1
|
Casey BK, Papsun DM, Mudd A. Elucidating the potential role of microorganisms in postmortem biotransformation: a comparison of clonazolam and its metabolite in postmortem and DUID cases. J Anal Toxicol 2024; 48:550-556. [PMID: 39099108 DOI: 10.1093/jat/bkae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/06/2024] Open
Abstract
Clonazolam is a designer triazolobenzodiazepine first synthesized in 1971 and is primarily used for its anxiolytic and sedative effects. It became a drug of misuse in 2012 and is known for its high potency and long duration of effect. Previous studies of nitrobenzodiazepines, such as nitrazepam, clonazepam, and flunitrazepam, as well as their metabolites, have demonstrated that bacterial species native to the gastrointestinal tract and active during postmortem (PM) decomposition are capable of affecting positivity and compound-to-metabolite ratios. Further studies have not been performed with clonazolam; however, it possesses the nitro functional group necessary for this biotransformation. To understand whether clonazolam may be similarly affected, PM cases (n = 288) and driving under the influence of drugs (DUID, n = 54) cases, positive for 8-aminoclonazolam reported by NMS Laboratories from 2020 to 2023, were selected for inclusion in this study. Concentrations of clonazolam and 8-aminoclonazolam were evaluated, and concurrent identification of parent drugs and their metabolites occurred less frequently in PM cases (n = 1, 0.30% of cases) than in DUID cases (n = 21, 38% of cases). The clonazolam concentration in one PM case was 13 ng/mL. In DUID cases, the median clonazolam concentration was 4.0 ng/mL and ranged from 2.0 to 10 ng/mL. 8-Aminoclonazolam had median concentrations of 13 and 19 ng/mL, with ranges 2.0-580 and 2.8-59 ng/mL for PM and DUID cases, respectively. Due to the ever-changing landscape of the designer benzodiazepine market, in vitro studies of PM microbial biotransformation of clonazolam are unavailable. The data reported herein provide valuable information in the absence of such studies and represent an alternative method of investigating this phenomenon as a potential cause of parent nitrobenzodiazepine to metabolite conversion.
Collapse
Affiliation(s)
| | | | - Anna Mudd
- Texas Department of Public Safety Crime Lab, Austin, TX 78752, United States
| |
Collapse
|
2
|
Kwak ML, Wallman JF, Yeo D, Archer MS, Nakao R. Forensic parasitology: a new frontier in criminalistics. Forensic Sci Res 2024; 9:owae005. [PMID: 38846987 PMCID: PMC11156235 DOI: 10.1093/fsr/owae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/04/2023] [Indexed: 06/09/2024] Open
Abstract
Parasites are ubiquitous, diverse, and have close interactions with humans and other animals. Despite this, they have not garnered significant interest from forensic scientists, and their utility as indicators in criminal investigations has been largely overlooked. To foster the development of forensic parasitology we explore the utility of parasites as forensic indicators in five broad areas: (i) wildlife trafficking and exploitation, (ii) biological attacks, (iii) sex crimes, (iv) criminal neglect of humans and other animals, and (v) indicators of movement and travel. To encourage the development and growth of forensic parasitology as a field, we lay out a four-step roadmap to increase the use and utility of parasites in criminal investigations.
Collapse
Affiliation(s)
- Mackenzie L Kwak
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - James F Wallman
- Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Darren Yeo
- The Centre for Wildlife Forensics, National Parks Board (NParks), Singapore, Republic of Singapore
| | - Melanie S Archer
- Department of Forensic Medicine, Monash University/Victorian Institute of Forensic Medicine, Southbank, Victoria, Australia
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Moitas B, Caldas IM, Sampaio-Maia B. Microbiology and postmortem interval: a systematic review. Forensic Sci Med Pathol 2024; 20:696-715. [PMID: 37843744 PMCID: PMC11297127 DOI: 10.1007/s12024-023-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 10/17/2023]
Abstract
This systematic review aims to learn if and how it is possible to use the human microbiome to indicate the time elapsed after death. Articles were searched on the PubMed database using predefined data fields and keywords; reviews, systematic reviews, and meta-analyses were excluded. The final selection included 14 papers (out of 144). The results indicated that the microorganisms present in the cadaveric island succeed predictably over time, with markers between the stages of decomposition constituting a potential innovative tool for postmortem interval (PMI) estimation. The human microbiome has the potential to be used for PMI estimation and may present advantages as microbes are present in all seasons, in all habitats, including the most extreme ones, and because microbial communities respond predictably to environmental changes.
Collapse
Affiliation(s)
- Bruna Moitas
- Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Inês Morais Caldas
- Faculdade de Medicina Dentária da Universidade do Porto, Porto, Portugal.
- CFE - Centre of Functional Ecology, University of Coimbra, Coimbra, Portugal.
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116, Gandra, Portugal.
| | - Benedita Sampaio-Maia
- Faculdade de Medicina Dentária da Universidade do Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação Em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Procopio N, Bonicelli A. From flesh to bones: Multi-omics approaches in forensic science. Proteomics 2024; 24:e2200335. [PMID: 38683823 DOI: 10.1002/pmic.202200335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Recent advancements in omics techniques have revolutionised the study of biological systems, enabling the generation of high-throughput biomolecular data. These innovations have found diverse applications, ranging from personalised medicine to forensic sciences. While the investigation of multiple aspects of cells, tissues or entire organisms through the integration of various omics approaches (such as genomics, epigenomics, metagenomics, transcriptomics, proteomics and metabolomics) has already been established in fields like biomedicine and cancer biology, its full potential in forensic sciences remains only partially explored. In this review, we have presented a comprehensive overview of state-of-the-art analytical platforms employed in omics research, with specific emphasis on their application in the forensic field for the identification of the cadaver and the cause of death. Moreover, we have conducted a critical analysis of the computational integration of omics approaches, and highlighted the latest advancements in employing multi-omics techniques for forensic investigations.
Collapse
Affiliation(s)
- Noemi Procopio
- Research Centre for Field Archaeology and Experimental Taphonomy, School of Law and Policing, University of Central Lancashire, Preston, UK
| | - Andrea Bonicelli
- Research Centre for Field Archaeology and Experimental Taphonomy, School of Law and Policing, University of Central Lancashire, Preston, UK
| |
Collapse
|
5
|
Nodari R, Arghittu M, Bailo P, Cattaneo C, Creti R, D’Aleo F, Saegeman V, Franceschetti L, Novati S, Fernández-Rodríguez A, Verzeletti A, Farina C, Bandi C. Forensic Microbiology: When, Where and How. Microorganisms 2024; 12:988. [PMID: 38792818 PMCID: PMC11123702 DOI: 10.3390/microorganisms12050988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Forensic microbiology is a relatively new discipline, born in part thanks to the development of advanced methodologies for the detection, identification and characterization of microorganisms, and also in relation to the growing impact of infectious diseases of iatrogenic origin. Indeed, the increased application of medical practices, such as transplants, which require immunosuppressive treatments, and the growing demand for prosthetic installations, associated with an increasing threat of antimicrobial resistance, have led to a rise in the number of infections of iatrogenic origin, which entails important medico-legal issues. On the other hand, the possibility of detecting minimal amounts of microorganisms, even in the form of residual traces (e.g., their nucleic acids), and of obtaining gene and genomic sequences at contained costs, has made it possible to ask new questions of whether cases of death or illness might have a microbiological origin, with the possibility of also tracing the origin of the microorganisms involved and reconstructing the chain of contagion. In addition to the more obvious applications, such as those mentioned above related to the origin of iatrogenic infections, or to possible cases of infections not properly diagnosed and treated, a less obvious application of forensic microbiology concerns its use in cases of violence or violent death, where the characterization of the microorganisms can contribute to the reconstruction of the case. Finally, paleomicrobiology, e.g., the reconstruction and characterization of microorganisms in historical or even archaeological remnants, can be considered as a sister discipline of forensic microbiology. In this article, we will review these different aspects and applications of forensic microbiology.
