1
|
Grignani P, Bertoglio B, Monti MC, Cuoghi Costantini R, Ricci U, Onofri M, Fattorini P, Previderè C. Age estimation of burnt human remains through DNA methylation analysis. Int J Legal Med 2024:10.1007/s00414-024-03320-1. [PMID: 39266801 DOI: 10.1007/s00414-024-03320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024]
Abstract
The identification of human fire victims is a challenging task in forensic medicine. The heat-induced alterations of biological tissues can make the conventional anthropological analyses difficult. Even if the DNA profile of the victim is achieved, it is possible that no match can be found in a forensic DNA database, thus hindering positive identification. In such cases, any information useful to nail down a possible identity should be collected, such as DNA methylation analysis which could provide useful investigative leads. In the present study, five age-related epigenetic markers (ELOVL2, FHL2, KLF14, C1orf132, and TRIM59) were initially analysed in blood samples of 72 living Italian individuals of known age, using a Single Base Extension (SBE) assay. An age prediction model was built by multiple linear regression including all the markers (Mean Absolute Error, MAE: 3.15 years). This model was tested on 29 blood samples collected during autopsies from burnt human remains, already identified through DNA analysis, providing a MAE of 6.92 years. The model allowed a correct prediction in 79.3% of the cases (95% prediction interval), while six cases were associated with inaccurate predictions (min-max prediction error: 9.8-37.3 years). Among the different sample variables considered to explain these results, only the DNA degradation index was a relevant factor affecting the reliability of the predictions. In conclusion, the SBE typing of blood from burnt remains proved to be a reliable tool to estimate chronological age of most of the samples, also in consideration of its cost-effectiveness and the availability of CE sequencers in every forensic genetics laboratory.
Collapse
Affiliation(s)
- Pierangela Grignani
- Dipartimento di Sanità Pubblica, Medicina Sperimentale e Forense, Università di Pavia, Pavia, Italy
| | - Barbara Bertoglio
- Dipartimento di Sanità Pubblica, Medicina Sperimentale e Forense, Università di Pavia, Pavia, Italy.
| | - Maria Cristina Monti
- Dipartimento di Sanità Pubblica, Medicina Sperimentale e Forense, Università di Pavia, Pavia, Italy
| | - Riccardo Cuoghi Costantini
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Università di Modena e Reggio Emilia, Modena, Italy
| | - Ugo Ricci
- AOU Careggi SOD Diagnostica Genetica Equipe Genetica Forense, Firenze, Italy
| | - Martina Onofri
- Dipartimento di Medicina e Chirurgia, Azienda Ospedaliera S. Maria, Università di Perugia, Terni, Italy
| | - Paolo Fattorini
- Dipartimento Clinico di Scienze mediche, chirurgiche e della salute, Università di Trieste, Trieste, Italy
| | - Carlo Previderè
- Dipartimento di Sanità Pubblica, Medicina Sperimentale e Forense, Università di Pavia, Pavia, Italy
| |
Collapse
|
2
|
Procopio N, Bonicelli A. From flesh to bones: Multi-omics approaches in forensic science. Proteomics 2024; 24:e2200335. [PMID: 38683823 DOI: 10.1002/pmic.202200335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Recent advancements in omics techniques have revolutionised the study of biological systems, enabling the generation of high-throughput biomolecular data. These innovations have found diverse applications, ranging from personalised medicine to forensic sciences. While the investigation of multiple aspects of cells, tissues or entire organisms through the integration of various omics approaches (such as genomics, epigenomics, metagenomics, transcriptomics, proteomics and metabolomics) has already been established in fields like biomedicine and cancer biology, its full potential in forensic sciences remains only partially explored. In this review, we have presented a comprehensive overview of state-of-the-art analytical platforms employed in omics research, with specific emphasis on their application in the forensic field for the identification of the cadaver and the cause of death. Moreover, we have conducted a critical analysis of the computational integration of omics approaches, and highlighted the latest advancements in employing multi-omics techniques for forensic investigations.
