1
|
Ung J, Kassai M, Tan SF, Loughran TP, Feith DJ, Cabot MC. The Drug Transporter P-Glycoprotein and Its Impact on Ceramide Metabolism-An Unconventional Ally in Cancer Treatment. Int J Mol Sci 2024; 25:9825. [PMID: 39337312 PMCID: PMC11432138 DOI: 10.3390/ijms25189825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The tumor-suppressor sphingolipid ceramide is recognized as a key participant in the cytotoxic mechanism of action of many types of chemotherapy drugs, including anthracyclines, Vinca alkaloids, the podophyllotoxin etoposide, taxanes, and the platinum drug oxaliplatin. These drugs can activate de novo synthesis of ceramide or stimulate the production of ceramide via sphingomyelinases to limit cancer cell survival. On the contrary, dysfunctional sphingolipid metabolism, a prominent factor in cancer survival and therapy resistance, blunts the anticancer properties of ceramide-orchestrated cell death pathways, especially apoptosis. Although P-glycoprotein (P-gp) is famous for its role in chemotherapy resistance, herein, we propose alternate interpretations and discuss the capacity of this multidrug transporter as a "ceramide neutralizer", an unwelcome event, highlighting yet another facet of P-gp's versatility in drug resistance. We introduce sphingolipid metabolism and its dysfunctional regulation in cancer, present a summary of factors that contribute to chemotherapy resistance, explain how P-gp "neutralizes" ceramide by hastening its glycosylation, and consider therapeutic applications of the P-gp-ceramide connection in the treatment of cancer.
Collapse
Affiliation(s)
- Johnson Ung
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, The East Carolina Diabetes and Obesity Institute, Greenville, NC 27834, USA;
| | - Su-Fern Tan
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (D.J.F.)
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Thomas P. Loughran
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (D.J.F.)
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - David J. Feith
- University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (S.-F.T.); (D.J.F.)
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Myles C. Cabot
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, The East Carolina Diabetes and Obesity Institute, Greenville, NC 27834, USA;
| |
Collapse
|
2
|
La Monica S, Vacondio F, Eltayeb K, Lodola A, Volta F, Viglioli M, Ferlenghi F, Galvani F, Galetti M, Bonelli M, Fumarola C, Cavazzoni A, Flammini L, Verzè M, Minari R, Petronini PG, Tiseo M, Mor M, Alfieri R. Targeting glucosylceramide synthase induces antiproliferative and proapoptotic effects in osimertinib-resistant NSCLC cell models. Sci Rep 2024; 14:6491. [PMID: 38499619 PMCID: PMC10948837 DOI: 10.1038/s41598-024-57028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/12/2024] [Indexed: 03/20/2024] Open
Abstract
The EGFR tyrosine kinase inhibitor osimertinib has been approved for the first-line treatment of EGFR-mutated Non-Small Cell Lung Cancer (NSCLC) patients. Despite its efficacy, patients develop resistance. Mechanisms of resistance are heterogeneous and not fully understood, and their characterization is essential to find new strategies to overcome resistance. Ceramides are well-known regulators of apoptosis and are converted into glucosylceramides (GlcCer) by glucosylceramide synthase (GCS). A higher content of GlcCers was observed in lung pleural effusions from NSCLC patients and their role in osimertinib-resistance has not been documented. The aim of this study was to determine the therapeutic potential of inhibiting GCS in NSCLC EGFR-mutant models resistant to osimertinib in vitro and in vivo. Lipidomic analysis showed a significant increase in the intracellular levels of glycosylceramides, including GlcCers in osimertinib resistant clones compared to sensitive cells. In resistant cells, the GCS inhibitor PDMP caused cell cycle arrest, inhibition of 2D and 3D cell proliferation, colony formation and migration capability, and apoptosis induction. The intratumoral injection of PDMP completely suppressed the growth of OR xenograft models. This study demonstrated that dysregulation of ceramide metabolism is involved in osimertinib-resistance and targeting GCS may be a promising therapeutic strategy for patients progressed to osimertinib.
Collapse
Affiliation(s)
- Silvia La Monica
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Federica Vacondio
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Kamal Eltayeb
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Francesco Volta
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Martina Viglioli
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | | | - Francesca Galvani
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers' Compensation Authority, 00078, Monte Porzio Catone, Rome, Italy
| | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| | - Lisa Flammini
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Michela Verzè
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy
| | | | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy.
- Medical Oncology Unit, University Hospital of Parma, 43126, Parma, Italy.
| | - Marco Mor
- Department of Food and Drug, University of Parma, 43124, Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126, Parma, Italy
| |
Collapse
|
3
|
Fisher-Wellman KH, Kassai M, Hagen JT, Neufer PD, Kester M, Loughran TP, Chalfant CE, Feith DJ, Tan SF, Fox TE, Ung J, Fabrias G, Abad JL, Sharma A, Golla U, Claxton DF, Shaw JJP, Bhowmick D, Cabot MC. Simultaneous Inhibition of Ceramide Hydrolysis and Glycosylation Synergizes to Corrupt Mitochondrial Respiration and Signal Caspase Driven Cell Death in Drug-Resistant Acute Myeloid Leukemia. Cancers (Basel) 2023; 15:1883. [PMID: 36980769 PMCID: PMC10046858 DOI: 10.3390/cancers15061883] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Acute myelogenous leukemia (AML), the most prevalent acute and aggressive leukemia diagnosed in adults, often recurs as a difficult-to-treat, chemotherapy-resistant disease. Because chemotherapy resistance is a major obstacle to successful treatment, novel therapeutic intervention is needed. Upregulated ceramide clearance via accelerated hydrolysis and glycosylation has been shown to be an element in chemotherapy-resistant AML, a problem considering the crucial role ceramide plays in eliciting apoptosis. Herein we employed agents that block ceramide clearance to determine if such a "reset" would be of therapeutic benefit. SACLAC was utilized to limit ceramide hydrolysis, and D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-threo-PDMP) was used to block the glycosylation route. The SACLAC D-threo-PDMP inhibitor combination was synergistically cytotoxic in drug-resistant, P-glycoprotein-expressing (P-gp) AML but not in wt, P-gp-poor cells. Interestingly, P-gp antagonists that can limit ceramide glycosylation via depression of glucosylceramide transit also synergized with SACLAC, suggesting a paradoxical role for P-gp in the implementation of cell death. Mechanistically, cell death was accompanied by a complete drop in ceramide glycosylation, concomitant, striking increases in all molecular species of ceramide, diminished sphingosine 1-phosphate levels, resounding declines in mitochondrial respiratory kinetics, altered Akt, pGSK-3β, and Mcl-1 expression, and caspase activation. Although ceramide was generated in wt cells upon inhibitor exposure, mitochondrial respiration was not corrupted, suggestive of mitochondrial vulnerability in the drug-resistant phenotype, a potential therapeutic avenue. The inhibitor regimen showed efficacy in an in vivo model and in primary AML cells from patients. These results support the implementation of SL enzyme targeting to limit ceramide clearance as a therapeutic strategy in chemotherapy-resistant AML, inclusive of a novel indication for the use of P-gp antagonists.
Collapse
Affiliation(s)
- Kelsey H. Fisher-Wellman
- Department of Integrative Physiology and Metabolism, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Miki Kassai
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - James T. Hagen
- Department of Integrative Physiology and Metabolism, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - P. Darrell Neufer
- Department of Integrative Physiology and Metabolism, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
| | - Mark Kester
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
| | - Thomas P. Loughran
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
| | - Charles E. Chalfant
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA
- Research Service, Richmond Veterans Administration Medical Center, Richmond, VA 23298, USA
| | - David J. Feith
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
| | - Su-Fern Tan
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Todd E. Fox
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Johnson Ung
- Department of Medicine, Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Gemma Fabrias
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jose’ Luis Abad
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Arati Sharma
- Penn State Cancer Institute, Hershey, PA 17033, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Upendarrao Golla
- Penn State Cancer Institute, Hershey, PA 17033, USA
- Division of Hematology and Oncology, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - David F. Claxton
- Division of Hematology and Oncology, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - Jeremy J. P. Shaw
- University of Virginia Cancer Center, Charlottesville, VA 22908, USA
- Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA 22904, USA
| | - Debajit Bhowmick
- Flow Cytometry Division, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Myles C. Cabot
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27858, USA
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
4
|
Ung J, Tan SF, Fox TE, Shaw JJP, Vass LR, Costa-Pinheiro P, Garrett-Bakelman FE, Keng MK, Sharma A, Claxton DF, Levine RL, Tallman MS, Cabot MC, Kester M, Feith DJ, Loughran TP. Harnessing the power of sphingolipids: Prospects for acute myeloid leukemia. Blood Rev 2022; 55:100950. [PMID: 35487785 PMCID: PMC9475810 DOI: 10.1016/j.blre.2022.100950] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive, heterogenous malignancy characterized by clonal expansion of bone marrow-derived myeloid progenitor cells. While our current understanding of the molecular and genomic landscape of AML has evolved dramatically and opened avenues for molecularly targeted therapeutics to improve upon standard intensive induction chemotherapy, curative treatments are elusive, particularly in older patients. Responses to current AML treatments are transient and incomplete, necessitating the development of novel treatment strategies to improve outcomes. To this end, harnessing the power of bioactive sphingolipids to treat cancer shows great promise. Sphingolipids are involved in many hallmarks of cancer of paramount importance in AML. Leukemic blast survival is influenced by cellular levels of ceramide, a bona fide pro-death molecule, and its conversion to signaling molecules such as sphingosine-1-phosphate and glycosphingolipids. Preclinical studies demonstrate the efficacy of therapeutics that target dysregulated sphingolipid metabolism as well as their combinatorial synergy with clinically-relevant therapeutics. Thus, increased understanding of sphingolipid dysregulation may be exploited to improve AML patient care and outcomes. This review summarizes the current knowledge of dysregulated sphingolipid metabolism in AML, evaluates how pro-survival sphingolipids promote AML pathogenesis, and discusses the therapeutic potential of targeting these dysregulated sphingolipid pathways.
Collapse
Affiliation(s)
- Johnson Ung
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Su-Fern Tan
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Todd E Fox
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Jeremy J P Shaw
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Luke R Vass
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Pedro Costa-Pinheiro
- Cancer Biology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Francine E Garrett-Bakelman
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Michael K Keng
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Arati Sharma
- Penn State Cancer Institute, Hershey, PA, United States of America
| | - David F Claxton
- Penn State Cancer Institute, Hershey, PA, United States of America
| | - Ross L Levine
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Martin S Tallman
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Mark Kester
- University of Virginia Cancer Center, Charlottesville, VA, United States of America; Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - David J Feith
- Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America
| | - Thomas P Loughran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; Division of Hematology/Oncology, University of Virginia School of Medicine, Charlottesville, VA, United States of America; University of Virginia Cancer Center, Charlottesville, VA, United States of America.
| |
Collapse
|
5
|
Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
6
|
Chueakwon P, Jatooratthawichot P, Talabnin K, Ketudat Cairns JR, Talabnin C. Inhibition of Ceramide Glycosylation Enhances Cisplatin Sensitivity in Cholangiocarcinoma by Limiting the Activation of the ERK Signaling Pathway. Life (Basel) 2022; 12:life12030351. [PMID: 35330102 PMCID: PMC8949529 DOI: 10.3390/life12030351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/20/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive tumor of the biliary epithelium with poor survival that shows limited response to conventional chemotherapy. Increased expression of glucosylceramide synthase (GCS) contributes to drug resistance and the progression of various cancers; the expression profiles of GCS (UGCG) and the genes for glucocerebrosidases 1, 2, and 3 (GBA1, GBA2, and GBA3) were therefore studied in CCA. The biological functions of GCS for cell proliferation and cisplatin sensitivity in CCA were explored. GCS expression was higher in CCA tumor tissues than that of GBA1, GBA2, and GBA3. Verification of GCS expression in 29 paired frozen CCA tissues showed that 8 of 29 cases (27.6%) had high GCS expression. The expression of GCS and GBA2 was induced in CCA cell lines following low-dose cisplatin treatment. Suppression of GCS by either palmitoylamino-3-morpholino-1-propanol (PPMP), GCS knockdown or a combination of the two resulted in reduced cell proliferation. These treatments enhanced the effect of cisplatin-induced CCA cell death, increased the expression of apoptotic proteins and reduced phosphorylation of ERK upon cisplatin treatment. Taken together, inhibition of the GCS increased cisplatin-induced CCA apoptosis via the inhibition of the ERK signaling pathway. Thus, targeting GCS might be a strategy for CCA treatment.
