University of California, Los Angeles, California, USA
| |
Collapse
|