Collapse
Affiliation(s)
- Noemi Procopio
- Research Centre for Field Archaeology and Experimental Taphonomy, School of Law and Policing, University of Central Lancashire, Preston, UK
| | - Andrea Bonicelli
- Research Centre for Field Archaeology and Experimental Taphonomy, School of Law and Policing, University of Central Lancashire, Preston, UK
| |
Collapse
|
3
|
Filoglu G, Sımsek SZ, Ersoy G, Can K, Bulbul O. Epigenetic-based age prediction in blood samples: Model development. J Forensic Sci 2024; 69:869-879. [PMID: 38308398 DOI: 10.1111/1556-4029.15478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
Aging is a complex process influenced by genetic, epigenetic, and environmental factors that lead to tissue deterioration and frailty. Epigenetic mechanisms, such as DNA methylation, play a significant role in gene expression regulation and aging. This study presents a new age estimation model developed for the Turkish population using blood samples. Eight CpG sites in loci TOM1L1, ELOVL2, ASPA, FHL2, C1orf132, CCDC102B, cg07082267, and RASSF5 were selected based on their correlation with age. Methylation patterns of these sites were analyzed in blood samples from 100 volunteers, grouped into age categories (20-35, 36-55, and ≥56). Sensitivity analysis indicated a reliable performance with DNA inputs ≥1 ng. Statistical modeling, utilizing Multiple Linear Regression, underscores the reliability of the primary 6-CpG model, excluding cg07082267 and TOM1L1. This model demonstrates strong correlations with chronological age (r = 0.941) and explains 88% of the age variance with low error rates (MAE = 4.07, RMSE = 5.73 years). Validation procedures, including a training-test split and fivefold cross-validation, consistently confirm the model's accuracy and consistency. The study indicates minimal variation in error scores across age cohorts and no significant gender differences. The developed model showed strong predictive accuracy, with the ability to estimate age within certain prediction intervals. This study contributes to the age prediction by using DNA methylation patterns, which can have disparate applications, including forensic and clinical assessments.
Collapse
Affiliation(s)
- Gonul Filoglu
- Department of Science, Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sumeyye Zulal Sımsek
- Department of Science, Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gokhan Ersoy
- Department of Forensic Medicine, Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Kadriye Can
- Department of Science, Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ozlem Bulbul
- Department of Science, Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
4
|
Castagnola MJ, Medina-Paz F, Zapico SC. Uncovering Forensic Evidence: A Path to Age Estimation through DNA Methylation. Int J Mol Sci 2024; 25:4917. [PMID: 38732129 PMCID: PMC11084977 DOI: 10.3390/ijms25094917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Age estimation is a critical aspect of reconstructing a biological profile in forensic sciences. Diverse biochemical processes have been studied in their correlation with age, and the results have driven DNA methylation to the forefront as a promising biomarker. DNA methylation, an epigenetic modification, has been extensively studied in recent years for developing age estimation models in criminalistics and forensic anthropology. Epigenetic clocks, which analyze DNA sites undergoing hypermethylation or hypomethylation as individuals age, have paved the way for improved prediction models. A wide range of biomarkers and methods for DNA methylation analysis have been proposed, achieving different accuracies across samples and cell types. This review extensively explores literature from the past 5 years, showing scientific efforts toward the ultimate goal: applying age prediction models to assist in human identification.
Collapse
Affiliation(s)
- María Josefina Castagnola
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
| | - Francisco Medina-Paz
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
| | - Sara C. Zapico
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
- Department of Anthropology and Laboratories of Analytical Biology, National Museum of Natural History, MRC 112, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
5
|
Gutiérrez-Hurtado IA, Sánchez-Méndez AD, Becerra-Loaiza DS, Rangel-Villalobos H, Torres-Carrillo N, Gallegos-Arreola MP, Aguilar-Velázquez JA. Loss of the Y Chromosome: A Review of Molecular Mechanisms, Age Inference, and Implications for Men's Health. Int J Mol Sci 2024; 25:4230. [PMID: 38673816 PMCID: PMC11050192 DOI: 10.3390/ijms25084230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Until a few years ago, it was believed that the gradual mosaic loss of the Y chromosome (mLOY) was a normal age-related process. However, it is now known that mLOY is associated with a wide variety of pathologies in men, such as cardiovascular diseases, neurodegenerative disorders, and many types of cancer. Nevertheless, the mechanisms that generate mLOY in men have not been studied so far. This task is of great importance because it will allow focusing on possible methods of prophylaxis or therapy for diseases associated with mLOY. On the other hand, it would allow better understanding of mLOY as a possible marker for inferring the age of male samples in cases of human identification. Due to the above, in this work, a comprehensive review of the literature was conducted, presenting the most relevant information on the possible molecular mechanisms by which mLOY is generated, as well as its implications for men's health and its possible use as a marker to infer age.