Collapse
Affiliation(s)
- Piyasiri Chueakwon
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.C.); (P.J.); (J.R.K.C.)
| | - Peeranat Jatooratthawichot
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.C.); (P.J.); (J.R.K.C.)
| | - Krajang Talabnin
- School of Pathology, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - James R. Ketudat Cairns
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.C.); (P.J.); (J.R.K.C.)
| | - Chutima Talabnin
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; (P.C.); (P.J.); (J.R.K.C.)
- Correspondence:
| |
Collapse
|
7
|
Bataller M, Sánchez-García A, Garcia-Mayea Y, Mir C, Rodriguez I, LLeonart ME. The Role of Sphingolipids Metabolism in Cancer Drug Resistance. Front Oncol 2022; 11:807636. [PMID: 35004331 PMCID: PMC8733468 DOI: 10.3389/fonc.2021.807636] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022] Open
Abstract
Drug resistance continues to be one of the major challenges to cure cancer. As research in this field evolves, it has been proposed that numerous bioactive molecules might be involved in the resistance of cancer cells to certain chemotherapeutics. One well-known group of lipids that play a major role in drug resistance are the sphingolipids. Sphingolipids are essential components of the lipid raft domains of the plasma membrane and this structural function is important for apoptosis and/or cell proliferation. Dysregulation of sphingolipids, including ceramide, sphingomyelin or sphingosine 1-phosphate, has been linked to drug resistance in different types of cancer, including breast, melanoma or colon cancer. Sphingolipid metabolism is complex, involving several lipid catabolism with the participation of key enzymes such as glucosylceramide synthase (GCS) and sphingosine kinase 1 (SPHK1). With an overview of the latest available data on this topic and its implications in cancer therapy, this review focuses on the main enzymes implicated in sphingolipids metabolism and their intermediate metabolites involved in cancer drug resistance.
Collapse
Affiliation(s)
- Marina Bataller
- Biomedical Research in Cancer Stem Cells Group, Vall d´Hebron Research Institute (VHIR), Barcelona, Spain
| | - Almudena Sánchez-García
- Biomedical Research in Cancer Stem Cells Group, Vall d´Hebron Research Institute (VHIR), Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cells Group, Vall d´Hebron Research Institute (VHIR), Barcelona, Spain
| | - Cristina Mir
- Biomedical Research in Cancer Stem Cells Group, Vall d´Hebron Research Institute (VHIR), Barcelona, Spain
| | - Isabel Rodriguez
- Assistant Director of Nursing, Nursing Management Service Hospital Vall d'Hebron, Barcelona, Spain
| | - Matilde Esther LLeonart
- Biomedical Research in Cancer Stem Cells Group, Vall d´Hebron Research Institute (VHIR), Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology, CIBERONC, Madrid, Spain
| |
Collapse
|
8
|
Li Z, Zhang L, Liu D, Wang C. Ceramide glycosylation and related enzymes in cancer signaling and therapy. Biomed Pharmacother 2021; 139:111565. [PMID: 33887691 DOI: 10.1016/j.biopha.2021.111565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 02/09/2023] Open
Abstract
Ceramides, the core of the sphingolipid metabolism, draw wide attention as tumor suppressor, and act directly on mitochondria to trigger apoptotic cell death. Ceramide-based therapies are being developed by using promote ceramide generating agents. The ceramide metabolism balance is regulated by multifaceted factors in cancer development. Ceramide metabolic enzymes can increase the elimination of ceramide and counteract the anti-tumor effects of ceramide. However, recent research showed that these metabolic enzymes were highly expressed in several cancers. Especially ceramide glycosyltransferases, they catalyze ceramide glycosylation and synthesis the skeleton of glycosphingolipids (GSLs), play an important role in regulating tumor progression and have a significant correlation with the poor prognosis of cancer patients. To further understand the biological characteristics of ceramide metabolism in tumor, this review focuses on the role of ceramide glycosylation and related enzymes in cancer signaling and therapy. Besides, the research on multidrug resistance and potential inhibitors of ceramide glycosyltransferases are also discussed. Advance study on the structure of ceramide glycosyltransferases and ceramide glycosylation signaling pathway will open the path to new therapies and treatments.
Collapse
Affiliation(s)
- Zibo Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lin Zhang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Dan Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Caiyan Wang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
9
|
Mynott RL, Wallington-Beddoe CT. Drug and Solute Transporters in Mediating Resistance to Novel Therapeutics in Multiple Myeloma. ACS Pharmacol Transl Sci 2021; 4:1050-1065. [PMID: 34151200 DOI: 10.1021/acsptsci.1c00074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Multiple myeloma remains an incurable malignancy of plasma cells. Novel therapies, notably proteasome inhibitors and immunomodulatory drugs, have improved the survival of multiple myeloma patients; however, patients either present with, or develop resistance to, these therapies. Resistance to traditional chemotherapeutic agents can be caused by cellular drug efflux via adenosine triphosphate (ATP)-binding cassette (ABC) transporters, but it is still not clear whether these transporters mediate resistance to proteasome inhibitors and immunomodulatory drugs in multiple myeloma. Solute carrier (SLC) transporters also play a role in cancer drug resistance due to changes in cell homeostasis caused by their abnormal expression and changes in the solutes they transport. In this review, we evaluate resistance to novel therapies used to treat multiple myeloma, as mediated by drug and solute transporters.
Collapse
Affiliation(s)
- Rachel L Mynott
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Craig T Wallington-Beddoe
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia.,Flinders Medical Centre, Bedford Park, South Australia 5042, Australia.,Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, South Australia 5000, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia
| |
Collapse
|
10
|
Mynott RL, Wallington-Beddoe CT. Inhibition of P-Glycoprotein Does Not Increase the Efficacy of Proteasome Inhibitors in Multiple Myeloma Cells. ACS Pharmacol Transl Sci 2021; 4:713-729. [PMID: 33860196 DOI: 10.1021/acsptsci.0c00200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 12/14/2022]
Abstract
P-Glycoprotein is a well-known drug transporter associated with chemotherapy resistance in a number of cancers, but its role in modulating proteasome inhibitor efficacy in multiple myeloma is not well understood. The second-generation proteasome inhibitor carfilzomib is thought to be a substrate of P-glycoprotein whose efficacy may correlate with P-glycoprotein activity; however, research concerning the first-in-class proteasome inhibitor bortezomib is inconsistent. We show that while P-glycoprotein gene expression increases with the disease stages leading to multiple myeloma it does not affect the survival of newly diagnosed patients treated with bortezomib. Moreover, RNA-seq on LP-1 cells demonstrated minimal basal P-glycoprotein expression which did not increase after exposure to bortezomib or carfilzomib. Only one (KMS-18) of nine multiple myeloma cell lines expressed P-glycoprotein, including RPMI-8226 cells that are resistant to bortezomib or carfilzomib. We hypothesized that by inhibiting P-glycoprotein multiple myeloma cell sensitivity to proteasome inhibitors would increase; however, the sensitivity of multiple myeloma cells lines to proteasome inhibition was not enhanced by the specific P-glycoprotein inhibitor tariquidar. In addition, targeting glucosylceramide synthase with eliglustat did not inhibit P-glycoprotein activity nor improve proteasome inhibitor efficacy except at a high concentration. To confirm these negative findings, tariquidar did not substantially increase the cytotoxicity of bortezomib or carfilzomib in P-glycoprotein-expressing K562/ADM cells. We conclude the following: P-glycoprotein expression may not correlate with the survival of newly diagnosed multiple myeloma patients treated with proteasome inhibitors. P-glycoprotein is poorly expressed in many multiple myeloma cell lines, and its inhibition does not appreciably enhance the efficacy of proteasome inhibitors.
Collapse
Affiliation(s)
- Rachel L Mynott
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Craig T Wallington-Beddoe
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia.,Flinders Medical Centre, Bedford Park, South Australia 5042, Australia.,Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, South Australia 5000, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia
| |
Collapse
|
11
|
Fisher-Wellman KH, Hagen JT, Neufer PD, Kassai M, Cabot MC. On the nature of ceramide-mitochondria interactions - Dissection using comprehensive mitochondrial phenotyping. Cell Signal 2020; 78:109838. [PMID: 33212155 DOI: 10.1016/j.cellsig.2020.109838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Sphingolipids are a unique class of lipids owing to their non-glycerol-containing backbone, ceramide, that is constructed from a long-chain aliphatic amino alcohol, sphinganine, to which a fatty acid is attached via an amide bond. Ceramide plays a star role in the initiation of apoptosis by virtue of its interactions with mitochondria, a control point for a downstream array of signaling cascades culminating in apoptosis. Many pathways converge on mitochondria to elicit mitochondrial outer membrane permeabilization (MOMP), a step that corrupts bioenergetic service. Although much is known regarding ceramides interaction with mitochondria and the ensuing cell signal transduction cascades, how ceramide impacts the elements of mitochondrial bioenergetic function is poorly understood. The objective of this review is to introduce the reader to sphingolipid metabolism, present a snapshot of mitochondrial respiration, elaborate on ceramides convergence on mitochondria and the upstream players that collaborate to elicit MOMP, and introduce a mitochondrial phenotyping platform that can be of utility in dissecting the fine-points of ceramide impact on cellular bioenergetics.
Collapse
Affiliation(s)
- Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States of America.
| | - James T Hagen
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States of America
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States of America
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States of America
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States of America.
| |
Collapse
|
12
|
Cancer stem cells and ceramide signaling: the cutting edges of immunotherapy. Mol Biol Rep 2020; 47:8101-8111. [PMID: 32885363 DOI: 10.1007/s11033-020-05790-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
The multipotent, self renewing "cancer stem cells" (CSCs), a small population within tumor microenvironment facilitates transformed cells to grow and propagate within the body. The CSCs are discovered as resistant to the chemotherapeutic drug with distinct immunological characteristics. In recent years, immunologically targeting CSCs have emerged as an integral part of effective and successful cancer therapy. CSCs notably exhibit dysregulation in conventional sub-cellular sphingolipid metabolism. Recently, ceramide decaying enzymes have been shown to activate alternative ceramide signaling pathways leading to reduction in efficacy of the chemotherapeutic drugs. Therefore, a control over ceramide mediated modulations of CSCs offers an attractive dimension of effective cancer treatment strategy in future. In this review, we focused on the recent findings on broad spectrum of ceramide mediated signaling in CSCs within the tumor niche and their role in potential cancer immunotherapy.