Collapse
Affiliation(s)
- Riccardo Nodari
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy
| | - Milena Arghittu
- Analysis Laboratory, ASST Melegnano e Martesana, 20077 Vizzolo Predabissi, Italy
| | - Paolo Bailo
- Section of Legal Medicine, School of Law, University of Camerino, 62032 Camerino, Italy
| | - Cristina Cattaneo
- LABANOF, Laboratory of Forensic Anthropology and Odontology, Section of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Roberta Creti
- Antibiotic Resistance and Special Pathogens Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesco D’Aleo
- Microbiology and Virology Laboratory, GOM—Grande Ospedale Metropolitano, 89124 Reggio Calabria, Italy
| | - Veroniek Saegeman
- Microbiology and Infection Control, Vitaz Hospital, 9100 Sint-Niklaas, Belgium
| | - Lorenzo Franceschetti
- LABANOF, Laboratory of Forensic Anthropology and Odontology, Section of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Stefano Novati
- Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Amparo Fernández-Rodríguez
- Microbiology Department, Biology Service, Instituto Nacional de Toxicología y Ciencias Forenses, 41009 Madrid, Spain
| | - Andrea Verzeletti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health University of Brescia, 25123 Brescia, Italy
| | - Claudio Farina
- Microbiology and Virology Laboratory, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Claudio Bandi
- Romeo ed Enrica Invernizzi Paediatric Research Centre, Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
6
|
Tidwell TL. Life in Suspension with Death: Biocultural Ontologies, Perceptual Cues, and Biomarkers for the Tibetan Tukdam Postmortem Meditative State. Cult Med Psychiatry 2024:10.1007/s11013-023-09844-2. [PMID: 38393648 DOI: 10.1007/s11013-023-09844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 02/25/2024]
Abstract
This article presents two cases from a collaborative study among Tibetan monastic populations in India on the postdeath meditative state called tukdam (thugs dam). Entered by advanced Tibetan Buddhist practitioners through a variety of different practices, this state provides an ontological frame that is investigated by two distinct intellectual traditions-the Tibetan Buddhist and medical tradition on one hand and the Euroamerican biomedical and scientific tradition on the other-using their respective means of inquiry. Through the investigation, the traditions enact two paradigms of the body at the time of death alongside attendant conceptualizations of what constitutes life itself. This work examines when epistemologies of these two traditions might converge, under what ontological contexts, and through which correlated indicators of evidence. In doing so, this work explores how these two intellectual traditions might answer how the time course and characteristics of physiological changes during the postmortem period might exhibit variation across individuals. Centrally, this piece presents an epistemological inquiry delineating the types of valid evidence that constitute exceptional processes post-clinical death and their potential ontological implications.
Collapse
Affiliation(s)
- Tawni L Tidwell
- Center for Healthy Minds, University of Wisconsin-Madison, 625 W. Washington Ave., Madison, WI, 53703, USA.
| |
Collapse
|
7
|
Wu Z, Guo Y, Hayakawa M, Yang W, Lu Y, Ma J, Li L, Li C, Liu Y, Niu J. Artificial intelligence-driven microbiome data analysis for estimation of postmortem interval and crime location. Front Microbiol 2024; 15:1334703. [PMID: 38314433 PMCID: PMC10834752 DOI: 10.3389/fmicb.2024.1334703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Microbial communities, demonstrating dynamic changes in cadavers and the surroundings, provide invaluable insights for forensic investigations. Conventional methodologies for microbiome sequencing data analysis face obstacles due to subjectivity and inefficiency. Artificial Intelligence (AI) presents an efficient and accurate tool, with the ability to autonomously process and analyze high-throughput data, and assimilate multi-omics data, encompassing metagenomics, transcriptomics, and proteomics. This facilitates accurate and efficient estimation of the postmortem interval (PMI), detection of crime location, and elucidation of microbial functionalities. This review presents an overview of microorganisms from cadavers and crime scenes, emphasizes the importance of microbiome, and summarizes the application of AI in high-throughput microbiome data processing in forensic microbiology.
Collapse
Affiliation(s)
- Ze Wu
- Department of Dermatology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaoxing Guo
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, Shenyang, China
- National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| | - Miren Hayakawa
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wei Yang
- Department of Dermatology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yansong Lu
- Department of Dermatology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jingyi Ma
- Department of Dermatology, General Hospital of Northern Theater Command, Shenyang, China
| | - Linghui Li
- Department of Dermatology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chuntao Li
- Department of Dermatology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yingchun Liu
- Department of Dermatology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jun Niu
- Department of Dermatology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
8
|
Lavrukova OS, Sidorova NA. [Use of microbiological data for the purposes of forensic medical examination]. Sud Med Ekspert 2024; 67:55-61. [PMID: 39440566 DOI: 10.17116/sudmed20246705155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The study objective was to describe the formation of forensic microbiological examination as an analysis of a new type, defined as the detection and registration of reliably measured environmental and physiological changes within the microbial community of corpse in order to substantiate the possibility of using microbiological parameters to establish the prescription of death coming. It has been determined that the knowledge of the patterns of interaction of a human and his corpse with endogenous and exogenous flora provides the basis for solving a number of traditional and new application-oriented expert tasks and the allocation of such a variety of forensic examination as forensic microbiological examination. Endogenous and exogenous human flora and its interaction with living and dead biological tissues are the objects of this kind of examination, and the dynamic patterns of such interaction are the subject of study. One of the initial relevant tasks of forensic microbiological examination consists in development of methods, adequate for the expert task to be solved, choice of the research «target», «models» for comparative analysis and medium, adequate for task in hand, as well as certification of these methods and standardization of assessment criteria for the obtained results.
Collapse
Affiliation(s)
| | - N A Sidorova
- Petrozavodsk State University, Petrozavodsk, Russia
| |
Collapse
|
9
|
Xu G, Teng X, Gao XH, Zhang L, Yan H, Qi RQ. Advances in machine learning-based bacteria analysis for forensic identification: identity, ethnicity, and site of occurrence. Front Microbiol 2023; 14:1332857. [PMID: 38179452 PMCID: PMC10764511 DOI: 10.3389/fmicb.2023.1332857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
When faced with an unidentified body, identifying the victim can be challenging, particularly if physical characteristics are obscured or masked. In recent years, microbiological analysis in forensic science has emerged as a cutting-edge technology. It not only exhibits individual specificity, distinguishing different human biotraces from various sites of occurrence (e.g., gastrointestinal, oral, skin, respiratory, and genitourinary tracts), each hosting distinct bacterial species, but also offers insights into the accident's location and the surrounding environment. The integration of machine learning with microbiomics provides a substantial improvement in classifying bacterial species compares to traditional sequencing techniques. This review discusses the use of machine learning algorithms such as RF, SVM, ANN, DNN, regression, and BN for the detection and identification of various bacteria, including Bacillus anthracis, Acetobacter aceti, Staphylococcus aureus, and Streptococcus, among others. Deep leaning techniques, such as Convolutional Neural Networks (CNN) models and derivatives, are also employed to predict the victim's age, gender, lifestyle, and racial characteristics. It is anticipated that big data analytics and artificial intelligence will play a pivotal role in advancing forensic microbiology in the future.