Collapse
Affiliation(s)
- Itzae Adonai Gutiérrez-Hurtado
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Jalisco, Mexico
| | - Astrid Desireé Sánchez-Méndez
- Laboratorio de Ciencias Morfológico Forenses y Medicina Molecular, Departamento de Morfología, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Jalisco, Mexico
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | | | - Héctor Rangel-Villalobos
- Instituto de Investigación en Genética Molecular, Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán 47820, Jalisco, Mexico
| | - Norma Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Martha Patricia Gallegos-Arreola
- División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico
| | - José Alonso Aguilar-Velázquez
- Laboratorio de Ciencias Morfológico Forenses y Medicina Molecular, Departamento de Morfología, Centro Universitario de Ciencias de la Salud, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
6
|
Sinha D, Maurya AK, Abdi G, Majeed M, Agarwal R, Mukherjee R, Ganguly S, Aziz R, Bhatia M, Majgaonkar A, Seal S, Das M, Banerjee S, Chowdhury S, Adeyemi SB, Chen JT. Integrated Genomic Selection for Accelerating Breeding Programs of Climate-Smart Cereals. Genes (Basel) 2023; 14:1484. [PMID: 37510388 PMCID: PMC10380062 DOI: 10.3390/genes14071484] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Rapidly rising population and climate changes are two critical issues that require immediate action to achieve sustainable development goals. The rising population is posing increased demand for food, thereby pushing for an acceleration in agricultural production. Furthermore, increased anthropogenic activities have resulted in environmental pollution such as water pollution and soil degradation as well as alterations in the composition and concentration of environmental gases. These changes are affecting not only biodiversity loss but also affecting the physio-biochemical processes of crop plants, resulting in a stress-induced decline in crop yield. To overcome such problems and ensure the supply of food material, consistent efforts are being made to develop strategies and techniques to increase crop yield and to enhance tolerance toward climate-induced stress. Plant breeding evolved after domestication and initially remained dependent on phenotype-based selection for crop improvement. But it has grown through cytological and biochemical methods, and the newer contemporary methods are based on DNA-marker-based strategies that help in the selection of agronomically useful traits. These are now supported by high-end molecular biology tools like PCR, high-throughput genotyping and phenotyping, data from crop morpho-physiology, statistical tools, bioinformatics, and machine learning. After establishing its worth in animal breeding, genomic selection (GS), an improved variant of marker-assisted selection (MAS), has made its way into crop-breeding programs as a powerful selection tool. To develop novel breeding programs as well as innovative marker-based models for genetic evaluation, GS makes use of molecular genetic markers. GS can amend complex traits like yield as well as shorten the breeding period, making it advantageous over pedigree breeding and marker-assisted selection (MAS). It reduces the time and resources that are required for plant breeding while allowing for an increased genetic gain of complex attributes. It has been taken to new heights by integrating innovative and advanced technologies such as speed breeding, machine learning, and environmental/weather data to further harness the GS potential, an approach known as integrated genomic selection (IGS). This review highlights the IGS strategies, procedures, integrated approaches, and associated emerging issues, with a special emphasis on cereal crops. In this domain, efforts have been taken to highlight the potential of this cutting-edge innovation to develop climate-smart crops that can endure abiotic stresses with the motive of keeping production and quality at par with the global food demand.