Collapse
|
13
|
Kao LP, Morad SAF, Davis TS, MacDougall MR, Kassai M, Abdelmageed N, Fox TE, Kester M, Loughran TP, Abad JL, Fabrias G, Tan SF, Feith DJ, Claxton DF, Spiegel S, Fisher-Wellman KH, Cabot MC. Chemotherapy selection pressure alters sphingolipid composition and mitochondrial bioenergetics in resistant HL-60 cells. J Lipid Res 2019; 60:1590-1602. [PMID: 31363040 PMCID: PMC6718434 DOI: 10.1194/jlr.ra119000251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/27/2019] [Indexed: 12/15/2022] Open
Abstract
The combination of daunorubicin (dnr) and cytarabine (Ara-C) is a cornerstone of treatment for acute myelogenous leukemia (AML); resistance to these drugs is a major cause of treatment failure. Ceramide, a sphingolipid (SL), plays a critical role in cancer cell apoptosis in response to chemotherapy. Here, we investigated the effects of chemotherapy selection pressure with Ara-C and dnr on SL composition and enzyme activity in the AML cell line HL-60. Resistant cells, those selected for growth in Ara-C- and dnr-containing medium (HL-60/Ara-C and HL-60/dnr, respectively), demonstrated upregulated expression and activity of glucosylceramide synthase, acid ceramidase (AC), and sphingosine kinase 1 (SPHK1); were more resistant to ceramide than parental cells; and displayed sensitivity to inhibitors of SL metabolism. Lipidomic analysis revealed a general ceramide deficit and a profound upswing in levels of sphingosine 1-phosphate (S1P) and ceramide 1-phosphate (C1P) in HL-60/dnr cells versus parental and HL-60/Ara-C cells. Both chemotherapy-selected cells also exhibited comprehensive upregulations in mitochondrial biogenesis consistent with heightened reliance on oxidative phosphorylation, a property that was partially reversed by exposure to AC and SPHK1 inhibitors and that supports a role for the phosphorylation system in resistance. In summary, dnr and Ara-C selection pressure induces acute reductions in ceramide levels and large increases in S1P and C1P, concomitant with cell resilience bolstered by enhanced mitochondrial remodeling. Thus, strategic control of ceramide metabolism and further research to define mitochondrial perturbations that accompany the drug-resistant phenotype offer new opportunities for developing therapies that regulate cancer growth.
Collapse
Affiliation(s)
- Li-Pin Kao
- Department of Biochemistry and Molecular Biology Brody School of Medicine, East Carolina University, and the East Carolina Diabetes and Obesity Institute, Greenville, NC
| | - Samy A F Morad
- Department of Biochemistry and Molecular Biology Brody School of Medicine, East Carolina University, and the East Carolina Diabetes and Obesity Institute, Greenville, NC; Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Traci S Davis
- Department of Biochemistry and Molecular Biology Brody School of Medicine, East Carolina University, and the East Carolina Diabetes and Obesity Institute, Greenville, NC
| | - Matthew R MacDougall
- Department of Biochemistry and Molecular Biology Brody School of Medicine, East Carolina University, and the East Carolina Diabetes and Obesity Institute, Greenville, NC
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology Brody School of Medicine, East Carolina University, and the East Carolina Diabetes and Obesity Institute, Greenville, NC
| | - Noha Abdelmageed
- Department of Pharmacology, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Todd E Fox
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Mark Kester
- University of Virginia Cancer Center Charlottesville, VA
| | - Thomas P Loughran
- University of Virginia Cancer Center Charlottesville, VA; Department of Medicine, Hematology/Oncology, University of Virginia, Charlottesville, VA
| | - Jose' L Abad
- Instituto de Quimica Avanzada de Cataluña, Barcelona, Spain
| | - Gemma Fabrias
- Instituto de Quimica Avanzada de Cataluña, Barcelona, Spain
| | - Su-Fern Tan
- Department of Medicine, Hematology/Oncology, University of Virginia, Charlottesville, VA
| | - David J Feith
- University of Virginia Cancer Center Charlottesville, VA; Department of Medicine, Hematology/Oncology, University of Virginia, Charlottesville, VA
| | | | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, and the East Carolina Diabetes and Obesity Institute, Greenville, NC.
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology Brody School of Medicine, East Carolina University, and the East Carolina Diabetes and Obesity Institute, Greenville, NC.
| |
Collapse
|
14
|
Ge W, Liu Z, Sun Y, Wang T, Guo H, Chen X, Li S, Wang M, Chen Y, Ding Y, Zhang Q. Design and synthesis of parthenolide-SAHA hybrids for intervention of drug-resistant acute myeloid leukemia. Bioorg Chem 2019; 87:699-713. [DOI: 10.1016/j.bioorg.2019.03.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/15/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
|
15
|
Fu Z, Yun SY, Won JH, Back MJ, Jang JM, Ha HC, Lee HK, Shin IC, Kim JY, Kim HS, Kim DK. Development of a Label-Free LC-MS/MS-Based Glucosylceramide Synthase Assay and Its Application to Inhibitors Screening for Ceramide-Related Diseases. Biomol Ther (Seoul) 2019; 27:193-200. [PMID: 30231605 PMCID: PMC6430231 DOI: 10.4062/biomolther.2018.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 11/07/2022] Open
Abstract
Ceramide metabolism is known to be an essential etiology for various diseases, such as atopic dermatitis and Gaucher disease. Glucosylceramide synthase (GCS) is a key enzyme for the synthesis of glucosylceramide (GlcCer), which is a main ceramide metabolism pathway in mammalian cells. In this article, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to determine GCS activity using synthetic non-natural sphingolipid C8-ceramide as a substrate. The reaction products, C8-GlcCer for GCS, could be separated on a C18 column by reverse-phase high-performance liquid chromatography (HPLC). Quantification was conducted using the multiple reaction monitoring (MRM) mode to monitor the precursor-to-product ion transitions of m/z 588.6 → 264.4 for C8-GlcCer at positive ionization mode. The calibration curve was established over the range of 0.625–160 ng/mL, and the correlation coefficient was larger than 0.999. This method was successfully applied to detect GCS in the human hepatocellular carcinoma cell line (HepG2 cells) and mouse peripheral blood mononuclear cells. We also evaluated the inhibition degree of a known GCS inhibitor 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) on GCS enzymatic activity and proved that this method could be successfully applied to GCS inhibitor screening of preventive and therapeutic drugs for ceramide metabolism diseases, such as atopic dermatitis and Gaucher disease.
Collapse
Affiliation(s)
- Zhicheng Fu
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - So Yoon Yun
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jong Hoon Won
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Moon Jung Back
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ji Min Jang
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hae Chan Ha
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hae Kyung Lee
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - In Chul Shin
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ju Yeun Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hee Soo Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dae Kyong Kim
- Department of Environmental & Health Chemistry, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
16
|
Pang X, Li H, Guan F, Li X. Multiple Roles of Glycans in Hematological Malignancies. Front Oncol 2018; 8:364. [PMID: 30237983 PMCID: PMC6135871 DOI: 10.3389/fonc.2018.00364] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023] Open
Abstract
The three types of blood cells (red blood cells for carrying oxygen, white blood cells for immune protection, and platelets for wound clotting) arise from hematopoietic stem/progenitor cells in the adult bone marrow, and function in physiological regulation and communication with local microenvironments to maintain systemic homeostasis. Hematological malignancies are relatively uncommon malignant disorders derived from the two major blood cell lineages: myeloid (leukemia) and lymphoid (lymphoma). Malignant clones lose their regulatory mechanisms, resulting in production of a large number of dysfunctional cells and destruction of normal hematopoiesis. Glycans are one of the four major types of essential biological macromolecules, along with nucleic acids, proteins, and lipids. Major glycan subgroups are N-glycans, O-glycans, glycosaminoglycans, and glycosphingolipids. Aberrant expression of glycan structures, resulting from dysregulation of glycan-related genes, is associated with cancer development and progression in terms of cell signaling and communication, tumor cell dissociation and invasion, cell-matrix interactions, tumor angiogenesis, immune modulation, and metastasis formation. Aberrant glycan expression occurs in most hematological malignancies, notably acute myeloid leukemia, myeloproliferative neoplasms, and multiple myeloma, etc. Here, we review recent research advances regarding aberrant glycans, their related genes, and their roles in hematological malignancies. Our improved understanding of the mechanisms that underlie aberrant patterns of glycosylation will lead to development of novel, more effective therapeutic approaches targeted to hematological malignancies.
Collapse
Affiliation(s)
- Xingchen Pang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hongjiao Li
- College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- School of Biotechnology, Jiangnan University, Wuxi, China.,College of Life Science, Northwest University, Xi'an, China
| | - Xiang Li
- College of Life Science, Northwest University, Xi'an, China.,Wuxi Medical School, Jiangnan University, Wuxi, China
| |
Collapse
|
17
|
Huang C, Tu Y, Freter CE. Fludarabine-resistance associates with ceramide metabolism and leukemia stem cell development in chronic lymphocytic leukemia. Oncotarget 2018; 9:33124-33137. [PMID: 30237856 PMCID: PMC6145702 DOI: 10.18632/oncotarget.26043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/13/2018] [Indexed: 01/13/2023] Open
Abstract
Fludarabine (flu) -containing regimens such as flu, cyclophosphamide and rituximab have been established as one of the standard first line therapy in medically-fit chronic lymphocytic leukemia (CLL) patients. Therefore, flu-refractory (primary flu-insensitivity or flu-caused relapse) remains a major problem causing treatment failure for CLL patients. We isolated the peripheral blood mononuclear cells (PBMCs) from CLL patients and treated with flu to find flu-refractory cases, and established flu-resistant clonal cells to study molecular mechanism of flu-resistance. By comparing parental MEC-2 cells, a human CLL cell line, we found that flu-resistant clonal cells were significantly increased lethal dose 50 of flu concentration, and up-regulated expression of P-glycoprotein, a drug-resistant marker, glucosylceramide synthase (GCS), an enzyme that can convert ceramide to glucosylceramide, and CD34, a leukemia stem cell marker. Overexpression of GCS leads to promptly elimination of cellular ceramide levels and accumulation of glucosylceramide, which reduces apoptosis and promotes survival and proliferation of flu-resistant clonal cells. Furthermore, we demonstrated that the accumulation of glucosylceramide can be blocked by PDMP to restore flu-sensitivity in flu-resistant clonal cells. We also found that elevating glucosylceramide levels in flu-resistant clonal cells was associated with up-regulation of GCS and CD34 expression. Importantly, overexpression of GCS or CD34 was also determined in flu-refractory PBMCs. Our results show that flu-resistance is associated with the alteration of ceramide metabolism and the development of leukemia stem cell-like cells. The flu-resistance can be reversed by GCS inhibition as a novel strategy for overcoming drug resistance.