Collapse
Affiliation(s)
- Geyao Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| | - Xianzhuo Teng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| | - Li Zhang
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| | - Hongwei Yan
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| | - Rui-Qun Qi
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC, National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, China
| |
Collapse
|
10
|
de Campos EG, de Almeida OGG, De Martinis ECP. The role of microorganisms in the biotransformation of psychoactive substances and its forensic relevance: a critical interdisciplinary review. Forensic Sci Res 2023; 8:173-184. [PMID: 38221972 PMCID: PMC10785599 DOI: 10.1093/fsr/owad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/24/2023] [Indexed: 01/16/2024] Open
Abstract
Microorganisms are widespread on the planet being able to adapt, persist, and grow in diverse environments, either rich in nutrient sources or under harsh conditions. The comprehension of the interaction between microorganisms and drugs is relevant for forensic toxicology and forensic chemistry, elucidating potential pathways of microbial metabolism and their implications. Considering the described scenario, this paper aims to provide a comprehensive and critical review of the state of the art of interactions amongst microorganisms and common drugs of abuse. Additionally, other drugs of forensic interest are briefly discussed. This paper outlines the importance of this area of investigation, covering the intersections between forensic microbiology, forensic chemistry, and forensic toxicology applied to drugs of abuse, and it also highlights research potentialities. Key points Microorganisms are widespread on the planet and grow in a myriad of environments.Microorganisms can often be found in matrices of forensic interest.Drugs can be metabolized or produced (e.g. ethanol) by microorganisms.
Collapse
Affiliation(s)
- Eduardo G de Campos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC, USA
| | - Otávio G G de Almeida
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elaine C P De Martinis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Tambuzzi S, Maciocco F, Gentile G, Boracchi M, Bailo P, Marchesi M, Zoja R. Applications of microbiology to different forensic scenarios - A narrative review. J Forensic Leg Med 2023; 98:102560. [PMID: 37451142 DOI: 10.1016/j.jflm.2023.102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
In contrast to other forensic disciplines, forensic microbiology is still too often considered a "side activity" and is not able to make a real and concrete contribution to forensic investigations. Indeed, the various application aspects of this discipline still remain a niche activity and, as a result, microbiological investigations are often omitted or only approximated, in part due to poor report in the literature. However, in certain situations, forensic microbiology can prove to be extremely effective, if not crucial, when all other disciplines fail. Precisely because microorganisms can represent forensic evidence, in this narrative review all the major pathological forensic applications described in the literature have been presented. The goal of our review is to highlight the versatility and transversality of microbiology in forensic science and to provide a comprehensive source of literature to refer to when needed.
Collapse
Affiliation(s)
- Stefano Tambuzzi
- Dipartimento di Scienze Biomediche per la Salute, Sezione di Medicina Legale e delle Assicurazioni, Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133, Milano, Italy
| | - Francesca Maciocco
- Azienda Ospedaliera "San Carlo Borromeo", Servizio di Immunoematologia e Medicina Trasfusionale (SIMT), Via Pio II°, n. 3, Milano, Italy
| | - Guendalina Gentile
- Dipartimento di Scienze Biomediche per la Salute, Sezione di Medicina Legale e delle Assicurazioni, Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133, Milano, Italy.
| | - Michele Boracchi
- Dipartimento di Scienze Biomediche per la Salute, Sezione di Medicina Legale e delle Assicurazioni, Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133, Milano, Italy
| | | | - Matteo Marchesi
- ASST Papa Giovanni XXIII, Piazza OMS 1, 24127, Bergamo, Italy
| | - Riccardo Zoja
- Dipartimento di Scienze Biomediche per la Salute, Sezione di Medicina Legale e delle Assicurazioni, Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133, Milano, Italy
| |
Collapse
|
12
|
Fu G, Ma G, Dou S, Wang Q, Fu L, Zhang X, Lu C, Cong B, Li S. Feature selection with a genetic algorithm can help improve the distinguishing power of microbiota information in monozygotic twins' identification. Front Microbiol 2023; 14:1210638. [PMID: 37555059 PMCID: PMC10406218 DOI: 10.3389/fmicb.2023.1210638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
INTRODUCTION Personal identification of monozygotic twins (MZT) has been challenging in forensic genetics. Previous research has demonstrated that microbial markers have potential value due to their specificity and long-term stability. However, those studies would use the complete information of detected microbial communities, and low-value species would limit the performance of previous models. METHODS To address this issue, we collected 80 saliva samples from 10 pairs of MZTs at four different time points and used 16s rRNA V3-V4 region sequencing to obtain microbiota information. The data formed 280 inner-individual (Self) or MZT sample pairs, divided into four groups based on the individual relationship and time interval, and then randomly divided into training and testing sets with an 8:2 ratio. We built 12 identification models based on the time interval ( ≤ 1 year or ≥ 2 months), data basis (Amplicon sequence variants, ASVs or Operational taxonomic unit, OTUs), and distance parameter selection (Jaccard distance, Bray-Curist distance, or Hellinger distance) and then improved their identification power through genetic algorithm processes. The best combination of databases with distance parameters was selected as the final model for the two types of time intervals. Bayes theory was introduced to provide a numerical indicator of the evidence's effectiveness in practical cases. RESULTS From the 80 saliva samples, 369 OTUs and 1130 ASVs were detected. After the feature selection process, ASV-Jaccard distance models were selected as the final models for the two types of time intervals. For short interval samples, the final model can completely distinguish MZT pairs from Self ones in both training and test sets. DISCUSSION Our findings support the microbiota solution to the challenging MZT identification problem and highlight the importance of feature selection in improving model performance.
Collapse
Affiliation(s)
- Guangping Fu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Guanju Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Shujie Dou
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Qian Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Lihong Fu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Xiaojing Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Chaolong Lu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
- Hainan Tropical Forensic Medicine Academician Workstation, Haikou, China
| | - Shujin Li
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| |
Collapse
|
13
|
Murugesan M, Manoj D, Johnson LR, James RI. Forensic Microbiology in India: A missing piece in the puzzle of criminal investigation system. Indian J Med Microbiol 2023; 44:100367. [PMID: 37356836 DOI: 10.1016/j.ijmmb.2023.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/26/2023] [Accepted: 03/31/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Forensic Microbiology is an emerging branch of science that has great potential to assist criminal investigations. Having said that, microbial analysis is not performed routinely during forensic investigations in India. This could be attributed to lack of specific training and lack of evidence-based standard protocol. OBJECTIVES The authors attempt to highlight the key areas in forensic microbiology that need to be explored in a developing nation like India. CONTENT Forensic microbiology could help in linking a person to a crime, determining the cause of death, estimating postmortem interval (PMI), etc. Additionally, applications are being developed by forensic microbiologists across the globe to investigate the coordinated and dynamic changes in microbial activity which occur after the death of a human host. Such evidence from the human postmortem microbiome can aid in criminal investigations and administration of justice. These recent advances and developments have the potential to transform the field of forensic microbiology in a developing country.
