1
|
Britton KJ, Pomat W, Sapura J, Kave J, Nivio B, Ford R, Kirarock W, Moore HC, Kirkham LA, Richmond PC, Chan J, Lehmann D, Russell FM, Blyth CC. Clinical predictors of hypoxic pneumonia in children from the Eastern Highlands Province, Papua New Guinea: secondary analysis of two prospective observational studies. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 45:101052. [PMID: 38699291 PMCID: PMC11064719 DOI: 10.1016/j.lanwpc.2024.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/15/2024] [Accepted: 03/13/2024] [Indexed: 05/05/2024]
Abstract
Background Pneumonia is the leading cause of death in young children globally and is prevalent in the Papua New Guinea highlands. We investigated clinical predictors of hypoxic pneumonia to inform local treatment guidelines in this resource-limited setting. Methods Between 2013 and 2020, two consecutive prospective observational studies were undertaken enrolling children 0-4 years presenting with pneumonia to health-care facilities in Goroka Town, Eastern Highlands Province. Logistic regression models were developed to identify clinical predictors of hypoxic pneumonia (oxygen saturation <90% on presentation). Model performance was compared against established criteria to identify severe pneumonia. Findings There were 2067 cases of pneumonia; hypoxaemia was detected in 36.1%. The strongest independent predictors of hypoxic pneumonia were central cyanosis on examination (adjusted odds ratio [aOR] 5.14; 95% CI 3.47-7.60), reduced breath sounds (aOR 2.92; 95% CI 2.30-3.71), and nasal flaring or grunting (aOR 2.34; 95% CI 1.62-3.38). While the model developed to predict hypoxic pneumonia outperformed established pneumonia severity criteria, it was not sensitive enough to be clinically useful at this time. Interpretation Given signs and symptoms are unable to accurately detect hypoxia, all health care facilities should be equipped with pulse oximeters. However, for the health care worker without access to pulse oximetry, consideration of central cyanosis, reduced breath sounds, nasal flaring or grunting, age-specific tachycardia, wheezing, parent-reported drowsiness, or bronchial breathing as suggestive of hypoxaemic pneumonia, and thus severe disease, may prove useful in guiding management, hospital referral and use of oxygen therapy. Funding Funded by Pfizer Global and the Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Kathryn J. Britton
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
| | - William Pomat
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
- Infection and Immunity Unit, Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands, Papua New Guinea
| | - Joycelyn Sapura
- Infection and Immunity Unit, Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands, Papua New Guinea
| | - John Kave
- Infection and Immunity Unit, Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands, Papua New Guinea
| | - Birunu Nivio
- Infection and Immunity Unit, Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands, Papua New Guinea
| | - Rebecca Ford
- Infection and Immunity Unit, Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands, Papua New Guinea
| | - Wendy Kirarock
- Infection and Immunity Unit, Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands, Papua New Guinea
| | - Hannah C. Moore
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - Lea-Ann Kirkham
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Child Health Research, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Peter C. Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Jocelyn Chan
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Deborah Lehmann
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Fiona M. Russell
- Infection and Immunity, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, Centre for International Child Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher C. Blyth
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Medicine, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Infectious Diseases, Perth Children's Hospital, Nedlands, Western Australia, Australia
- Department of Microbiology, PathWest Laboratory Medicine, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
2
|
von Mollendorf C, Ulziibayar M, Nguyen CD, Batsaikhan P, Suuri B, Luvsantseren D, Narangerel D, de Campo J, de Campo M, Tsolmon B, Demberelsuren S, Dunne EM, Satzke C, Mungun T, Mulholland EK. Effect of Pneumococcal Conjugate Vaccine on Pneumonia Incidence Rates among Children 2-59 Months of Age, Mongolia, 2015-2021. Emerg Infect Dis 2024; 30:490-498. [PMID: 38407131 PMCID: PMC10902538 DOI: 10.3201/eid3003.230864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Starting in June 2016, the 13-valent pneumococcal conjugate vaccine (PCV13) was introduced into the routine immunization program of Mongolia by using a 2+1 dosing schedule, phased by district. We used prospective hospital surveillance to evaluate the vaccine's effect on pneumonia incidence rates among children 2-59 months of age over a 6-year period. Of 17,607 children with pneumonia, overall adjusted incidence rate ratios showed decreased primary endpoint pneumonia, very severe pneumonia, and probable pneumococcal pneumonia until June 2021. Results excluding and including the COVID-19 pandemic period were similar. Pneumonia declined in 3 districts that introduced PCV13 with catch-up campaigns but not in the 1 district that did not. After PCV13 introduction, vaccine-type pneumococcal carriage prevalence decreased by 44% and nonvaccine-type carriage increased by 49%. After PCV13 introduction in Mongolia, the incidence of more specific pneumonia endpoints declined in children 2-59 months of age; additional benefits were conferred by catch-up campaigns.