Collapse
Affiliation(s)
- Chunfa Huang
- Division of Hematology/Oncology, Department of Internal Medicine, School of Medicine, Saint Louis University, Saint Louis, MO, 63110, USA
| | - Yifan Tu
- Division of Hematology/Oncology, Department of Internal Medicine, School of Medicine, Saint Louis University, Saint Louis, MO, 63110, USA
| | - Carl E Freter
- Division of Hematology/Oncology, Department of Internal Medicine, School of Medicine, Saint Louis University, Saint Louis, MO, 63110, USA
| |
Collapse
|
18
|
Shaw J, Costa-Pinheiro P, Patterson L, Drews K, Spiegel S, Kester M. Novel Sphingolipid-Based Cancer Therapeutics in the Personalized Medicine Era. Adv Cancer Res 2018; 140:327-366. [PMID: 30060815 DOI: 10.1016/bs.acr.2018.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sphingolipids are bioactive lipids that participate in a wide variety of biological mechanisms, including cell death and proliferation. The myriad of pro-death and pro-survival cellular pathways involving sphingolipids provide a plethora of opportunities for dysregulation in cancers. In recent years, modulation of these sphingolipid metabolic pathways has been in the forefront of drug discovery for cancer therapeutics. About two decades ago, researchers first showed that standard of care treatments, e.g., chemotherapeutics and radiation, modulate sphingolipid metabolism to increase endogenous ceramides, which kill cancer cells. Strikingly, resistance to these treatments has also been linked to altered sphingolipid metabolism, favoring lipid species that ultimately lead to cell survival. To this end, many inhibitors of sphingolipid metabolism have been developed to further define not only our understanding of these pathways but also to potentially serve as therapeutic interventions. Therefore, understanding how to better use these new drugs that target sphingolipid metabolism, either alone or in combination with current cancer treatments, holds great potential for cancer control. While sphingolipids in cancer have been reviewed previously (Hannun & Obeid, 2018; Lee & Kolesnick, 2017; Morad & Cabot, 2013; Newton, Lima, Maceyka, & Spiegel, 2015; Ogretmen, 2018; Ryland, Fox, Liu, Loughran, & Kester, 2011) in this chapter, we present a comprehensive review on how standard of care therapeutics affects sphingolipid metabolism, the current landscape of sphingolipid inhibitors, and the clinical utility of sphingolipid-based cancer therapeutics.
Collapse
Affiliation(s)
- Jeremy Shaw
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Pedro Costa-Pinheiro
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Logan Patterson
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Kelly Drews
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
19
|
Abstract
Chemotherapy resistance, inherent or acquired, represents a serious barrier to the successful treatment of cancer. Although drug efflux, conducted by plasma membrane-resident proteins, detoxification enzymes, cell death inhibition, and DNA damage repair are ensemble players in this unwanted biology, a full understanding of the many in concert molecular mechanisms driving drug resistance is lacking. Recent discoveries in sphingolipid (SL) metabolism have provided significant insight into the role of these lipids in cancer growth; however, considerably less is known with respect to SLs and the drug-resistant phenotype. One exception here is enhanced ceramide glycosylation, a hallmark of multidrug resistance that is believed responsible, in part, for diminishing ceramides tumor-suppressor potential. This chapter will review various aspects of SL biology that relate to chemotherapy resistance and extend this topic to acknowledge the role of chemotherapy selection pressure in promoting dysregulated SL metabolism, a characteristic in cancer and an exploitable target for therapy.
Collapse
|
20
|
Stefanko A, Thiede C, Ehninger G, Simons K, Grzybek M. Lipidomic approach for stratification of acute myeloid leukemia patients. PLoS One 2017; 12:e0168781. [PMID: 28207743 PMCID: PMC5313223 DOI: 10.1371/journal.pone.0168781] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 12/06/2016] [Indexed: 12/19/2022] Open
Abstract
The pathogenesis and progression of many tumors, including hematologic malignancies is highly dependent on enhanced lipogenesis. De novo fatty-acid synthesis permits accelerated proliferation of tumor cells by providing membrane components but these may also alter physicochemical properties of lipid bilayers, which can impact signaling or even increase drug resistance in cancer cells. Cancer type-specific lipid profiles would permit us to monitor and interpret actual effects of lipid changes, potential fingerprints of individual tumors to be explored as diagnostic markers. We have used the shotgun MS approach to identify lipid patterns in different types of acute myeloid leukemia (AML) patients that either show no karyotype change or belong to t(8;21) or inv16 types. Differences in lipidomes of t(8;21) and inv(16) patients, as compared to AML patients without karyotype change, presented mostly as substantial modulation of ceramide/sphingolipid synthesis. Furthermore, between the t(8;21) and all other patients we observed significant changes in physicochemical membrane properties. These were related to a marked alteration in lipid saturation levels. The discovered differences in lipid profiles of various AML types improve our understanding of the pathobiochemical pathways involved and may serve in the development of diagnostic tools.
Collapse
Affiliation(s)
- Adam Stefanko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Christian Thiede
- Medical Clinic and Polyclinic I, University Hospital TU Dresden, Dresden, Germany
| | - Gerhard Ehninger
- Medical Clinic and Polyclinic I, University Hospital TU Dresden, Dresden, Germany
| | - Kai Simons
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Lipotype GmbH, Dresden, Germany
| | - Michal Grzybek
- Paul Langerhans Institute Dresden of the Helmholtz Centre Munich at the University Clinic Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
21
|
Chiu WH, Su WC, Li CL, Chen CL, Lin CF. An increase in glucosylceramide synthase induces Bcl-xL-mediated cell survival in vinorelbine-resistant lung adenocarcinoma cells. Oncotarget 2016; 6:20513-24. [PMID: 26001295 PMCID: PMC4653022 DOI: 10.18632/oncotarget.4109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/23/2015] [Indexed: 02/07/2023] Open
Abstract
Reversing drug resistance with concurrent treatment confers anticancer benefits. In this study, we investigated the potential mechanism of glucosylceramide synthase (GCS)-mediated vinca alkaloid vinorelbine (VNR) resistance in human lung adenocarcinoma cells. Compared with PC14PE6/AS2 (AS2) and CL1-0 cells, apoptotic analysis showed that both A549 and CL1-5 cells were VNR-resistant, while these cells highly expressed GCS at the protein level. VNR treatment significantly converts ceramide to glucosylceramide in VNR-resistant cells; however, pharmacologically inhibiting GCS with (±)-threo-1-Phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride (PDMP) induced ceramide accumulation, accompanied by a decrease in glucosylceramide. Under concurrent treatment with VNR and PDMP, an increase in cell apoptosis could be identified; furthermore, genetically silencing GCS confirmed these effects. In VNR-resistant cells, Bcl-xL expression was aberrantly increased, while pharmacologically inhibiting Bcl-xL with ABT-737 sensitized cells to VNR-induced apoptosis. Conversely, enforced expression of Bcl-xL strengthened the survival response of the VNR-susceptible cells AS2 and CL1-0. Without changes in mRNA expression, Bcl-xL was overexpressed independent of β-catenin-mediated transcriptional regulation in VNR-resistant cells. Simultaneous GCS inhibition and VNR treatment caused a decrease in Bcl-xL expression. According to these findings, an increase in GCS caused Bcl-xL augmentation, facilitating VNR resistance in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Wei-Hsin Chiu
- Division of Hemato-Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wu-Chou Su
- Division of Hemato-Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chia-Ling Li
- Division of Hemato-Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Chia-Ling Chen
- Center for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiou-Feng Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
22
|
Morad SAF, Ryan TE, Neufer PD, Zeczycki TN, Davis TS, MacDougall MR, Fox TE, Tan SF, Feith DJ, Loughran TP, Kester M, Claxton DF, Barth BM, Deering TG, Cabot MC. Ceramide-tamoxifen regimen targets bioenergetic elements in acute myelogenous leukemia. J Lipid Res 2016; 57:1231-42. [PMID: 27140664 PMCID: PMC4918852 DOI: 10.1194/jlr.m067389] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/29/2016] [Indexed: 01/01/2023] Open
Abstract
The objective of our study was to determine the mechanism of action of the short-chain ceramide analog, C6-ceramide, and the breast cancer drug, tamoxifen, which we show coactively depress viability and induce apoptosis in human acute myelogenous leukemia cells. Exposure to the C6-ceramide-tamoxifen combination elicited decreases in mitochondrial membrane potential and complex I respiration, increases in reactive oxygen species (ROS), and release of mitochondrial proapoptotic proteins. Decreases in ATP levels, reduced glycolytic capacity, and reduced expression of inhibitors of apoptosis proteins also resulted. Cytotoxicity of the drug combination was mitigated by exposure to antioxidant. Cells metabolized C6-ceramide by glycosylation and hydrolysis, the latter leading to increases in long-chain ceramides. Tamoxifen potently blocked glycosylation of C6-ceramide and long-chain ceramides. N-desmethyltamoxifen, a poor antiestrogen and the major tamoxifen metabolite in humans, was also effective with C6-ceramide, indicating that traditional antiestrogen pathways are not involved in cellular responses. We conclude that cell death is driven by mitochondrial targeting and ROS generation and that tamoxifen enhances the ceramide effect by blocking its metabolism. As depletion of ATP and targeting the "Warburg effect" represent dynamic metabolic insult, this ceramide-containing combination may be of utility in the treatment of leukemia and other cancers.
Collapse
Affiliation(s)
- Samy A F Morad
- Department of Biochemistry and Molecular Biology East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Terence E Ryan
- Department of Biochemistry and Molecular Biology East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - P Darrell Neufer
- Department of Biochemistry and Molecular Biology East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Traci S Davis
- Department of Biochemistry and Molecular Biology East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Matthew R MacDougall
- Department of Biochemistry and Molecular Biology East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Todd E Fox
- Cancer Center, Division of Hematology Oncology, Department of Medicine Department of Pharmacology, University of Virginia, Charlottesville, VA
| | - Su-Fern Tan
- Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - David J Feith
- Cancer Center, Division of Hematology Oncology, Department of Medicine Oncology, Department of Medicine
| | - Thomas P Loughran
- Cancer Center, Division of Hematology Oncology, Department of Medicine Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Mark Kester
- Cancer Center, Division of Hematology Oncology, Department of Medicine
| | - David F Claxton
- Penn State Hershey Cancer Institute, The Pennsylvania State University, Hershey, PA
| | - Brian M Barth
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH
| | - Tye G Deering
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| |
Collapse
|
23
|
Astudillo L, Therville N, Colacios C, Ségui B, Andrieu-Abadie N, Levade T. Glucosylceramidases and malignancies in mammals. Biochimie 2016; 125:267-80. [DOI: 10.1016/j.biochi.2015.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/09/2015] [Indexed: 01/11/2023]
|
24
|
Abstract
Fenretinide, N-(4-hydroxyphenyl)retinamide, (4-HPR), a synthetic retinoid, owes its cancer-toxic effects in part to the generation of ceramide, a potent tumor-suppressing sphingolipid. As such, 4-HPR has garnered considerable interest as a chemotherapeutic. Cancer cells, however, via various metabolic routes, inactivate ceramide, and this can limit 4-HPR efficacy. As relatively little is known regarding 4-HPR-induced ceramide management in acute myelogeneous leukemia (AML), we undertook the present study to evaluate the impact of 4-HPR on ceramide production, metabolism, and cytotoxicity. In KG-1, HL-60, and HL-60/VCR (multidrug resistant) human leukemia cells, 4-HPR induced 15-, 2-, and 20-fold increases in ceramide (measured using [3H]palmitic acid), respectively. By use of specific inhibitors we show that ceramide was produced by sphingomyelinase and de novo pathways in response to 4-HPR exposure. HL-60/VCR cells metabolized ceramide to glucosylceramide (GC). 4-HPR exposure (1.25-10 μM) reduced viability in all cell lines, with approximate IC50's ranging from 1 to 8.0 μM. Reactive oxygen species (ROS) were generated in response to 4-HPR treatment, and the concomitant cytotoxicity was reversed by addition of vitamin E. 4-HPR was not cytotoxic nor did it elicit ceramide formation in K562, a chronic myeloid leukemia cell line; however, K562 cells were sensitive to a cell-deliverable form of ceramide, C6-ceramide. Treatment of Molt-3, an acute lymphoblastic leukemia cell line, with 4-HPR revealed moderate ceramide production (5-fold over control), robust conversion of ceramide to GC and sphingomyelin, and resistance to 4-HPR and C6-ceramide. In conclusion, this work demonstrates diversity within and among leukemia in 4-HPR sensitivity and ceramide generation and subsequent metabolism. As such, knowledge of these metabolic pathways can provide guidance for enhancing ceramide-driven effects of 4-HPR in treatment of leukemia.