Collapse
Affiliation(s)
- Malathi Murugesan
- Department of Infectious Diseases & Hospital Infection Control Officer, Meenakshi Mission Hospital & Research Centre, Madurai, Tamil Nadu - 625107, India.
| | - Daniel Manoj
- Department of Forensic Medicine & Toxicology, Christian Medical College Vellore, Tamil Nadu - 632004, India.
| | - Latif Rajesh Johnson
- Department of Forensic Medicine & Toxicology, Christian Medical College Vellore, Tamil Nadu - 632004, India.
| | - Ranjit Immanuel James
- Department of Forensic Medicine & Toxicology, Christian Medical College Vellore, Tamil Nadu - 632004, India.
| |
Collapse
|
14
|
Li N, Liang XR, Zhou SD, Dang LH, Li J, An GS, Ren K, Jin QQ, Liang XH, Cao J, Du QX, Wang YY, Sun JH. Exploring postmortem succession of rat intestinal microbiome for PMI based on machine learning algorithms and potential use for humans. Forensic Sci Int Genet 2023; 66:102904. [PMID: 37307769 DOI: 10.1016/j.fsigen.2023.102904] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/02/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
The microbial communities may undergo a meaningful successional change during the progress of decay and decomposition that could aid in determining the post-mortem interval (PMI). However, there are still challenges to applying microbiome-based evidence in law enforcement practice. In this study, we attempted to investigate the principles governing microbial community succession during decomposition of rat and human corpse, and explore their potential use for PMI of human cadavers. A controlled experiment was conducted to characterize temporal changes in microbial communities associated with rat corpses as they decomposed for 30 days. Obvious differences of microbial community structures were observed among different stages of decomposition, especially between decomposition of 0-7d and 9-30d. Thus, a two-layer model for PMI prediction was developed based on the succession of bacteria by combining classification and regression models using machine learning algorithms. Our results achieved 90.48% accuracy for discriminating groups of PMI 0-7d and 9-30d, and yielded a mean absolute error of 0.580d within 7d decomposition and 3.165d within 9-30d decomposition. Furthermore, samples from human cadavers were collected to gain the common succession of microbial community between rats and humans. Based on the 44 shared genera of rats and humans, a two-layer model of PMI was rebuilt to be applied for PMI prediction of human cadavers. Accurate estimates indicated a reproducible succession of gut microbes across rats and humans. Together these results suggest that microbial succession was predictable and can be developed into a forensic tool for estimating PMI.
Collapse
Affiliation(s)
- Na Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Xin-Rui Liang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Shi-Dong Zhou
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Li-Hong Dang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Jian Li
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Guo-Shuai An
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Kang Ren
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Qian-Qian Jin
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Xin-Hua Liang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Jie Cao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Qiu-Xiang Du
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China
| | - Ying-Yuan Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China.
| | - Jun-Hong Sun
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030604, Shanxi, China.
| |
Collapse
|
15
|
De Alcaraz-Fossoul J, Wang Y, Liu R, Mancenido M, Marshall PA, Núñez C, Broatch J, Ferry L. Microbes in fingerprints: A source for dating crime evidence? Forensic Sci Int Genet 2023; 65:102883. [PMID: 37120981 DOI: 10.1016/j.fsigen.2023.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Interest in the human microbiome has grown in recent years because of increasing applications to biomedicine and forensic science. However, the potential for dating evidence at a crime scene based upon time-dependent changes in microbial signatures has not been established, despite a relatively straightforward scientific process for isolating the microbiome. We hypothesize that modifications in microbial diversity, abundance, and succession can provide estimates of the time a surface was touched for investigative purposes. In this proof-of-concept research, the sequencing and analysis of the 16 S rRNA gene from microbes present in fresh and aged latent fingerprints deposited by three donors with pre- and post-washed hands is reported. The stability of major microbial phyla is confirmed while the dynamics of less abundant groups is described up to 21 days post-deposition. Most importantly, a phylum is suggested as the source for possible biological markers to date fingerprints: Deinococcus-Thermus.
Collapse
Affiliation(s)
- Josep De Alcaraz-Fossoul
- Forensic Science Department, Henry C. Lee College of Criminal Justice and Forensic Science, University of New Haven; West Haven, Connecticut 06516, United States.
| | - Yue Wang
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University; Glendale, Arizona 85306, United States
| | - Ruoqian Liu
- School of Mathematical and Statistical Sciences, The College of Liberal Arts and Sciences, Arizona State University; Tempe, Arizona 85251, United States
| | - Michelle Mancenido
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University; Glendale, Arizona 85306, United States
| | - Pamela Ann Marshall
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University; Glendale, Arizona 85306, United States
| | - Celeste Núñez
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University; Glendale, Arizona 85306, United States
| | - Jennifer Broatch
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University; Glendale, Arizona 85306, United States
| | - Lara Ferry
- School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University; Glendale, Arizona 85306, United States
| |
Collapse
|
16
|
Stefano T, Francesca M, Guendalina G, Michele B, Chiara F, Salvatore A, Riccardo Z. Utility and diagnostic value of postmortem microbiology associated with histology for forensic purposes. Forensic Sci Int 2023; 342:111534. [PMID: 36528011 DOI: 10.1016/j.forsciint.2022.111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/11/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Nowadays, the diagnostic value of postmortem microbiological investigations is still a debated topic, but postmortem microbiology (PMM) remains a discipline with great forensic potential. To evaluate the usefulness and diagnostic-forensic value of postmortem microbiological cultures, it has been conducted a study on cadaveric material sampled during autopsy aiming to identify the correct cause of death. The study analyzed 45 cadavers subjected to judicial autopsy, divided into two groups based on the presence or absence of external or internal macroscopic autopsy signs suggesting infectious pathology. In the same cases, both the microbiological and conventional histological investigations have been simultaneously carried out. From the investigations, mono-bacterial, mono-fungal, mixed and negative cultures were observed. In mono-species microbiological growth, the histological epicrisis confirmed an infectious cause of death due to the presence of signs of acute infection with an aggressive infectious agent. In cases where growth was mixed, it was possible to distinguish between simple postmortal contamination and perimortem colonization. Finally, in some cases where the microbiology was negative, this has been essential in highlighting signs of a vital reaction to viral or parasitic infection. The joint and integrated evaluation of the laboratory results made it possible to correctly understand even those peculiar situations in which the PMM results alone would not have been significant. These methods, when combined, constitute an optimal forensic approach for the identification of the real cause of death and thus reduce the number of unsolved cases.