Collapse
Affiliation(s)
- Dwaipayan Sinha
- Department of Botany, Government General Degree College, Mohanpur 721436, India
| | - Arun Kumar Maurya
- Department of Botany, Multanimal Modi College, Modinagar, Ghaziabad 201204, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | - Muhammad Majeed
- Department of Botany, University of Gujrat, Punjab 50700, Pakistan
| | - Rachna Agarwal
- Applied Genomics Section, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Rashmi Mukherjee
- Research Center for Natural and Applied Sciences, Department of Botany (UG & PG), Raja Narendralal Khan Women's College, Gope Palace, Midnapur 721102, India
| | - Sharmistha Ganguly
- Department of Dravyaguna, Institute of Post Graduate Ayurvedic Education and Research, Kolkata 700009, India
| | - Robina Aziz
- Department of Botany, Government, College Women University, Sialkot 51310, Pakistan
| | - Manika Bhatia
- TERI School of Advanced Studies, New Delhi 110070, India
| | - Aqsa Majgaonkar
- Department of Botany, St. Xavier's College (Autonomous), Mumbai 400001, India
| | - Sanchita Seal
- Department of Botany, Polba Mahavidyalaya, Polba 712148, India
| | - Moumita Das
- V. Sivaram Research Foundation, Bangalore 560040, India
| | - Swastika Banerjee
- Department of Botany, Kairali College of +3 Science, Champua, Keonjhar 758041, India
| | - Shahana Chowdhury
- Department of Biotechnology, Faculty of Engineering Sciences, German University Bangladesh, TNT Road, Telipara, Chandona Chowrasta, Gazipur 1702, Bangladesh
| | - Sherif Babatunde Adeyemi
- Ethnobotany/Phytomedicine Laboratory, Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin P.M.B 1515, Nigeria
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| |
Collapse
|
7
|
Kayser M, Branicki W, Parson W, Phillips C. Recent advances in Forensic DNA Phenotyping of appearance, ancestry and age. Forensic Sci Int Genet 2023; 65:102870. [PMID: 37084623 DOI: 10.1016/j.fsigen.2023.102870] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Forensic DNA Phenotyping (FDP) comprises the prediction of a person's externally visible characteristics regarding appearance, biogeographic ancestry and age from DNA of crime scene samples, to provide investigative leads to help find unknown perpetrators that cannot be identified with forensic STR-profiling. In recent years, FDP has advanced considerably in all of its three components, which we summarize in this review article. Appearance prediction from DNA has broadened beyond eye, hair and skin color to additionally comprise other traits such as eyebrow color, freckles, hair structure, hair loss in men, and tall stature. Biogeographic ancestry inference from DNA has progressed from continental ancestry to sub-continental ancestry detection and the resolving of co-ancestry patterns in genetically admixed individuals. Age estimation from DNA has widened beyond blood to more somatic tissues such as saliva and bones as well as new markers and tools for semen. Technological progress has allowed forensically suitable DNA technology with largely increased multiplex capacity for the simultaneous analysis of hundreds of DNA predictors with targeted massively parallel sequencing (MPS). Forensically validated MPS-based FDP tools for predicting from crime scene DNA i) several appearance traits, ii) multi-regional ancestry, iii) several appearance traits together with multi-regional ancestry, and iv) age from different tissue types, are already available. Despite recent advances that will likely increase the impact of FDP in criminal casework in the near future, moving reliable appearance, ancestry and age prediction from crime scene DNA to the level of detail and accuracy police investigators may desire, requires further intensified scientific research together with technical developments and forensic validations as well as the necessary funding.
Collapse
Affiliation(s)
- Manfred Kayser
- Department of Genetic Identification, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Wojciech Branicki
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland,; Institute of Forensic Research, Kraków, Poland
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, PA, USA
| | - Christopher Phillips
- Forensic Genetics Unit, Institute of Forensic Sciences, University of Santiago de Compostela, Spain
| |
Collapse
|
8
|
Milner JJ, Zadinsky JK. Nursing Informatics and Epigenetics: An Interdisciplinary Approach to Patient-Focused Research. Comput Inform Nurs 2022; 40:515-520. [PMID: 35929740 PMCID: PMC9365264 DOI: 10.1097/cin.0000000000000922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- John J. Milner
- Author Affiliation: College of Nursing, Augusta University
| | | |
Collapse
|
9
|
DNA Methylation Biomarkers-Based Human Age Prediction Using Machine Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:8393498. [PMID: 35111213 PMCID: PMC8803417 DOI: 10.1155/2022/8393498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/20/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022]
Abstract
Purpose. Age can be an important clue in uncovering the identity of persons that left biological evidence at crime scenes. With the availability of DNA methylation data, several age prediction models are developed by using statistical and machine learning methods. From epigenetic studies, it has been demonstrated that there is a close association between aging and DNA methylation. Most of the existing studies focused on healthy samples, whereas diseases may have a significant impact on human age. Therefore, in this article, an age prediction model is proposed using DNA methylation biomarkers for healthy and diseased samples. Methods. The dataset contains 454 healthy samples and 400 diseased samples from publicly available sources with age (1–89 years old). Six CpG sites are identified from this data having a high correlation with age using Pearson’s correlation coefficient. In this work, the age prediction model is developed using four different machine learning techniques, namely, Multiple Linear Regression, Support Vector Regression, Gradient Boosting Regression, and Random Forest Regression. Separate models are designed for healthy and diseased data. The data are split randomly into 80 : 20 ratios for training and testing, respectively. Results. Among all the techniques, the model designed using Random Forest Regression shows the best performance, and Gradient Boosting Regression is the second best model. In the case of healthy samples, the model achieved a MAD of 2.51 years for training data and 4.85 for testing data. Also, for diseased samples, a MAD of 3.83 years is obtained for training and 9.53 years for testing. Conclusion. These results showed that the proposed model can predict age for healthy and diseased samples.