Collapse
|
25
|
Morad SAF, Cabot MC. Tamoxifen regulation of sphingolipid metabolism--Therapeutic implications. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1134-45. [PMID: 25964209 DOI: 10.1016/j.bbalip.2015.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 12/25/2022]
Abstract
Tamoxifen, a triphenylethylene antiestrogen and one of the first-line endocrine therapies used to treat estrogen receptor-positive breast cancer, has a number of interesting, off-target effects, and among these is the inhibition of sphingolipid metabolism. More specifically, tamoxifen inhibits ceramide glycosylation, and enzymatic step that can adventitiously support the influential tumor-suppressor properties of ceramide, the aliphatic backbone of sphingolipids. Additionally, tamoxifen and metabolites N-desmethyltamoxifen and 4-hydroxytamoxifen, have been shown to inhibit ceramide hydrolysis by the enzyme acid ceramidase. This particular intervention slows ceramide destruction and thereby depresses formation of sphingosine 1-phosphate, a mitogenic sphingolipid with cancer growth-promoting properties. As ceramide-centric therapies are becoming appealing clinical interventions in the treatment of cancer, agents like tamoxifen that can retard the generation of mitogenic sphingolipids and buffer ceramide clearance via inhibition of glycosylation, take on new importance. In this review, we present an abridged, lay introduction to sphingolipid metabolism, briefly chronicle tamoxifen's history in the clinic, examine studies that demonstrate the impact of triphenylethylenes on sphingolipid metabolism in cancer cells, and canvass works relevant to the use of tamoxifen as adjuvant to drive ceramide-centric therapies in cancer treatment. The objective is to inform the readership of what could be a novel, off-label indication of tamoxifen and structurally-related triphenylethylenes, an indication divorced from estrogen receptor status and one with application in drug resistance.
Collapse
Affiliation(s)
- Samy A F Morad
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC 27834, USA; East Carolina Diabetes and Obesity Institute, 115 Heart Drive, Greenville, NC 27834, USA; Department of Pharmacology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, East Carolina University, Brody School of Medicine, Greenville, NC 27834, USA; East Carolina Diabetes and Obesity Institute, 115 Heart Drive, Greenville, NC 27834, USA.
| |
Collapse
|
26
|
Wang Q, Zou J, Zhang X, Mu H, Yin Y, Xie P. Glucosylceramide synthase promotes Bcl-2 expression via the ERK signaling pathway in the K562/A02 leukemia drug-resistant cell line. Int J Hematol 2014; 100:559-66. [PMID: 25281403 DOI: 10.1007/s12185-014-1679-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 09/19/2014] [Accepted: 09/21/2014] [Indexed: 01/31/2023]
Abstract
Multidrug resistance (MDR) to chemotherapeutic agents is a major obstacle to curative treatment of cancer. In various types of cancers, overexpression of glucosylceramide synthase (GCS) has been observed to be associated with MDR, thus making GCS a target for reversal of resistance. Our previous work demonstrated that GCS and Bcl-2 are co-overexpressed in the K562/A02 leukemia multidrug-resistant cell line compared with its sensitive counterpart, K562. In the present study, we investigated the effects of GCS on apoptosis in K562/A02 and the associated molecular mechanisms. Our results indicate that the inhibition of GCS caused downregulation of Bcl-2 as well as apoptosis enhancement in response to ADM via the ERK pathway, while JNK or p38 MAPK signaling appeared to play less significant roles in the regulation of apoptosis and MDR in K562/A02 cells. Targeting GCS by siRNA also enhanced ceramide accumulation, which is involved in GCS knockdown-induced inhibition of ERK activation and Bcl-2 expression levels.
Collapse
Affiliation(s)
- Qian Wang
- Central Laboratory, Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, 214023, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Lee YH, Tan CW, Venkatratnam A, Tan CS, Cui L, Loh SF, Griffith L, Tannenbaum SR, Chan JKY. Dysregulated sphingolipid metabolism in endometriosis. J Clin Endocrinol Metab 2014; 99:E1913-21. [PMID: 24960545 PMCID: PMC5393497 DOI: 10.1210/jc.2014-1340] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND In endometriosis, the establishment and subsistence of ectopic lesions outside the endometrium suggest an altered cellular state for pathological hyperplasia. Sphingolipids are bioactive compounds, and their biosynthesis and metabolism modulate a range of cellular processes including proliferation, migration and apoptosis. We demonstrate that aberrations in sphingolipid metabolism occur in women with endometriosis. METHODS Targeted mass spectrometry on >120 sphingolipids were measured in the sera (n = 62), peritoneal fluid (n = 63), and endometrial tissue (n = 14) of women with and without endometriosis. Quantitative RT-PCR and immunohistochemistry were performed on endometrial tissues determine the expression levels of sphingolipid enzymes. RESULTS Sphingolipidomics identified the in vivo accumulation of numerous sphingolipids, including the functionally antagonistic glucosylceramides and ceramides in the serum and PF of women with endometriosis. We found upregulation of specific sphingolipid enzymes, namely sphingomyelin synthase 1 (SMS1), sphingomyelinase 3 (SMPD3), and glucosylceramide synthase (GCS) in the endometrium of endometriotic women with corresponding increased GlcCer, decreased sphingomyelin levels, and decreased apoptosis in the endometrium. CONCLUSIONS Our sphingolipidomics approach provided evidence of altered sphingolipid metabolism flux in serum, peritoneal fluid, and endometrial tissue in women with endometriosis. The results provide new information on how sphingolipids and eutopic endometrium may contribute to the pathophysiology of endometriosis. The results also have implications for the use of sphingolipids as potential biomarkers.
Collapse
Affiliation(s)
- Yie Hou Lee
- BioSym (Y.H.L., C.W.T., A.V., L.G., S.R.T.) and Infectious Diseases Inter-Disciplinary Research Groups (Y.H.L., L.C., S.R.T.), Singapore-MIT Alliance for Research and Technology, Singapore 138602; Saw Swee Hock School of Public Health (C.S.T.), National University of Singapore, Singapore 117597; Department of Reproductive Medicine (S.F.L., J.K.Y.C.), KK Women's and Children's Hospital, Singapore 229899; Departments of Biological Engineering (L.G.) and Chemistry (S.R.T.) and Center for Gynepathology Research (L.G.), Massachusetts Institute of Technology, Boston, Massachusetts 02139; Department of Obstetrics and Gynecology (J.K.Y.C.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228; and Cancer and Stem Cell Biology Program (J.K.Y.C.), Duke-NUS Medical School, Singapore 169857
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gutiérrez-Iglesias G, Hurtado Y, Palma-Lara I, López-Marure R. Resistance to the antiproliferative effect induced by a short-chain ceramide is associated with an increase of glucosylceramide synthase, P-glycoprotein, and multidrug-resistance gene-1 in cervical cancer cells. Cancer Chemother Pharmacol 2014; 74:809-17. [DOI: 10.1007/s00280-014-2552-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/25/2014] [Indexed: 11/30/2022]
|
29
|
Don AS, Lim XY, Couttas TA. Re-configuration of sphingolipid metabolism by oncogenic transformation. Biomolecules 2014; 4:315-53. [PMID: 24970218 PMCID: PMC4030989 DOI: 10.3390/biom4010315] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/11/2014] [Accepted: 02/27/2014] [Indexed: 12/15/2022] Open
Abstract
The sphingolipids are one of the major lipid families in eukaryotes, incorporating a diverse array of structural variants that exert a powerful influence over cell fate and physiology. Increased expression of sphingosine kinase 1 (SPHK1), which catalyses the synthesis of the pro-survival, pro-angiogenic metabolite sphingosine 1-phosphate (S1P), is well established as a hallmark of multiple cancers. Metabolic alterations that reduce levels of the pro-apoptotic lipid ceramide, particularly its glucosylation by glucosylceramide synthase (GCS), have frequently been associated with cancer drug resistance. However, the simple notion that the balance between ceramide and S1P, often referred to as the sphingolipid rheostat, dictates cell survival contrasts with recent studies showing that highly potent and selective SPHK1 inhibitors do not affect cancer cell proliferation or survival, and studies demonstrating higher ceramide levels in some metastatic cancers. Recent reports have implicated other sphingolipid metabolic enzymes such as acid sphingomyelinase (ASM) more strongly in cancer pathogenesis, and highlight lysosomal sphingolipid metabolism as a possible weak point for therapeutic targeting in cancer. This review describes the evidence implicating different sphingolipid metabolic enzymes and their products in cancer pathogenesis, and suggests how newer systems-level approaches may improve our overall understanding of how oncogenic transformation reconfigures sphingolipid metabolism.
Collapse
Affiliation(s)
- Anthony S Don
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Xin Y Lim
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Timothy A Couttas
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
30
|
Liu YY, Hill RA, Li YT. Ceramide glycosylation catalyzed by glucosylceramide synthase and cancer drug resistance. Adv Cancer Res 2013; 117:59-89. [PMID: 23290777 DOI: 10.1016/b978-0-12-394274-6.00003-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glucosylceramide synthase (GCS), converting ceramide to glucosylceramide, catalyzes the first reaction of ceramide glycosylation in sphingolipid metabolism. This glycosylation by GCS is a critical step regulating the modulation of cellular activities by controlling ceramide and glycosphingolipids (GSLs). An increase of ceramide in response to stresses, such as chemotherapy, drives cells to proliferation arrest and apoptosis or autophagy; however, ceramide glycosylation promptly eliminates ceramide and consequently, these induced processes, thus protecting cancer cells. Further, persistently enhanced ceramide glycosylation can increase GSLs, participating in selecting cancer cells to drug resistance. GCS is overexpressed in diverse drug-resistant cancer cells and in tumors of breast, colon, and leukemia that display poor response to chemotherapy. As ceramide glycosylation by GCS is a rate-limiting step in GSL synthesis, inhibition of GCS sensitizes cancer cells to anticancer drugs and eradicates cancer stem cells. Mechanistic studies indicate that uncoupling ceramide glycosylation can modulate gene expression, decreasing MDR1 through the cSrc/β-catenin pathway and restoring p53 expression via RNA splicing. These studies not only expand our knowledge in understanding how ceramide glycosylation affects cancer cells but also provide novel therapeutic approaches for targeting refractory tumors.