Collapse
Affiliation(s)
- Tambuzzi Stefano
- Laboratorio di Istopatologia Forense e Microbiologia Medico Legale - Sezione di Medicina Legale e delle Assicurazioni - Dipartimento di Scienze Biomediche per la Salute - Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133 Milano, Italy
| | - Maciocco Francesca
- Laboratorio di Immunoematologia e Medicina Trasfusionale (SIMT) - Azienda Ospedaliera S. Carlo Borromeo, Via Pio II, 3, 20153 Milano, Italy
| | - Gentile Guendalina
- Laboratorio di Istopatologia Forense e Microbiologia Medico Legale - Sezione di Medicina Legale e delle Assicurazioni - Dipartimento di Scienze Biomediche per la Salute - Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133 Milano, Italy.
| | - Boracchi Michele
- Laboratorio di Istopatologia Forense e Microbiologia Medico Legale - Sezione di Medicina Legale e delle Assicurazioni - Dipartimento di Scienze Biomediche per la Salute - Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133 Milano, Italy
| | - Faraone Chiara
- Laboratorio di Istopatologia Forense e Microbiologia Medico Legale - Sezione di Medicina Legale e delle Assicurazioni - Dipartimento di Scienze Biomediche per la Salute - Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133 Milano, Italy
| | - Andreola Salvatore
- Laboratorio di Istopatologia Forense e Microbiologia Medico Legale - Sezione di Medicina Legale e delle Assicurazioni - Dipartimento di Scienze Biomediche per la Salute - Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133 Milano, Italy
| | - Zoja Riccardo
- Laboratorio di Istopatologia Forense e Microbiologia Medico Legale - Sezione di Medicina Legale e delle Assicurazioni - Dipartimento di Scienze Biomediche per la Salute - Università degli Studi di Milano, Via Luigi Mangiagalli, 37, 20133 Milano, Italy
| |
Collapse
|
17
|
Lovisolo F, Ogbanga N, Sguazzi G, Renò F, Migliario M, Nelson A, Procopio N, Gino S. ORAL AND SKIN MICROBIOME AS POTENTIAL TOOLS IN FORENSIC FIELD. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2022. [DOI: 10.1016/j.fsigss.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Diac I, Keresztesi AA, Cerghizan AM, Negrea M, Dogăroiu C. Postmortem Bacteriology in Forensic Autopsies—A Single Center Retrospective Study in Romania. Diagnostics (Basel) 2022; 12:diagnostics12082024. [PMID: 36010374 PMCID: PMC9407211 DOI: 10.3390/diagnostics12082024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Postmortem bacteriology examinations have been a controversial topic over the years, though the value of postmortem bacteriology cultures remains promising. The aim of this study was to review the postmortem bacteriological sampling procedures and results in a single centre in Bucharest over a period of 10 years. Material and methods: The present study was a retrospective, single-center study, performed at the Mina Minovici National Institute of Legal Medicine in Bucharest, Romania, from 2011–2020. Results: Postmortem bacteriology was requested 630 forensic autopsies, 245 female (38.9%) and 385 male (61.1%), age range 0 and 94 years, median age of 52 years. Deaths occurred in hospital for 594 cases (94.3%) and out-of-hospital for 36 cases (5.7%—field case). Blood cultures were requested in the majority of cases, followed by tracheal swabs and lung tissue. In-hospital and out of hospital deaths did not differ significantly regarding the number of microorganisms identified in a positive blood culture. Postmortem bacteriology cultures of the respiratory tract showed a statistically significant association to microscopically confirmed lung infections. Conclusions Postmortem sampling for bacteriology testing in our center in Bucharest is heterogeneous with a high variation of patterns. A positive blood culture result for Staphylococcus species without the identification of a specific microorganism is more likely due to postmortem contamination.
Collapse
Affiliation(s)
- Iuliana Diac
- Mina Minovici National Institute of Legal Medicine, 042122 Bucharest, Romania
| | - Arthur-Atilla Keresztesi
- “Fogolyan Kristof” Emergency County Hospital Sfantu Gheorghe, Covasna County Institution of Forensic Medicine, 520045 Covasna, Romania
- Correspondence: (A.-A.K.); (A.-M.C.)
| | - Anda-Mihaela Cerghizan
- Medical Clinic, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540043 Mures, Romania
- Correspondence: (A.-A.K.); (A.-M.C.)
| | - Mihai Negrea
- Department of Public Health, Faculty of Political, Administrative and Communication Science, “Babeș Bolyai” University, 400084 Cluj Napoca, Romania
| | - Cătălin Dogăroiu
- Mina Minovici National Institute of Legal Medicine, 042122 Bucharest, Romania
- Department of Legal Medicine and Bioethics, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
19
|
Sguazzi G, Mickleburgh HL, Ghignone S, Voyron S, Renò F, Migliario M, Sellitto F, Lovisolo F, Camurani G, Ogbanga N, Gino S, Procopio N. Microbial DNA in human nucleic acid extracts: Recoverability of the microbiome in DNA extracts stored frozen long-term and its potential and ethical implications for forensic investigation. Forensic Sci Int Genet 2022; 59:102686. [PMID: 35338895 DOI: 10.1016/j.fsigen.2022.102686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
Human DNA samples can remain unaltered for years and preserve important genetic information for forensic investigations. In fact, besides human genetic information, these extracts potentially contain additional valuable information: microbiome signatures. Forensic microbiology is rapidly becoming a significant tool for estimating post-mortem interval (PMI), and establishing cause of death and personal identity. To date, the possibility to recover unaltered microbiome signatures from human DNA extracts has not been proven. This study examines the microbiome signatures within human DNA extracts obtained from six cadavers with different PMIs, which were stored frozen for 5-16 years. Results demonstrated that the microbiome can be co-extracted with human DNA using forensic kits designed to extract the human host's DNA from different tissues and fluids during decomposition. We compared the microbial communities identified in these samples with microbial DNA recovered from two human cadavers donated to the Forensic Anthropology Center at Texas State University (FACTS) during multiple decomposition stages, to examine whether the microbial signatures recovered from "old" (up to 16 years) extracts are consistent with those identified in recently extracted microbial DNA samples. The V4 region of 16 S rRNA gene was amplified and sequenced using Illumina MiSeq for all DNA extracts. The results obtained from the human DNA extracts were compared with each other and with the microbial DNA from the FACTS samples. Overall, we found that the presence of specific microbial taxa depends on the decomposition stage, the type of tissue, and the depositional environment. We found no indications of contamination in the microbial signatures, or any alterations attributable to the long-term frozen storage of the extracts, demonstrating that older human DNA extracts are a reliable source of such microbial signatures. No shared Core Microbiome (CM) was identified amongst the total 18 samples, but we identified certain species in association with the different decomposition stages, offering potential for the use of microbial signatures co-extracted with human DNA samples for PMI estimation in future. Unveiling the new significance of older human DNA extracts brings with it important ethical-legal considerations. Currently, there are no shared legal frameworks governing the long-term storage and use of human DNA extracts obtained from crime scene evidence for additional research purposes. It is therefore important to create common protocols on the storage of biological material collected at crime scenes. We review existing legislation and guidelines, and identify some important limitations for the further development and application of forensic microbiomics.
Collapse
Affiliation(s)
- Giulia Sguazzi
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy; CRIMEDIM - Center for Research and Training in Disaster Medicine, Humanitarian Aid and Global Health, Università del Piemonte Orientale, Via Lanino, 1-28100 Novara, Italy
| | - Hayley L Mickleburgh
- Department of Cultural Sciences, Linnaeus University, Växjö, Sweden; Forensic Anthropology Center, Texas State University, San Marcos, TX, USA
| | - Stefano Ghignone
- Institute for Sustainable Plant Protection (IPSP) - Turin Unit - National Research Council (CNR), 1-10125 Turin, Italy
| | - Samuele Voyron
- Institute for Sustainable Plant Protection (IPSP) - Turin Unit - National Research Council (CNR), 1-10125 Turin, Italy; Department of Life Sciences and Systems Biology, University of Torino, V.le P.A. Mattioli 25, 10125 Turin, Italy
| | - Filippo Renò
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Mario Migliario
- Department of Translational Medicine, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Federica Sellitto
- Forensic Science Research Group, Faculty of Health and Life Sciences, Applied Sciences, Northumbria University, NE1 8ST, Newcastle Upon Tyne, UK
| | - Flavia Lovisolo
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Giulia Camurani
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Nengi Ogbanga
- Forensic Science Research Group, Faculty of Health and Life Sciences, Applied Sciences, Northumbria University, NE1 8ST, Newcastle Upon Tyne, UK
| | - Sarah Gino
- Department of Health Science, University of Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy
| | - Noemi Procopio
- Forensic Anthropology Center, Texas State University, San Marcos, TX, USA; Forensic Science Research Group, Faculty of Health and Life Sciences, Applied Sciences, Northumbria University, NE1 8ST, Newcastle Upon Tyne, UK.
