1
|
Kastnes M, Aass KR, Bouma SA, Årseth C, Zahoor M, Yurchenko M, Standal T. The pro-tumorigenic cytokine IL-32 has a high turnover in multiple myeloma cells due to proteolysis regulated by oxygen-sensing cysteine dioxygenase and deubiquitinating enzymes. Front Oncol 2023; 13:1197542. [PMID: 37313466 PMCID: PMC10258340 DOI: 10.3389/fonc.2023.1197542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/16/2023] [Indexed: 06/15/2023] Open
Abstract
IL-32 is a pro-inflammatory cytokine expressed by several types of cancer cells and immune cells. Currently, no treatment targeting IL-32 is available, and its intracellular and exosomal localization make IL-32 less accessible to drugs. We previously showed that hypoxia promotes IL-32 expression through HIF1α in multiple myeloma cells. Here, we demonstrate that high-speed translation and ubiquitin-dependent proteasomal degradation lead to a rapid IL-32 protein turnover. We find that IL-32 protein half-life is regulated by the oxygen-sensing cysteine-dioxygenase ADO and that deubiquitinases actively remove ubiquitin from IL-32 and promote protein stability. Deubiquitinase inhibitors promoted the degradation of IL-32 and may represent a strategy for reducing IL-32 levels in multiple myeloma. The fast turnover and enzymatic deubiquitination of IL-32 are conserved in primary human T cells; thus, deubiquitinase inhibitors may also affect T-cell responses in various diseases.
Collapse
Affiliation(s)
- Martin Kastnes
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristin Roseth Aass
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Siri Anshushaug Bouma
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Charlotte Årseth
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mariia Yurchenko
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Therese Standal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St.Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
2
|
Sun K, Jin L, Karolová J, Vorwerk J, Hailfinger S, Opalka B, Zapukhlyak M, Lenz G, Khandanpour C. Combination Treatment Targeting mTOR and MAPK Pathways Has Synergistic Activity in Multiple Myeloma. Cancers (Basel) 2023; 15:cancers15082373. [PMID: 37190302 DOI: 10.3390/cancers15082373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Multiple myeloma (MM) is an incurable, malignant B cell disorder characterized by frequent relapses and a poor prognosis. Thus, new therapeutic approaches are warranted. The phosphatidylinositol-3-kinase (PI3K) pathway plays a key role in many critical cellular processes, including cell proliferation and survival. Activated PI3K/AKT (protein kinases B)/mTOR (mammalian target of rapamycin) signaling has been identified in MM primary patient samples and cell lines. In this study, the efficacy of PI3K and mTOR inhibitors in various MM cell lines representing three different prognostic subtypes was tested. Whereas MM cell lines were rather resistant to PI3K inhibition, treatment with the mTOR inhibitor temsirolimus decreases the phosphorylation of key molecules in the PI3K pathway in MM cell lines, leading to G0/G1 cell cycle arrest and thus reduced proliferation. Strikingly, the efficacy of temsirolimus was amplified by combining the treatment with the Mitogen-activated protein kinase kinase (MEK) inhibitor trametinib. Our findings provide a scientific rationale for the simultaneous inhibition of mTOR and MEK as a novel strategy for the treatment of MM.