Collapse
Affiliation(s)
- Yong-Yu Liu
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA, USA.
| | | | | |
Collapse
|
31
|
Gramatzki D, Herrmann C, Happold C, Becker KA, Gulbins E, Weller M, Tabatabai G. Glioma cell death induced by irradiation or alkylating agent chemotherapy is independent of the intrinsic ceramide pathway. PLoS One 2013; 8:e63527. [PMID: 23667632 PMCID: PMC3646759 DOI: 10.1371/journal.pone.0063527] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 04/07/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND/AIMS Resistance to genotoxic therapy is a characteristic feature of glioma cells. Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and glucosylceramide synthase (GCS) catalyzes ceramide metabolism. Increased ceramide levels have been suggested to enhance chemotherapy-induced death of cancer cells. METHODS Microarray and clinical data for ASM and GCS in astrocytomas WHO grade II-IV were acquired from the Rembrandt database. Moreover, the glioblastoma database of the Cancer Genome Atlas network (TCGA) was used for survival data of glioblastoma patients. For in vitro studies, increases in ceramide levels were achieved either by ASM overexpression or by the GCS inhibitor DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP) in human glioma cell lines. Combinations of alkylating chemotherapy or irradiation and ASM overexpression, PPMP or exogenous ceramide were applied in parental cells. The anti-glioma effects were investigated by assessing proliferation, metabolic activity, viability and clonogenicity. Finally, viability and clonogenicity were assessed in temozolomide (TMZ)-resistant cells upon treatment with PPMP, exogenous ceramide, alkylating chemotherapy, irradiation or their combinations. RESULTS Interrogations from the Rembrandt and TCGA database showed a better survival of glioblastoma patients with low expression of ASM or GCS. ASM overexpression or PPMP treatment alone led to ceramide accumulation but did not enhance the anti-glioma activity of alkylating chemotherapy or irradiation. PPMP or exogenous ceramide induced acute cytotoxicity in glioblastoma cells. Combined treatments with chemotherapy or irradiation led to additive, but not synergistic effects. Finally, no synergy was found when TMZ-resistant cells were treated with exogenous ceramide or PPMP alone or in combination with TMZ or irradiation. CONCLUSION Modulation of intrinsic glioma cell ceramide levels by ASM overexpression or GCS inhibition does not enhance the anti-glioma activity of alkylating chemotherapy or irradiation.
Collapse
Affiliation(s)
- Dorothee Gramatzki
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Caroline Herrmann
- Department of Preclinical Imaging and Radiopharmacy, University Hospital Tuebingen, Tuebingen, Germany
| | - Caroline Happold
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Katrin Anne Becker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ghazaleh Tabatabai
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
32
|
Jennemann R, Gröne HJ. Cell-specific in vivo functions of glycosphingolipids: lessons from genetic deletions of enzymes involved in glycosphingolipid synthesis. Prog Lipid Res 2013; 52:231-48. [PMID: 23473748 DOI: 10.1016/j.plipres.2013.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/20/2013] [Accepted: 02/25/2013] [Indexed: 11/16/2022]
Abstract
Glycosphingolipids (GSLs) are believed to be involved in many cellular events including trafficking, signaling and cellular interactions. Over the past decade considerable progress was made elucidating the function of GSLs by generating and exploring animal models with GSL-deficiency. Initial studies focused on exploring the role of complex sialic acid containing GSLs (gangliosides) in neuronal tissue. Although complex gangliosides were absent, surprisingly, the phenotype observed was rather mild. In subsequent studies, several mouse models with combinations of gene-deletions encoding GSL-synthesizing enzymes were developed. The results indicated that reduction of GSL-complexity correlated with severity of phenotypes. However, in these mice, accumulation of precursor GSLs or neobiosynthesized GSL-series seemed to partly compensate the loss of GSLs. Thus, UDP-glucose:ceramide glucosyltransferase (Ugcg), catalyzing the basic step of the glucosylceramide-based GSL-biosynthesis, was genetically disrupted. A total systemic deletion of Ugcg caused early embryonic lethality. Therefore, Ugcg was eliminated in a cell-specific manner using the cre/loxP-system. New insights into the cellular function of GSLs were gained. It was demonstrated that neurons require GSLs for differentiation and maintenance. In keratinocytes, preservation of the skin barrier depends on GSL synthesis and in enterocytes of the small intestine GSLs are involved in endocytosis and vesicular transport.
Collapse
Affiliation(s)
- Richard Jennemann
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | | |
Collapse
|
33
|
Watters RJ, Fox TE, Tan SF, Shanmugavelandy S, Choby JE, Broeg K, Liao J, Kester M, Cabot MC, Loughran TP, Liu X. Targeting glucosylceramide synthase synergizes with C6-ceramide nanoliposomes to induce apoptosis in natural killer cell leukemia. Leuk Lymphoma 2012. [PMID: 23181473 DOI: 10.3109/10428194.2012.752485] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Natural killer (NK) cell leukemia is characterized by clonal expansion of CD3 - NK cells and comprises both chronic and aggressive forms. Currently no effective treatment exists, thus providing a need for identification of novel therapeutics. Lipidomic studies revealed a dysregulated sphingolipid metabolism as evidenced by decreased levels of overall ceramide species and increased levels of cerebrosides in leukemic NK cells, concomitant with increased glucosylceramide synthase (GCS) expression. GCS, a key enzyme of this pathway, neutralizes pro-apoptotic ceramide by transfer of a uridine diphosphate (UDP)-glucose. Thus, we treated both rat and human leukemic NK cells in combination with: (1) exogenous C6-ceramide nanoliposomes in order to target mitochondria and increase physiological pro-apoptotic levels of long chain ceramide, and (2) 1-phenyl-2-palmitoylamino-3-morpholino-1-propanol (PPMP), an inhibitor of GCS. Co-administration of C6-ceramide nanoliposomes and PPMP elicited an increase in endogenous long-chain ceramide species, which led to cellular apoptosis in a synergistic manner via the mitochondrial intrinsic cell death pathway in leukemic NK cells.
Collapse
Affiliation(s)
- Rebecca J Watters
- Penn State Hershey Cancer Institute, Pennsylvania State College of Medicine, Hershey, PA 17033-0850, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kartal Yandım M, Apohan E, Baran Y. Therapeutic potential of targeting ceramide/glucosylceramide pathway in cancer. Cancer Chemother Pharmacol 2012; 71:13-20. [PMID: 23073611 DOI: 10.1007/s00280-012-1984-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/17/2012] [Indexed: 12/25/2022]
Abstract
Sphingolipids including ceramides and its derivatives such as ceramide-1-phosphate, glucosylceramide (GlcCer), and sphingosine-1-phosphate are essential structural components of cell membranes. They now recognized as novel bioeffector molecules which control various aspects of cell growth, proliferation, apoptosis, and drug resistance. Ceramide, the central molecule of sphingolipid metabolism, generally mediates anti-proliferative responses such as inhibition of cell growth, induction of apoptosis, and/or modulation of senescence. There are two major classes of sphingolipids. One of them is glycosphingolipids which are synthesized from the hydrophobic molecule, ceramide. GlcCer, generated by glucosylceramide synthase (GCS) that transfers the glucose from UDP-glucose to ceramide, is an important glycosphingolipid metabolic intermediate. GCS regulates the balance between apoptotic ceramide and antiapoptotic GlcCer. Downregulation or inhibition of GCS results in increased apoptosis and decreased drug resistance. The mechanism underlying the drug resistance which develops with increased glucosylceramide expression is associated with P-glycoprotein. In various types of cancers, overexpression of GCS has been observed which renders GCS a good target for the treatment of cancer. This review summarizes our current knowledge on the structure and functions of glucosylceramide synthase and glucosylceramide and on the roles of glucosylceramide synthase in cancer therapy and drug resistance.
Collapse
Affiliation(s)
- Melis Kartal Yandım
- Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, Urla, Izmir 35430, Turkey
| | | | | |
Collapse
|
35
|
Evaluation of bioactive sphingolipids in 4-HPR-resistant leukemia cells. BMC Cancer 2011; 11:477. [PMID: 22061047 PMCID: PMC3218121 DOI: 10.1186/1471-2407-11-477] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/07/2011] [Indexed: 12/27/2022] Open
Abstract
Background N-(4-hydroxyphenyl)retinamide (4-HPR, fenretinide) is a synthetic retinoid with potent pro-apoptotic activity against several types of cancer, but little is known regarding mechanisms leading to chemoresistance. Ceramide and, more recently, other sphingolipid species (e.g., dihydroceramide and dihydrosphingosine) have been implicated in 4-HPR-mediated tumor cell death. Because sphingolipid metabolism has been reported to be altered in drug-resistant tumor cells, we studied the implication of sphingolipids in acquired resistance to 4-HPR based on an acute lymphoblastic leukemia model. Methods CCRF-CEM cell lines resistant to 4-HPR were obtained by gradual selection. Endogenous sphingolipid profiles and in situ enzymatic activities were determined by LC/MS, and resistance to 4-HPR or to alternative treatments was measured using the XTT viability assay and annexin V-FITC/propidium iodide labeling. Results No major crossresistance was observed against other antitumoral compounds (i.e. paclitaxel, cisplatin, doxorubicin hydrochloride) or agents (i.e. ultra violet C, hydrogen peroxide) also described as sphingolipid modulators. CCRF-CEM cell lines resistant to 4-HPR exhibited a distinctive endogenous sphingolipid profile that correlated with inhibition of dihydroceramide desaturase. Cells maintained acquired resistance to 4-HPR after the removal of 4-HPR though the sphingolipid profile returned to control levels. On the other hand, combined treatment with sphingosine kinase inhibitors (unnatural (dihydro)sphingosines ((dh)Sph)) and glucosylceramide synthase inhibitor (PPMP) in the presence or absence of 4-HPR increased cellular (dh)Sph (but not ceramide) levels and were highly toxic for both parental and resistant cells. Conclusions In the leukemia model, acquired resistance to 4-HPR is selective and persists in the absence of sphingolipid profile alteration. Therapeutically, the data demonstrate that alternative sphingolipid-modulating antitumoral strategies are suitable for both 4-HPR-resistant and sensitive leukemia cells. Thus, whereas sphingolipids may not be critical for maintaining resistance to 4-HPR, manipulation of cytotoxic sphingolipids should be considered a viable approach for overcoming resistance.
Collapse
|
36
|
Chen B, Yin L, Cheng J, Ding J, Gao C, Sun Y, Zhao G, Wang J, Bao W, Xia G, Gao F, Wang X. Effect of D, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol and tetrandrine on the reversion of multidrug resistance in K562/A02 cells. ACTA ACUST UNITED AC 2011; 16:24-30. [PMID: 21269564 DOI: 10.1179/102453311x12902908411797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
In this study, we applied D, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) hydrochloride as a chemical inhibitor for glucosylceramide synthase (GCS) and tetrandrine (Tet) for P-glycoprotein (P-gp) to reverse daunorubicin (DNR) resistance of human leukemia cell line K562/A02. Cytotoxicity assays showed that either PDMP or Tet enhanced cytotoxic effect of DNR on K562/A02 cells, while cotreatment of these two drugs had a more significant effect on chemosensitization. Using flow cytometric analysis, we confirmed that the enhancement effect was accompanied by elevated cellular DNR accumulation and DNR-induced apoptosis. According to reverse transcription-polymerase chain reaction and western blot, the reversal effect of that composite might owe to the significant downregulation of mdr1 and GCS gene expressions. Importantly, PDMP diminished mdr1 gene expression and Tet also downregulated GCS gene expression. Moreover, a positive correlation was observed between GCS and P-gp. Thus, our results suggest that a potential clinical application of PDMP in combination with Tet may enhance chemosensitivity in leukemia.