| |
Collapse
|
20
|
Speruda M, Piecuch A, Borzęcka J, Kadej M, Ogórek R. Microbial traces and their role in forensic science. J Appl Microbiol 2021; 132:2547-2557. [PMID: 34954826 DOI: 10.1111/jam.15426] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/27/2022]
Abstract
Forensic microbiology, also known as the microbiology of death, is an emerging branch of science that is still underused in criminal investigations. Some of the cases might be difficult to solve with commonly-used forensic methods, and then they become an operational field for microbiological and mycological analysis. The aim of our review is to present significant achievements of selected studies on the thanatomicrobiome (microorganisms found in the body, organs and fluids after death) and epinecrotic community (microorganisms found on decaying corpses) that can be used in forensic sciences. Research carried out as a part of the forensic microbiology deals with the thanatomicrobiome and the necrobiome - communities of microorganisms that live inside and outside of a putrefying corpse. Change of species composition observed in each community is a valuable feature that gives a lot of information related to the crime. It is mainly used in the estimation of post-mortem interval (PMI). In some criminal investigations, such noticeable changes in the microbiome and mycobiome can determine the cause or the actual place of death. The microbial traces found at the crime scene can also provide clear evidence of guilt. Nowadays, identification of microorganisms isolated from the body or environment is based on metagenome analysis and 16S rRNA gene amplicon-based sequencing for bacteria and ITS rRNA gene amplicon-based sequencing for fungi. Cultivation methods are still in use and seem to be more accurate; however, they require much more time to achieve a final result, which is an unwanted feature in any criminal investigation.
Collapse
Affiliation(s)
- Mateusz Speruda
- Department of Mycology and Genetics, University of Wroclaw, 51-148, Wroclaw, Poland
| | - Agata Piecuch
- Department of Mycology and Genetics, University of Wroclaw, 51-148, Wroclaw, Poland
| | - Justyna Borzęcka
- Department of Mycology and Genetics, University of Wroclaw, 51-148, Wroclaw, Poland
| | - Marcin Kadej
- Department of Invertebrate Biology, Evolution and Conservation, Laboratory of Forensic Biology and Entomology, University of Wrocław, Przybyszewskiego 65, 51-148, Wrocław, Poland
| | - Rafał Ogórek
- Department of Mycology and Genetics, University of Wroclaw, 51-148, Wroclaw, Poland
| |
Collapse
|
21
|
Stassi C, Mondello C, Baldino G, Cardia L, Asmundo A, Ventura Spagnolo E. An Insight into the Role of Postmortem Immunohistochemistry in the Comprehension of the Inflammatory Pathophysiology of COVID-19 Disease and Vaccine-Related Thrombotic Adverse Events: A Narrative Review. Int J Mol Sci 2021; 22:ijms222112024. [PMID: 34769454 PMCID: PMC8584583 DOI: 10.3390/ijms222112024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
On 11 March 2020, the World Health Organization (WHO) declared a pandemic due to the spread of COVID-19 from Wuhan, China, causing high mortality rates all over the world. The related disease, which mainly affects the lungs, is responsible for the onset of Diffuse Alveolar Damage (DAD) and a hypercoagulability state, frequently leading to Severe Acute Respiratory Syndrome (SARS) and multiorgan failure, particularly in old and severe-critically ill patients. In order to find effective therapeutic strategies, many efforts have been made aiming to shed light on the pathophysiology of COVID-19 disease. Moreover, following the late advent of vaccination campaigns, the need for the comprehension of the pathophysiology of the fatal, although rare, thrombotic adverse events has become mandatory as well. The achievement of such purposes needs a multidisciplinary approach, depending on a correct interpretation of clinical, biochemical, biomolecular, and forensic findings. In this scenario, autopsies have helped in defining, on both gross and histologic examinations, the main changes to which the affected organs undergo and the role in assessing whether a patient is dead “from” or “with” COVID-19, not to mention whether the existence of a causal link exists between vaccination and thrombotic adverse events. In the present work, we explored the role of postmortem immunohistochemistry, and the increasingly used ancillary technique, in helping to understand the mechanism underlying the pathophysiology of both COVID-19 disease and COVID-19 vaccine-related adverse and rare effects.
Collapse
Affiliation(s)
- Chiara Stassi
- Legal Medicine Section, Department for Health Promotion and Mother-Child Care, University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (C.S.); (G.B.)
| | - Cristina Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy;
- Correspondence: (C.M.); (E.V.S.); Tel.: +39-347-706-2414 (C.M.); +39-349-646-5532 (E.V.S.)
| | - Gennaro Baldino
- Legal Medicine Section, Department for Health Promotion and Mother-Child Care, University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (C.S.); (G.B.)
| | - Luigi Cardia
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy;
| | - Alessio Asmundo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 1, 98125 Messina, Italy;
| | - Elvira Ventura Spagnolo
- Legal Medicine Section, Department for Health Promotion and Mother-Child Care, University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy; (C.S.); (G.B.)
- Correspondence: (C.M.); (E.V.S.); Tel.: +39-347-706-2414 (C.M.); +39-349-646-5532 (E.V.S.)
| |
Collapse
|
22
|
Zheng Z, Zhao C, Xiong H, Zhang L, Wang Q, Li Y, Li J. Significance of detecting postmortem serum IgE in frozen corpses for the diagnosis of anaphylaxis in forensic. Leg Med (Tokyo) 2021; 53:101930. [PMID: 34130173 DOI: 10.1016/j.legalmed.2021.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/30/2021] [Accepted: 06/06/2021] [Indexed: 11/29/2022]
Abstract
The aim of this study was to detect the postmortem serum total IgE levels in frozen corpses and identify whether the death incident caused by an anaphylaxis in forensic medicine. Autopsy cases with pathological death (total, n = 106; 4-214 h postmortem) include cardiac disease (n = 15), pulmonary infection (n = 12), central nervous system disorder (n = 6), pulmonary emboliszn (n = 7), hapetic disease (n = 5), kidney disease (n = 6), enteric disease (n = 10), necrotizing pancreatitis (n = 7), diffuse peritonitis (n = 6), MODS (n = 6), toxicosis (n = 5:), anaphylactic shock (n = 7), bronchial asthma (n = 8) and other disease (n = 6) were examined. Results showed that there was no significant difference between serum IgE levels and ages, postmortem intervals (PMIs), gender as well as survival time. Serum IgE levels of deaths due to anaphylactic shock and bronchial asthma were higher than that of other groups. Forensic pathology examination results showed the main pathology changes of bronchial asthma were mucous congestion in bronchial lumen and eosinophils infiltration in bronchial mucosa. The main pathological features of anaphylactic shock were laryngeal edema and eosinophils infiltration in multiple organs (lung and spleen). This research proved that there was a great significance for IgE to infer whether the individual died due to an anaphylaxis even for a long PMI in frozen corpses. Furthermore, we can also preliminarily determine the type of allergic death combined with the examination of forensic pathology. These findings further verify the feasibility of postmortem serum IgE in the diagnosis of forensic causes of death and broaden the application scope of this marker.