Collapse
|
3
|
Manna S, Werren JP, Ortika BD, Bellich B, Pell CL, Nikolaou E, Gjuroski I, Lo S, Hinds J, Tundev O, Dunne EM, Gessner BD, Bentley SD, Russell FM, Mulholland EK, Mungun T, von Mollendorf C, Licciardi PV, Cescutti P, Ravenscroft N, Hilty M, Satzke C. Streptococcus pneumoniae serotype 33G: genetic, serological, and structural analysis of a new capsule type. Microbiol Spectr 2024; 12:e0357923. [PMID: 38059623 PMCID: PMC10782959 DOI: 10.1128/spectrum.03579-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Streptococcus pneumoniae (the pneumococcus) is a bacterial pathogen with the greatest burden of disease in Asia and Africa. The pneumococcal capsular polysaccharide has biological relevance as a major virulence factor as well as public health importance as it is the target for currently licensed vaccines. These vaccines have limited valency, covering up to 23 of the >100 known capsular types (serotypes) with higher valency vaccines in development. Here, we have characterized a new pneumococcal serotype, which we have named 33G. We detected serotype 33G in nasopharyngeal swabs (n = 20) from children and adults hospitalized with pneumonia, as well as healthy children in Mongolia. We show that the genetic, serological, and biochemical properties of 33G differ from existing serotypes, satisfying the criteria to be designated as a new serotype. Future studies should focus on the geographical distribution of 33G and any changes in prevalence following vaccine introduction.
Collapse
Affiliation(s)
- Sam Manna
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Joel P. Werren
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Belinda D. Ortika
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Casey L. Pell
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Elissavet Nikolaou
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ilche Gjuroski
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Stephanie Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Jason Hinds
- Institute for Infection and Immunity, St. George’s, University of London, London, United Kingdom
- BUGS Bioscience, London Bioscience Innovation Center, London, United Kingdom
| | - Odgerel Tundev
- National Center for Communicable Diseases, Ministry of Health, Ulaanbaatar, Mongolia
| | | | | | - Stephen D. Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Fiona M. Russell
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
| | - E. Kim Mulholland
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Tuya Mungun
- National Center for Communicable Diseases, Ministry of Health, Ulaanbaatar, Mongolia
| | - Claire von Mollendorf
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
| | - Paul V. Licciardi
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Catherine Satzke
- Infection, Immunity, and Global Health, Murdoch Children’s Research Institute, Melbourne, Australia
- Department of Pediatrics, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
4
|
Hart JD, Ong DS, Chokephaibulkit K, Ong-Lim AT, Vereti I, Crawford NW, Russell F. Considerations for vaccinating children against COVID-19. BMJ Paediatr Open 2023; 7:e001964. [PMID: 37487674 PMCID: PMC10373744 DOI: 10.1136/bmjpo-2023-001964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/03/2023] [Indexed: 07/26/2023] Open
Abstract
COVID-19 vaccines have been introduced in children and adolescents in many countries. However, high levels of community transmission and infection-derived immunity make the decision to introduce COVID-19 vaccination of children in countries yet to do so particularly challenging. For example, other vaccine preventable diseases, including measles and polio, generally have far higher childhood morbidity and mortality in low-income and middle-income countries (LMICs) than COVID-19, and coverage with these vaccines has declined during the pandemic. Many countries are yet to introduce pneumococcal conjugate and rotavirus vaccines for children, which prevent common causes of childhood death, or human papillomavirus vaccine for adolescents. The Pfizer and Moderna COVID-19 vaccines that have been widely tested in children and adolescents have a positive risk-benefit profile. However, the benefit is less compared with other life-saving vaccines in this age group, particularly in LMICs and settings with widespread infection-derived immunity. The resources required for rollout may also pose a considerable challenge in LMICs. In this paper, we describe COVID-19 in children, with a focus on LMICs, and summarise the published literature on safety, efficacy and effectiveness of COVID-19 vaccination in children and adolescents. We highlight the complexity of decision-making regarding COVID-19 vaccination of children now that most of this low-risk population benefit from infection-derived immunity. We emphasise that at-risk groups should be prioritised for COVID-19 vaccination; and that if COVID-19 vaccines are introduced for children, the opportunity should be taken to improve coverage of routine childhood vaccines and preventative healthcare. Additionally, we highlight the paucity of epidemiological data in LMICs, and that for future epidemics, measures need to be taken to ensure equitable access to safe and efficacious vaccines before exposure to infection.