Collapse
Affiliation(s)
- Kaiyan Sun
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Ling Jin
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Jana Karolová
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 12108 Prague, Czech Republic
| | - Jan Vorwerk
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Stephan Hailfinger
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Bertram Opalka
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany
| | - Myroslav Zapukhlyak
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Georg Lenz
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Cyrus Khandanpour
- Department of Medicine A, Hematology, Hemostaseology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein and University of Lübeck, 23538 Lübeck, Germany
| |
Collapse
|
3
|
Aass KR, Tryggestad SS, Mjelle R, Kastnes MH, Nedal TMV, Misund K, Standal T. IL-32 is induced by activation of toll-like receptors in multiple myeloma cells. Front Immunol 2023; 14:1107844. [PMID: 36875074 PMCID: PMC9978100 DOI: 10.3389/fimmu.2023.1107844] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Multiple myeloma (MM) is a hematological cancer characterized by accumulation of malignant plasma cells in the bone marrow. The patients are immune suppressed and suffer from recurrent and chronic infections. Interleukin-32 is a non-conventional, pro-inflammatory cytokine expressed in a subgroup of MM patients with a poor prognosis. IL-32 has also been shown to promote proliferation and survival of the cancer cells. Here we show that activation of toll-like receptors (TLRs) promotes expression of IL-32 in MM cells through NFκB activation. In patient-derived primary MM cells, IL-32 expression is positively associated with expression of TLRs. Furthermore, we found that several TLR genes are upregulated from diagnosis to relapse in individual patients, predominantly TLRs sensing bacterial components. Interestingly, upregulation of these TLRs coincides with an increase in IL-32. Taken together, these results support a role for IL-32 in microbial sensing in MM cells and suggest that infections can induce expression of this pro-tumorigenic cytokine in MM patients.
Collapse
Affiliation(s)
- Kristin Roseth Aass
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Synne Stokke Tryggestad
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robin Mjelle
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Bioinformatics Core Facility - BioCore, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pathology, St. Olavs University Hospital, Trondheim, Norway
| | - Martin H Kastnes
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tonje Marie Vikene Nedal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristine Misund
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Therese Standal
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Hematology, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
4
|
Giliberto M, Santana LM, Holien T, Misund K, Nakken S, Vodak D, Hovig E, Meza-Zepeda LA, Coward E, Waage A, Taskén K, Skånland SS. Mutational analysis and protein profiling predict drug sensitivity in multiple myeloma cell lines. Front Oncol 2022; 12:1040730. [PMID: 36523963 PMCID: PMC9745900 DOI: 10.3389/fonc.2022.1040730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2023] Open
Abstract
INTRODUCTION Multiple myeloma (MM) is a heterogeneous disease where cancer-driver mutations and aberrant signaling may lead to disease progression and drug resistance. Drug responses vary greatly, and there is an unmet need for biomarkers that can guide precision cancer medicine in this disease. METHODS To identify potential predictors of drug sensitivity, we applied integrated data from drug sensitivity screening, mutational analysis and functional signaling pathway profiling in 9 cell line models of MM. We studied the sensitivity to 33 targeted drugs and their association with the mutational status of cancer-driver genes and activity level of signaling proteins. RESULTS We found that sensitivity to mitogen-activated protein kinase kinase 1 (MEK1) and phosphatidylinositol-3 kinase (PI3K) inhibitors correlated with mutations in NRAS/KRAS, and PI3K family genes, respectively. Phosphorylation status of MEK1 and protein kinase B (AKT) correlated with sensitivity to MEK and PI3K inhibition, respectively. In addition, we found that enhanced phosphorylation of proteins, including Tank-binding kinase 1 (TBK1), as well as high expression of B cell lymphoma 2 (Bcl-2), correlated with low sensitivity to MEK inhibitors. DISCUSSION Taken together, this study shows that mutational status and signaling protein profiling might be used in further studies to predict drug sensitivities and identify resistance markers in MM.