Collapse
Affiliation(s)
- Zhe Zheng
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Congcong Zhao
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Hongli Xiong
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Li Zhang
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Qi Wang
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yongguo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Jianbo Li
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
23
|
Mondello C, Roccuzzo S, Malfa O, Sapienza D, Gualniera P, Ventura Spagnolo E, Di Nunno N, Salerno M, Pomara C, Asmundo A. Pathological Findings in COVID-19 as a Tool to Define SARS-CoV-2 Pathogenesis. A Systematic Review. Front Pharmacol 2021; 12:614586. [PMID: 33867981 PMCID: PMC8047201 DOI: 10.3389/fphar.2021.614586] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction: The World Health Organization declared the COVID-19 pandemic in March 2020. COVID-19 still represents a worldwide health emergency, which causesa severe disease that has led to the death of many patients. The pathophysiological mechanism of SARS-CoV-2 determining the tissue damage is not clear and autopsycan be auseful tool to improve the knowledge of this infection and, thus, it can help achieve a timely diagnosis and develop an appropriate therapy. This is an overview of the main post-mortem findings reporting data on the infection effects on several organs. Methods: A systematic literature search was conducted in the PubMed database searching for articles from 1 January to August 31, 2020. Thearticles were selected identifying words/concepts in the titles and/or abstracts that indicated the analysis of the morphological/pathological tissue injuries related to SARS-CoV-2 disease by several investigations. Results: A total of 63 articles were selected. The main investigated tissue was the lung showing a diffuse alveolar damage (DAD) frequently associated with pulmonary thrombotic microangiopathy. Inflammatory findings and vascular damage were observed in other organs such as heart, liver, kidney, brain, spleen, skin and adrenal gland. The immunohistochemical analysis showed tissue inflammatory cells infiltrates. The virus presence was detected by several investigations such as RT-PCR, immunohistochemistry and electron microscope, showing the effect ofSARS-CoV-2not exclusively in the lung. Discussion: The evidence emerging from this review highlighted the importance of autopsy to provide a fundamental base in the process of understanding the consequences ofSARS-CoV-2 infection. COVID-19 is strictly related to a hyper inflammatory state that seems to start with DAD and immuno-thrombotic microangiopathy. Massive activation of the immune system and microvascular damage might also be responsible for indirect damage to other organs, even if the direct effect of the virus on these tissues cannot be excluded.
Collapse
Affiliation(s)
- Cristina Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Salvatore Roccuzzo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Orazio Malfa
- Institute of Legal Medicine and Department of Surgical and Medical Sciences, University “Magna Graecia”, Catanzaro, Italy
| | - Daniela Sapienza
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Patrizia Gualniera
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Elvira Ventura Spagnolo
- Section of Legal Medicine, Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Nunzio Di Nunno
- Department of History, Society and Studies on Humanity, University of Salento, Lecce, Italy
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | - Cristoforo Pomara
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | - Alessio Asmundo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| |
Collapse
|
24
|
Roy D, Tomo S, Purohit P, Setia P. Microbiome in Death and Beyond: Current Vistas and Future Trends. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.630397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Forensic medicine has, for a long time, been relying on biochemical, anthropologic, and histopathologic evidences in solving various investigations. However, depending on the method used, lengthy sample processing time, scanty sample, and less sensitivity and accuracy pervade these procedures. Accordingly, newer arenas such as the thanatomicrobiome have come forward to aid in its quandaries; furthermore, the parallel advances in genomic and proteomic techniques have complemented and are still emerging to be used in forensic experiments and investigations. Postmortem interval (PMI) is one of the most important aspects of medico-legal investigations. The current trend in PMI estimation is toward genomic analyses of autopsy samples. Similarly, determination of cause of death, although a domain of medical sciences, is being targeted as the next level of forensic casework. With the current trend in laboratory sciences moving to the discovery of newer disease-specific markers for diagnostic and prognostic purposes, the same is being explored for the determination of the cause of death by using techniques such as Real-Time PCR, DNA micro-array, to Next-Gen Sequencing. Establishing an individual’s biological profile has been done using medicolegal methods and anthropology as well as bar-bodies/Davidson bodies (gender determination); and in cases where the determination of age/gender is a challenge using morphological characteristics; the recent advances in the field of genomics and proteomics have played a significant role, e.g., use of mitochondrial DNA in age estimation and in maternity disputes. The major hurdle forensic medical research faces is the fact that most of the studies are conducted in animal models, which are often difficult to mimic in human and real-time scenarios. Additionally, the high accuracy required in criminal investigations to be used in a court of law as evidence has prevented these results to come out of the labs and be used to the optimum. The current review aims at giving a comprehensive and critical account of the various molecular biology techniques including “thanatogenomics,” currently being utilized in the veritable fields of forensic medicine.
Collapse
|
25
|
Post-Mortem Investigations for the Diagnosis of Sepsis: A Review of Literature. Diagnostics (Basel) 2020; 10:diagnostics10100849. [PMID: 33092081 PMCID: PMC7590167 DOI: 10.3390/diagnostics10100849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
To date, sepsis is still one of the most important causes of death due to the difficulties concerning the achievement of a correct diagnosis. As well as in a clinical context, also in a medico-legal setting the diagnosis of sepsis can reveal challenging due to the unspecificity of the signs detected during autopsies, especially when no ante-mortem clinical data, laboratory, and cultural results are available. Thus, a systematic review of literature was performed to provide an overview of the main available and updated forensic tools for the post-mortem diagnosis of sepsis. Moreover, the aim of this review was to evaluate whether a marker or a combination of markers exist, specific enough to allow a correct and definite post-mortem diagnosis. The review was conducted searching in PubMed and Scopus databases, and using variable combinations of the keywords "post mortem sepsis diagnosis", "macroscopic signs", "morphology", "histology", "immunohistochemical markers", "biochemical markers", and "forensic microbiology". The article selection was carried out following specific inclusion and exclusion criteria. A total of 44 works was identified, providing data on morphological aspects of the organs examined, histological findings, immunohistochemical and biochemical markers, and cultural assays. The review findings suggested that the post-mortem diagnosis of sepsis can be achieved by a combination of data obtained from macroscopic and microscopic analysis and microbial investigations, associated with the increased levels of at least two of three biochemical and/or immunohistochemical markers evaluated simultaneously on blood samples.
Collapse
|
26
|
Squeri R, Levita A, Intelisano R, Costa GB, Mancuso G, Grasso L, D'Amato S, Mazzitelli F, Squeri A, Midiri A, Biondo C, Alesci D, Bonaccorso V, Bitto A, Genovese C. Correct management and low rate of contagiousness of healthcare workers in a University Hospital in Southern Italy: from contact tracing to serological investigation. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:79-86. [PMID: 32701920 PMCID: PMC8023094 DOI: 10.23750/abm.v91i9-s.10118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
The COVID-19 epidemic, which began in Wuhan in December 2019, quickly spread all over the world, leading in a few months to a high number of deaths also in healthcare workers. The purpose of the study is to a) describe the importance of a correct management of SARS-CoV-2 infections; b) report the number of positive healthcare workers after the epidemic phase and to describe their socio-characteristics data, the main methods of transmission and the symptoms; c) to report the seroconversion rate of healthcare workers (HCWs). The study was conducted from March 9, 2020 to June 19, 2020 in three phases:1) in a first phase, we implemented the guidelines to be followed for patient care in our hospital; 2) in a second phase, we provided the epidemiological investigation/contact tracing of HCWs; 3) we collected swabs on all healthcare workers and we also performed serological investigation. The number of healthcare workers under surveillance is of 2611 subjects and, of these, only 0.65% contracted COVID-19. In particular, 70.6% of these have been infected in the healthcare setting, 11, 8% in the family and 17.6% returning from high risk areas. Ultimately, only 0.1% of HCWs dedicated to the treatment of COVID-19 patients contracted the infection (one was asymptomatic). Only 2% of HCWS were positive for serological investigation.