Collapse
Affiliation(s)
- Baoan Chen
- Department of Hematology, Zhongda Hospital affiliated to Southeast University, Nanjing, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Camgoz A, Gencer EB, Ural AU, Avcu F, Baran Y. Roles of ceramide synthase and ceramide clearence genes in nilotinib-induced cell death in chronic myeloidleukemia cells. Leuk Lymphoma 2011; 52:1574-84. [DOI: 10.3109/10428194.2011.568653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Liu YY, Patwardhan GA, Xie P, Gu X, Giuliano AE, Cabot MC. Glucosylceramide synthase, a factor in modulating drug resistance, is overexpressed in metastatic breast carcinoma. Int J Oncol 2011; 39:425-31. [PMID: 21617856 DOI: 10.3892/ijo.2011.1052] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/27/2011] [Indexed: 12/19/2022] Open
Abstract
Drug resistance causes treatment failure in approximately 50% of breast cancer patients with chemotherapy. Overexpression of glucosylceramide synthase (GCS) confers drug resistance in cancer cells, and suppression of GCS sensitizes cancers to chemotherapy in preclinical studies. Thus, GCS becomes a potential target to reverse drug resistance; however, little is known about GCS expression levels in normal tissues and whether GCS overexpression is associated with metastatic cancers. Herewith, we report our studies in GCS expression levels and breast cancer from patients. GCS levels were analyzed using cancer profiling arrays, breast cancer histo-arrays and quantitative RT-PCR in tumor tissues. We found that breast (18 exp. index) and other hormone-dependent organs (testis, cervix, ovary, prostate) displayed the lowest levels of GCS mRNA, whereas liver (52 exp. index) and other organs (kidney, bladder, stomach) displayed the highest levels of GCS. GCS mRNA levels were significantly elevated in tumors of breast, cervix, rectum and small intestine, as compared to each paired normal tissue. In mammary tissue, GCS overexpression was detected in breast cancers with metastasis, but not in benign fibroadenoma or primary tumors. GCS overexpression was coincident with HER2 expression (γ2=0.84) in ER-negative breast adenocarcinoma. In tumor specimens, GCS mRNA was elevated by 4-fold and significantly associated with stage III (5/7), lymph node-positive (7/8) and estrogen receptor-positive breast cancers (7/9). GCS expression was significantly and selectively elevated in breast cancer, in particular in metastatic disease. GCS overexpression was highly associated with ER-positive and HER2-positive breast cancer with metastasis. Although a small study, these data suggest that GCS may be a prognostic indicator and potential target for the treatment of chemotherapy-refractory breast cancer.
Collapse
Affiliation(s)
- Yong-Yu Liu
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Zhang YY, Xie KM, Yang GQ, Mu HJ, Yin Y, Zhang B, Xie P. The effect of glucosylceramide synthase on P-glycoprotein function in K562/AO2 leukemia drug-resistance cell line. Int J Hematol 2011; 93:361-367. [PMID: 21380926 DOI: 10.1007/s12185-011-0798-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/03/2011] [Accepted: 02/13/2011] [Indexed: 10/18/2022]
Abstract
Previous work from our laboratory demonstrated that glucosylceramide synthase (GCS) and multidrug resistance 1 gene (MDR1) are co-overexpressed in drug-resistant leukemia cells. We hypothesized that GCS and MDR1 may interact. In this study, we used RNA interference (RNAi) to silence the GCS or MDR1 gene in K562/AO2 drug-resistant cells. The sensitivity of cells to different treatments with doxorubicin was evaluated. We used Taqman probe fluorescence real-time quantitative PCR, and detected expression of GCS and MDR1 mRNAs in different interfering groups. Intracellular mean fluorescence intensity (MFI), which represents rhodamine123 (rh123) retention, was determined by flow cytometry (FCM). An MTT cytotoxicity assay showed that the 50% inhibition concentration (IC50) of doxorubicin of K562/AO2 cells (138.25 ± 3.75 µg/ml) was significantly higher than that of K562 drug-sensitive cells (2.125 ± 0.125 µg/ml), and that IC50 was evidently lower in K562/AO2 cells, whether it was transfected with a small interfering RNA (siRNA) targeting GCS (GCSsiRNA) or one targeting MDR1 (MDR1siRNA). Compared with untreated K562/AO2 cells, the inhibition rates of GCS mRNA in the cells transfected with GCSsiRNA for 9 and 36 h were 56.67 ± 9.29% (p < 0.05) and 74 ± 6.38% (p < 0.05), respectively. Interestingly, the expression of MDR1 mRNA was also inhibited to 51.7 ± 4.5% (p < 0.05) 36 h after transfection with GCSsiRNA, but there was no significant difference in MDR1 expression at 9 h post-transfection in cells treated with GCSsiRNA and a negative control. It is well known that rh123 retention in cells results from an efflux function of P-glycoprotein (P-gp). In K562 cells, rh123 retention was much higher than in K562/AO2 cells (p < 0.01). We also noted that rh123 retention in the K562/AO2 cells transfected with GCSsiRNA for 48 h was significantly higher than in the negative control group. In conclusion, we show in the present study that inhibition of the GCS gene affects the expression of MDR1 mRNA and P-gp function.
Collapse
Affiliation(s)
- Yang-Yang Zhang
- Department of Pathophysiology, Soochow University, Suzhou, 215123, China
| | - Ke-Ming Xie
- Department of Pathophysiology, Soochow University, Suzhou, 215123, China
| | - Guo-Qing Yang
- Department of Pathology, Xi'an Central Hospital, Xi'an, Shanxi, China
| | - Hui-Jun Mu
- Central Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ying Yin
- Central Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Bin Zhang
- Central Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ping Xie
- Central Laboratory, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|
40
|
Apoptotic sphingolipid ceramide in cancer therapy. J Lipids 2011; 2011:565316. [PMID: 21490804 PMCID: PMC3066853 DOI: 10.1155/2011/565316] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/26/2010] [Indexed: 11/18/2022] Open
Abstract
Apoptosis, also called programmed cell death, is physiologically and pathologically involved in cellular homeostasis. Escape of apoptotic signaling is a critical strategy commonly used for cancer tumorigenesis. Ceramide, a derivative of sphingolipid breakdown products, acts as second messenger for multiple extracellular stimuli including growth factors, chemical agents, and environmental stresses, such as hypoxia, and heat stress as well as irradiation. Also, ceramide acts as tumor-suppressor lipid because a variety of stress stimuli cause apoptosis by increasing intracellular ceramide to initiate apoptotic signaling. Defects on ceramide generation and sphingolipid metabolism are developed for cancer cell survival and cancer therapy resistance. Alternatively, targeting ceramide metabolism to correct these defects might provide opportunities to overcome cancer therapy resistance.
Collapse
|
41
|
Calcagno AM, Salcido CD, Gillet JP, Wu CP, Fostel JM, Mumau MD, Gottesman MM, Varticovski L, Ambudkar SV. Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. J Natl Cancer Inst 2010; 102:1637-52. [PMID: 20935265 DOI: 10.1093/jnci/djq361] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cancer stem cells are presumed to have virtually unlimited proliferative and self-renewal abilities and to be highly resistant to chemotherapy, a feature that is associated with overexpression of ATP-binding cassette transporters. We investigated whether prolonged continuous selection of cells for drug resistance enriches cultures for cancer stem-like cells. METHODS Cancer stem cells were defined as CD44+/CD24⁻ cells that could self-renew (ie, generate cells with the tumorigenic CD44+/CD24⁻ phenotype), differentiate, invade, and form tumors in vivo. We used doxorubicin-selected MCF-7/ADR cells, weakly tumorigenic parental MCF-7 cells, and MCF-7/MDR, an MCF-7 subline with forced expression of ABCB1 protein. Cells were examined for cell surface markers and side-population fractions by microarray and flow cytometry, with in vitro invasion assays, and for ability to form mammospheres. Xenograft tumors were generated in mice to examine tumorigenicity (n = 52). The mRNA expression of multidrug resistance genes was examined in putative cancer stem cells and pathway analysis of statistically significantly differentially expressed genes was performed. All statistical tests were two-sided. RESULTS Pathway analysis showed that MCF-7/ADR cells express mRNAs from ABCB1 and other genes also found in breast cancer stem cells (eg, CD44, TGFB1, and SNAI1). MCF-7/ADR cells were highly invasive, formed mammospheres, and were tumorigenic in mice. In contrast to parental MCF-7 cells, more than 30% of MCF-7/ADR cells had a CD44+/CD24⁻ phenotype, could self-renew, and differentiate (ie, produce CD44+/CD24⁻ and CD44+/CD24+ cells) and overexpressed various multidrug resistance-linked genes (including ABCB1, CCNE1, and MMP9). MCF-7/ADR cells were statistically significantly more invasive in Matrigel than parental MCF-7 cells (MCF-7 cells = 0.82 cell per field and MCF-7/ADR = 7.51 cells per field, difference = 6.69 cells per field, 95% confidence interval = 4.82 to 8.55 cells per field, P < .001). No enrichment in the CD44+/CD24⁻ or CD133+ population was detected in MCF-7/MDR. CONCLUSION The cell population with cancer stem cell characteristics increased after prolonged continuous selection for doxorubicin resistance.
Collapse
Affiliation(s)
- Anna Maria Calcagno
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sun CC, Zhang Z, Zhang SY, Li J, Li ZL, Kong CZ. Up-regulation of glucosylceramide synthase in urinary bladder neoplasms. Urol Oncol 2010; 30:444-9. [PMID: 20843709 DOI: 10.1016/j.urolonc.2010.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate the relationships between the clinicopathologic features and the expression of GCS in bladder cancer. METHODS AND MATERIALS Using immunohistochemistry and Western blotting method, 75 bladder cancer specimens were tested for expression of GCS. The correlation of GCS with clinicopathologic features of the patients was analyzed in combination with clinical data. Statistics analyses were done with SPSS 13.0 software, χ(2) test, Fisher's exact test, Kaplan-Meier method, Log-rank test. RESULTS High and low level expression of GCS explored by immunohistochemistry were 61.3 (46/75) and 39.6 (29/75), respectively. The high expression group (n = 46) showed a significant correlation with high histologic grade (P = 0.021) and tended to show (P = 0.045) that up-expression of GCS was positive related to BNs with lymph node metastasis among the various clinicopathologic characteristics. The overall 5-year survival and disease-free survival rates were 39.5% and 18.4%, respectively. Mean overall survival time was 60.3 months for the low expression group and 45.1 months for the high expression group. Mean disease-free survival was 36.2 months for the low-expression group and 27.3 months for the high-expression group. CONCLUSION Our study suggested that up-regulation of GCS might make an aggressive choice of surgical therapy. A high expression of GCS seemed to be an indicator of poor prognosis.