Collapse
|
10
|
Fan H, Xie Q, Zhang Z, Wang J, Chen X, Qiu P. Chronological Age Prediction: Developmental Evaluation of DNA Methylation-Based Machine Learning Models. Front Bioeng Biotechnol 2022; 9:819991. [PMID: 35141217 PMCID: PMC8819006 DOI: 10.3389/fbioe.2021.819991] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Epigenetic clock, a highly accurate age estimator based on DNA methylation (DNAm) level, is the basis for predicting mortality/morbidity and elucidating the molecular mechanism of aging, which is of great significance in forensics, justice, and social life. Herein, we integrated machine learning (ML) algorithms to construct blood epigenetic clock in Southern Han Chinese (CHS) for chronological age prediction. The correlation coefficient (r) meta-analyses of 7,084 individuals were firstly implemented to select five genes (ELOVL2, C1orf132, TRIM59, FHL2, and KLF14) from a candidate set of nine age-associated DNAm biomarkers. The DNAm-based profiles of the CHS cohort (240 blood samples differing in age from 1 to 81 years) were generated by the bisulfite targeted amplicon pyrosequencing (BTA-pseq) from 34 cytosine-phosphate-guanine sites (CpGs) of five selected genes, revealing that the methylation levels at different CpGs exhibit population specificity. Furthermore, we established and evaluated four chronological age prediction models using distinct ML algorithms: stepwise regression (SR), support vector regression (SVR-eps and SVR-nu), and random forest regression (RFR). The median absolute deviation (MAD) values increased with chronological age, especially in the 61–81 age category. No apparent gender effect was found in different ML models of the CHS cohort (all p > 0.05). The MAD values were 2.97, 2.22, 2.19, and 1.29 years for SR, SVR-eps, SVR-nu, and RFR in the CHS cohort, respectively. Eventually, compared to the MAD range of the meta cohort (2.53–5.07 years), a promising RFR model (ntree = 500 and mtry = 8) was optimized with an MAD of 1.15 years in the 1–60 age categories of the CHS cohort, which could be regarded as a robust epigenetic clock in blood for age-related issues.
Collapse
Affiliation(s)
- Haoliang Fan
- *Correspondence: Haoliang Fan, ; Xuncai Chen, ; Pingming Qiu,
| | | | | | | | - Xuncai Chen
- *Correspondence: Haoliang Fan, ; Xuncai Chen, ; Pingming Qiu,
| | - Pingming Qiu
- *Correspondence: Haoliang Fan, ; Xuncai Chen, ; Pingming Qiu,
| |
Collapse
|
11
|
Simpson DJ, Chandra T. Epigenetic age prediction. Aging Cell 2021; 20:e13452. [PMID: 34415665 PMCID: PMC8441394 DOI: 10.1111/acel.13452] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced age is the main common risk factor for cancer, cardiovascular disease and neurodegeneration. Yet, more is known about the molecular basis of any of these groups of diseases than the changes that accompany ageing itself. Progress in molecular ageing research was slow because the tools predicting whether someone aged slowly or fast (biological age) were unreliable. To understand ageing as a risk factor for disease and to develop interventions, the molecular ageing field needed a quantitative measure; a clock for biological age. Over the past decade, a number of age predictors utilising DNA methylation have been developed, referred to as epigenetic clocks. While they appear to estimate biological age, it remains unclear whether the methylation changes used to train the clocks are a reflection of other underlying cellular or molecular processes, or whether methylation itself is involved in the ageing process. The precise aspects of ageing that the epigenetic clocks capture remain hidden and seem to vary between predictors. Nonetheless, the use of epigenetic clocks has opened the door towards studying biological ageing quantitatively, and new clocks and applications, such as forensics, appear frequently. In this review, we will discuss the range of epigenetic clocks available, their strengths and weaknesses, and their applicability to various scientific queries.
Collapse
Affiliation(s)
- Daniel J. Simpson
- MRC Human Genetics UnitMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tamir Chandra
- MRC Human Genetics UnitMRC Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| |
Collapse
|