Collapse
Affiliation(s)
- Raffaele Squeri
- Department of Biomedical Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| | | | | | - Gaetano Bruno Costa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Giuseppe Mancuso
- Department of Human Pathology of the adult and developmental age Gaetano Barresi, University of Messina, Messina, Italy.
| | - Loredana Grasso
- Department of Human Pathology of the adult and developmental age Gaetano Barresi, University of Messina, Messina, Italy.
| | - Smeralda D'Amato
- Postgraduate Medical School in Hygiene and Preventive Medicine, University of Messina, Italy.
| | - Francesco Mazzitelli
- Postgraduate Medical School in Hygiene and Preventive Medicine, University of Messina, Italy.
| | - Andrea Squeri
- Department of Human Pathology of the adult and developmental age Gaetano Barresi, University of Messina, Messina, Italy.
| | - Angelina Midiri
- Department of Human Pathology of the adult and developmental age Gaetano Barresi, University of Messina, Messina, Italy.
| | - Carmelo Biondo
- Department of Human Pathology of the adult and developmental age Gaetano Barresi, University of Messina, Messina, Italy.
| | - Domenica Alesci
- Department of Human Pathology of the adult and developmental age Gaetano Barresi, University of Messina, Messina, Italy.
| | - Vincen Bonaccorso
- Department of Human Pathology of the adult and developmental age Gaetano Barresi, University of Messina, Messina, Italy.
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, c/o AOU Policlinico G. Martino, Via C. Valeria Gazzi, Messina, 98125, Italy.
| | - Cristina Genovese
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| |
Collapse
|
27
|
A novel approach for the forensic diagnosis of drowning by microbiological analysis with next-generation sequencing and unweighted UniFrac-based PCoA. Int J Legal Med 2020; 134:2149-2159. [PMID: 32617663 DOI: 10.1007/s00414-020-02358-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
The diagnosis of drowning is one of the major challenges in forensic practice, especially when the corpse is in a state of decomposition. Novel indicators of drowning are desired in the field of forensic medicine. In the past decade, aquatic bacteria have attracted great attention from forensic experts because they can easily enter the blood circulation with drowning medium, and some of them can proliferate in the corpse. Recently, the advent of next-generation sequencing (NGS) has created new opportunities to efficiently analyze whole microbial communities and has catalyzed the development of forensic microbiology. We presumed that NGS could be a potential method for diagnosing drowning. In the present study, we verified this hypothesis by fundamental experiments in drowned and postmortem-submersed rat models. Our study revealed that detecting the bacterial communities with NGS and processing the data in a transparent way with unweighted UniFrac-based principal coordinates analysis (PCoA) could clearly discriminate the skin, lung, blood, and liver specimens of the drowning group and postmortem submersion group. Furthermore, the acquired information could be used to identify new cases. Taken together, these results suggest that we could build a microbial database of drowned and postmortem-submersed victims by NGS and subsequently use a bioinformatic method to diagnose drowning in future forensic practice.
Collapse
|
28
|
Genovese C, La Fauci V, D'Amato S, Squeri A, Anzalone C, Costa GB, Fedele F, Squeri R. Molecular epidemiology of antimicrobial resistant microorganisms in the 21th century: a review of the literature. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:256-273. [PMID: 32420962 PMCID: PMC7569612 DOI: 10.23750/abm.v91i2.9176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/10/2020] [Indexed: 12/26/2022]
Abstract
Healthcare-associated infections (HAIs) are the most frequent and severe complication acquired in healthcare settings with high impact in terms of morbidity, mortality and costs. Many bacteria could be implicated in these infections, but, expecially multidrug resistance bacteria could play an important role. Many microbial typing technologies have been developed until to the the bacterial whole-genome sequencing and the choice of a molecular typing method therefore will depend on the skill level and resources of the laboratory and the aim and scale of the investigation. In several studies the molecular investigation of pathogens involved in HAIs was performed with many microorganisms identified as causative agents such as Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Clostridium difficile, Acinetobacter spp., Enterobacter spp., Enterococcus spp., Staphylococcus aureus and several more minor species. Here, we will describe the most and least frequently reported clonal complex, sequence types and ribotypes with their worldwide geographic distribution for the most important species involved in HAIs.
Collapse
Affiliation(s)
- Cristina Genovese
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Vincenza La Fauci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Smeralda D'Amato
- Postgraduate Medical School in Hygiene and Preventive Medicine, University of Messina, Italy.
| | - Andrea Squeri
- Department of Human Pathology of the adult and developmental age Gaetano Barresi, University of Messina, Messina, Italy.
| | - Carmelina Anzalone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Gaetano Bruno Costa
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Francesco Fedele
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | | |
Collapse
|
29
|
Ventura Spagnolo E, Mondello C, Cardia L, Minutoli L, Puzzolo D, Asmundo A, Macaione V, Alibrandi A, Malta C, Baldino G, Micali A. Post-Mortem Immunohistochemical Evidence of β2-Adrenergic Receptor Expression in the Adrenal Gland. Int J Mol Sci 2019; 20:ijms20123065. [PMID: 31234562 PMCID: PMC6628614 DOI: 10.3390/ijms20123065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022] Open
Abstract
The evidence from post-mortem biochemical studies conducted on cortisol and catecholamines suggest that analysis of the adrenal gland could provide useful information about its role in human pathophysiology and the stress response. Authors designed an immunohistochemical study on the expression of the adrenal β2-adrenergic receptor (β2-AR), a receptor with high-affinity for catecholamines, with the aim to show which zones it is expressed in and how its expression differs in relation to the cause of death. The immunohistochemical study was performed on adrenal glands obtained from 48 forensic autopsies of subjects that died as a result of different pathogenic mechanisms using a mouse monoclonal β2-AR antibody. The results show that immunoreactivity for β2-AR was observed in all adrenal zones. Furthermore, immunoreactivity for β2-AR has shown variation in the localization and intensity of different patterns in relation to the original cause of death. To the best of our knowledge, this is the first study that demonstrates β2-AR expression in the human cortex and provides suggestions on the possible involvement of β2-AR in human cortex hormonal stimulation. In conclusion, the authors provide a possible explanation for the observed differences in expression in relation to the cause of death.
Collapse
Affiliation(s)
- Elvira Ventura Spagnolo
- Legal Medicine Section, Department for Health Promotion and Mother-Child Care, University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy.
| | - Cristina Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Luigi Cardia
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Via Consolare Valeria, 98125 Gazzi, Italy.
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Alessio Asmundo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Vincenzo Macaione
- Department of Clinical and Experimental Medicine, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Via dei Verdi 75, 98122 Messina, Italy.
| | - Consuelo Malta
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Gennaro Baldino
- Legal Medicine Section, Department for Health Promotion and Mother-Child Care, University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy.
| | - Antonio Micali
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125 Messina, Italy.
| |
Collapse
|