Collapse
Affiliation(s)
- Chang-cheng Sun
- Department of Urology, First Affiliated Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
43
|
Liu YY, Gupta V, Patwardhan GA, Bhinge K, Zhao Y, Bao J, Mehendale H, Cabot MC, Li YT, Jazwinski SM. Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling. Mol Cancer 2010; 9:145. [PMID: 20540746 PMCID: PMC2903501 DOI: 10.1186/1476-4598-9-145] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 06/11/2010] [Indexed: 12/04/2022] Open
Abstract
Background Drug resistance is the outcome of multiple-gene interactions in cancer cells under stress of anticancer agents. MDR1 overexpression is most commonly detected in drug-resistant cancers and accompanied with other gene alterations including enhanced glucosylceramide synthase (GCS). MDR1 encodes for P-glycoprotein that extrudes anticancer drugs. Polymorphisms of MDR1 disrupt the effects of P-glycoprotein antagonists and limit the success of drug resistance reversal in clinical trials. GCS converts ceramide to glucosylceramide, reducing the impact of ceramide-induced apoptosis and increasing glycosphingolipid (GSL) synthesis. Understanding the molecular mechanisms underlying MDR1 overexpression and how it interacts with GCS may find effective approaches to reverse drug resistance. Results MDR1 and GCS were coincidently overexpressed in drug-resistant breast, ovary, cervical and colon cancer cells; silencing GCS using a novel mixed-backbone oligonucleotide (MBO-asGCS) sensitized these four drug-resistant cell lines to doxorubicin. This sensitization was correlated with the decreased MDR1 expression and the increased doxorubicin accumulation. Doxorubicin treatment induced GCS and MDR1 expression in tumors, but MBO-asGCS treatment eliminated "in-vivo" growth of drug-resistant tumor (NCI/ADR-RES). MBO-asGCS suppressed the expression of MDR1 with GCS and sensitized NCI/ADR-RES tumor to doxorubicin. The expression of P-glycoprotein and the function of its drug efflux of tumors were decreased by 4 and 8 times after MBO-asGCS treatment, even though this treatment did not have a significant effect on P-glycoprotein in normal small intestine. GCS transient transfection induced MDR1 overexpression and increased P-glycoprotein efflux in dose-dependent fashion in OVCAR-8 cancer cells. GSL profiling, silencing of globotriaosylceramide synthase and assessment of signaling pathway indicated that GCS transfection significantly increased globo series GSLs (globotriaosylceramide Gb3, globotetraosylceramide Gb4) on GSL-enriched microdomain (GEM), activated cSrc kinase, decreased β-catenin phosphorylation, and increased nuclear β-catenin. These consequently increased MDR1 promoter activation and its expression. Conversely, MBO-asGCS treatments decreased globo series GSLs (Gb3, Gb4), cSrc kinase and nuclear β-catenin, and suppressed MDR-1 expression in dose-dependent pattern. Conclusion This study demonstrates, for the first time, that GCS upregulates MDR1 expression modulating drug resistance of cancer. GSLs, in particular globo series GSLs mediate gene expression of MDR1 through cSrc and β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yong-Yu Liu
- Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cakir Z, Saydam G, Sahin F, Baran Y. The roles of bioactive sphingolipids in resveratrol-induced apoptosis in HL60: acute myeloid leukemia cells. J Cancer Res Clin Oncol 2010; 137:279-86. [PMID: 20401667 DOI: 10.1007/s00432-010-0884-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/22/2010] [Indexed: 12/28/2022]
Abstract
PURPOSE Acute promyelocytic leukemia results from a translocation between 15 and 17 chromosomes that produce PML/RARα fusion protein. PML/RARα inhibits differentiation of myeloid precursor cells at stem cell level. Resveratrol is a phytoalexin that exerts cytotoxic effects on cancer cells. Ceramides have crucial roles in cell growth, proliferation, differentiation, drug resistance, and apoptosis. In this study, we examined the possible cytotoxic effects of resveratrol on acute myeloid leukemia cells and determined the roles of ceramide-metabolizing genes in resveratrol-induced apoptosis, in addition to investigating the possibility of increasing the sensitivity of HL60 cells to resveratrol by manipulating sphingolipids. METHODS Cytotoxic effects of resveratrol, C8:ceramide, PDMP, and SK-1 inhibitor were determined by XTT cell proliferation assay. Changes in caspase-3 enzyme activity and mitochondrial membrane potential (MMP) were measured using caspase-3 colorimetric assay and JC-1 MMP detection kit. Expression levels of ceramide-metabolizing genes were examined by RT-PCR. RESULTS The results revealed that manipulations of ceramide metabolism toward generation or accumulation of apoptotic ceramides increased apoptotic effects of resveratrol in HL60 cells, synergistically. More importantly, gene expression analyses revealed that resveratrol-induced apoptosis via increasing expression levels of ceramide-generating genes and decreasing expression levels of antiapoptotic sphingosine kinase-1 and glucosylceramide synthase genes. CONCLUSION These results showed for the first time that increasing intracellular levels of ceramides by biochemical approaches has also increased sensitivity of HL60 cells to resveratrol. We also showed that resveratrol induces apoptosis through manipulating ceramide-metabolizing genes that resulted in the accumulation of ceramides in HL60 cells.
Collapse
Affiliation(s)
- Zeynep Cakir
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, Gulbahce Campus, 35430 Urla, Izmir, Turkey
| | | | | | | |
Collapse
|
45
|
Miller BG, Stamatoyannopoulos JA. Integrative meta-analysis of differential gene expression in acute myeloid leukemia. PLoS One 2010; 5:e9466. [PMID: 20209125 PMCID: PMC2830886 DOI: 10.1371/journal.pone.0009466] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 02/10/2010] [Indexed: 11/30/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a heterogeneous disease with an overall poor prognosis. Gene expression profiling studies of patients with AML has provided key insights into disease pathogenesis while exposing potential diagnostic and prognostic markers and therapeutic targets. A systematic comparison of the large body of gene expression profiling studies in AML has the potential to test the extensibility of conclusions based on single studies and provide further insights into AML. Methodology/Principal Findings In this study, we systematically compared 25 published reports of gene expression profiling in AML. There were a total of 4,918 reported genes of which one third were reported in more than one study. We found that only a minority of reported prognostically-associated genes (9.6%) were replicated in at least one other study. In a combined analysis, we comprehensively identified both gene sets and functional gene categories and pathways that exhibited significant differential regulation in distinct prognostic categories, including many previously unreported associations. Conclusions/Significance We developed a novel approach for granular, cross-study analysis of gene-by-gene data and their relationships with established prognostic features and patient outcome. We identified many robust novel prognostic molecular features in AML that were undetected in prior studies, and which provide insights into AML pathogenesis with potential diagnostic, prognostic, and therapeutic implications. Our database and integrative analysis are available online (http://gat.stamlab.org).
Collapse
Affiliation(s)
- Brady G. Miller
- Department of Hematology, University of Washington, Seattle, Washington, United States of America
| | - John A. Stamatoyannopoulos
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
46
|
Abstract
Glucosylceramide has a unique and often ambiguous role in mammalian cells. Activation of glucosylceramide synthase, the enzyme that places a glucosyl moiety onto ceramide, is the first pathway-committed step to the production of more complex glycosphingolipids such as lactosylceramide and gangliosides. Alterations in the level of glucosylceramide are noted in cells and tissues in response to cardiovascular disease, diabetes, skin disorders and cancer. Overall, upregulation of glucosylceramide offers cellular protection and primes certain cells for proliferation. However, prolonged overabundance of glucosylceramide is detrimental, as seen in Gaucher disease in humans.
Collapse
|
47
|
Liu Y, Xie KM, Yang GQ, Bai XM, Shi YP, Mu HJ, Qiao WZ, Zhang B, Xie P. GCS induces multidrug resistance by regulating apoptosis-related genes in K562/AO2 cell line. Cancer Chemother Pharmacol 2009; 66:433-9. [PMID: 19936984 DOI: 10.1007/s00280-009-1177-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 11/04/2009] [Indexed: 11/24/2022]
Abstract
We have previously shown that the expression of glucosylceramide synthase (GCS) gene in drug-resistant K562/AO2 human leukemia cell was higher than that in drug-sensitive K562 cell, and the sensitivity to adriamycin of K562/AO2 cell was enhanced by inhibiting GCS. It is concluded that the overexpression of GCS gene is one of the reasons which lead to multidrug resistance (MDR) of leukemia cell. Meanwhile, we also found that higher expression of Bcl-2 gene and protein were exhibited in K562/AO2 cell compared with K562 cell. Basing on this, we hypothesized that the high expression of GCS gene which results in MDR of leukemia cell is correlated with Bcl-2 signal transduction. In order to validate the hypothesis, the inhibition of GCS gene in K562/AO2 cell was observed by using chemical suppressor PPMP and siRNA targeted at GCS, and applying RT-PCR and flow cytometry, the expression levels of apoptosis-related gene Bcl-2 and Bax were analyzed before and after inhibiting GCS gene in K562/AO2 cell. The results demonstrated that the gene and protein of Bcl-2 in K562/AO2 cell were both down-regulated significantly after GCS gene being inhibited; however, the Bax mRNA expression had no apparent change in different groups. This suggested that GCS gene may contributed to MDR of human leukemia cell K562/AO2 by Bcl-2 signal transduction.
Collapse
Affiliation(s)
- Yan Liu
- Wuxi Higher Health Vocational Technology School, Wuxi, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
A new mixed-backbone oligonucleotide against glucosylceramide synthase sensitizes multidrug-resistant tumors to apoptosis. PLoS One 2009; 4:e6938. [PMID: 19742320 PMCID: PMC2735002 DOI: 10.1371/journal.pone.0006938] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 08/05/2009] [Indexed: 12/13/2022] Open
Abstract
Enhanced ceramide glycosylation catalyzed by glucosylceramide synthase (GCS) limits therapeutic efficiencies of antineoplastic agents including doxorubicin in drug-resistant cancer cells. Aimed to determine the role of GCS in tumor response to chemotherapy, a new mixed-backbone oligonucleotide (MBO-asGCS) with higher stability and efficiency has been generated to silence human GCS gene. MBO-asGCS was taken up efficiently in both drug-sensitive and drug-resistant cells, but it selectively suppressed GCS overexpression, and sensitized drug-resistant cells. MBO-asGCS increased doxorubicin sensitivity by 83-fold in human NCI/ADR-RES, and 43-fold in murine EMT6/AR1 breast cancer cells, respectively. In tumor-bearing mice, MBO-asGCS treatment dramatically inhibited the growth of multidrug-resistant NCI/ADR-RE tumors, decreasing tumor volume to 37%, as compared with scrambled control. Furthermore, MBO-asGCS sensitized multidrug-resistant tumors to chemotherapy, increasing doxorubicin efficiency greater than 2-fold. The sensitization effects of MBO-asGCS relied on the decreases of gene expression and enzyme activity of GCS, and on the increases of C(18)-ceramide and of caspase-executed apoptosis. MBO-asGCS was accumulation in tumor xenografts was greater in other tissues, excepting liver and kidneys; but MBO-asGCS did not exert significant toxic effects on liver and kidneys. This study, for the first time in vivo, has demonstrated that GCS is a promising therapeutic target for cancer drug resistance, and MBO-asGCS has the potential to be developed as an antineoplastic agent.
Collapse
|
49
|
Nica AF, Tsao CC, Watt JC, Jiffar T, Kurinna S, Jurasz P, Konopleva M, Andreeff M, Radomski MW, Ruvolo PP. Ceramide promotes apoptosis in chronic myelogenous leukemia-derived K562 cells by a mechanism involving caspase-8 and JNK. Cell Cycle 2008; 7:3362-70. [PMID: 18948750 DOI: 10.4161/cc.7.21.6894] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ceramide is a sphingolipid that activates stress kinases such as p38 and c-JUN N-Terminal Kinase (JNK). Though Chronic Myelogenous Leukemia (CML) derived K562 cells resist killing by short chain C2-ceramide, we report here that longer chain C6-ceramide promotes apoptosis in these cells. C6-ceramide induces cleavage of Caspase-8 and Caspase-9, but only Caspase-8 is required for apoptosis. The sphingolipid killed CML derived KBM5 cells and, to a lesser extent, imatinib-resistant KBM5-STI cells suggesting that BCR-ABL can not completely block C6-ceramide-induced apoptosis but the kinase may regulate the process. BCR-ABL is known to suppress Protein Phosphatase 2A (PP2A) in CML cells. While C6-ceramide can activate PP2A in acute leukemia cells, the sphingolipid did not activate the phosphatase in K562 cells. C6-ceramide did not activate p38 kinase but did promote JNK activation and phosphorylation of JUN. Inhibition of JNK by pharmacological agent protected K562 cells from C6-ceramide suggesting that JNK plays an essential role in C6-ceramide mediated apoptosis. Furthermore, the sphingolipid promoted MCL-1 phosphorylation by a mechanism that, at least in part, involves JNK. The findings presented here suggest that Caspase-8, JNK, and perhaps MCL-1 may play important roles in regulating cell death and may represent new targets for therapeutic strategies for CML.
Collapse
Affiliation(s)
- Alina Felicia Nica
- Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|