Collapse
Affiliation(s)
- John D Hart
- Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Darren Suryawijaya Ong
- Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kulkanya Chokephaibulkit
- Siriraj Institute of Clinical Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Paediatrics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anna T Ong-Lim
- Division of Infectious and Tropical Disease in Pediatrics, College of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Ilisapeci Vereti
- Department of Paediatrics, Colonial War Memorial Hospital, Ministry of Health and Medical Services, Suva, Fiji
| | - Nigel W Crawford
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- General Medicine, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Fiona Russell
- Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Mellor KC, Lo S, Yoannes M, Michael A, Orami T, Greenhill AR, Breiman RF, Hawkins P, McGee L, Bentley SD, Ford RL, Lehmann D. Distinct Streptococcus pneumoniae cause invasive disease in Papua New Guinea. Microb Genom 2022; 8. [PMID: 35816442 PMCID: PMC9455700 DOI: 10.1099/mgen.0.000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae is a key contributor to childhood morbidity and mortality in Papua New Guinea (PNG). For the first time, whole genome sequencing of 174 isolates has enabled detailed characterisation of diverse S. pneumoniae causing invasive disease in young children in PNG, 1989-2014. This study captures the baseline S. pneumoniae population prior to the introduction of 13-valent pneumococcal conjugate vaccine (PCV13) into the national childhood immunisation programme in 2014. Relationships amongst lineages, serotypes and antimicrobial resistance traits were characterised, and the population was viewed in the context of a global collection of isolates. The analyses highlighted adiverse S. pneumoniae population associated with invasive disease in PNG, with 45 unique Global Pneumococcal Sequence Clusters (GPSCs) observed amongst the 174 isolates reflecting multiple lineages observed in PNG that have not been identified in other geographic locations. The majority of isolates were from children with meningitis, of which 52% (n=72) expressed non-PCV13 serotypes. Over a third of isolates were predicted to be resistant to at least one antimicrobial. PCV13 serotype isolates had 10.1 times the odds of being multidrug-resistant (MDR) compared to non-vaccine serotype isolates, and no isolates with GPSCs unique to PNG were MDR. Serotype 2 was the most commonly identified serotype; we identified a highly clonal cluster of serotype 2 isolates unique to PNG, and a distinct second cluster indicative of long-distance transmission. Ongoing surveillance, including whole-genome sequencing, is needed to ascertain the impact of the national PCV13 programme upon the S. pneumoniae population, including serotype replacement and antimicrobial resistance traits.
Collapse
Affiliation(s)
- Kate C Mellor
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Stephanie Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | - Mition Yoannes
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Audrey Michael
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Tilda Orami
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Andrew R Greenhill
- Institute of Innovation, Science and Sustainability, Federation University Australia, Churchill, Australia
| | - Robert F Breiman
- Rollins School of Public Health Emory University, Atlanta, GA, USA
| | - Paulina Hawkins
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lesley McGee
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Rebecca L Ford
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Deborah Lehmann
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|