Collapse
Affiliation(s)
- Mariaserena Giliberto
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Leonardo Miranda Santana
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
| | - Toril Holien
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St. Olav’s University Hospital, Trondheim, Norway
- Department of Immunology and Transfusion Medicine, St. Olav’s University Hospital, Trondheim, Norway
| | - Kristine Misund
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sigve Nakken
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Daniel Vodak
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Leonardo A. Meza-Zepeda
- Norwegian Cancer Genomics Consortium, Oslo University Hospital, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Genomics Core Facility, Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Eivind Coward
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anders Waage
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Hematology, St. Olav’s University Hospital, Trondheim, Norway
- Department of Immunology and Transfusion Medicine, St. Olav’s University Hospital, Trondheim, Norway
| | - Kjetil Taskén
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Sigrid S. Skånland
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for B Cell Malignancies, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Qiang YW, Ye S, Huang Y, Chen Y, Van Rhee F, Epstein J, Walker BA, Morgan GJ, Davies FE. MAFb protein confers intrinsic resistance to proteasome inhibitors in multiple myeloma. BMC Cancer 2018; 18:724. [PMID: 29980194 PMCID: PMC6035431 DOI: 10.1186/s12885-018-4602-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/18/2018] [Indexed: 11/29/2022] Open
Abstract
Background Multiple myeloma (MM) patients with t(14;20) have a poor prognosis and their outcome has not improved following the introduction of bortezomib (Bzb). The mechanism underlying the resistance to proteasome inhibitors (PIs) for this subset of patients is unknown. Methods IC50 of Bzb and carfilzomib (CFZ) in human myeloma cell lines (HMCLs) were established by MTT assay. Gene Expression profile (GEP) analysis was used to determine gene expression in primary myeloma cells. Immunoblotting analysis was performed for MAFb and caspase family proteins. Immunofluorescence staining was used to detect the location of MAFb protein in MM cells. Lentiviral infections were used to knock-down MAFb expression in two lines. Apoptosis detection by flow cytometry and western blot analysis was performed to determine the molecular mechanism MAFb confers resistance to proteasome inhibitors. Results We found high levels of MAFb protein in cell lines with t(14;20), in one line with t(6;20), in one with Igλ insertion into MAFb locus, and in primary plasma cells from MM patients with t(14;20). High MAFb protein levels correlated with higher IC50s of PIs in MM cells. Inhibition of GSK3β activity or treatment with Bzb or CFZ prevented MAFb protein degradation without affecting the corresponding mRNA level indicating a role for GSK3 and proteasome inhibitors in regulation of MAFb stability. Silencing MAFb restored sensitivity to Bzb and CFZ, and enhanced PIs-induced apoptosis and activation of caspase-3, − 8, − 9, PARP and lamin A/C suggesting that high expression of MAFb protein leads to insensitivity to proteasome inhibitors. Conclusion These results highlight the role of post-translational modification of MAFb in maintaining its protein level, and identify a mechanism by which proteasome inhibitors induced stabilization of MAFb confers resistance to proteasome inhibitors, and provide a rationale for the development of targeted therapeutic strategies for this subset of patients. Electronic supplementary material The online version of this article (10.1186/s12885-018-4602-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya-Wei Qiang
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA.
| | - Shiqiao Ye
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Yuhua Huang
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Yu Chen
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Frits Van Rhee
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Joshua Epstein
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Brian A Walker
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Gareth J Morgan
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| | - Faith E Davies
- Myeloma Institute, University of Arkansas for Medical Sciences, Winthrop P. Rockefeller Cancer Institute, 4301 West Markham St., Slot 776, Rm 914, Little Rock, AR, 72205, USA
| |
Collapse
|
6
|
Zatula A, Dikic A, Mulder C, Sharma A, Vågbø CB, Sousa MML, Waage A, Slupphaug G. Proteome alterations associated with transformation of multiple myeloma to secondary plasma cell leukemia. Oncotarget 2017; 8:19427-19442. [PMID: 28038447 PMCID: PMC5386695 DOI: 10.18632/oncotarget.14294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/30/2016] [Indexed: 01/22/2023] Open
Abstract
Plasma cell leukemia is a rare and aggressive plasma cell neoplasm that may either originate de novo (primary PCL) or by leukemic transformation of multiple myeloma (MM) to secondary PCL (sPCL). The prognosis of sPCL is very poor, and currently no standard treatment is available due to lack of prospective clinical studies. In an attempt to elucidate factors contributing to transformation, we have performed super-SILAC quantitative proteome profiling of malignant plasma cells collected from the same patient at both the MM and sPCL stages of the disease. 795 proteins were found to be differentially expressed in the MM and sPCL samples. Gene ontology analysis indicated a metabolic shift towards aerobic glycolysis in sPCL as well as marked down-regulation of enzymes involved in glycan synthesis, potentially mediating altered glycosylation of surface receptors. There was no significant change in overall genomic 5-methylcytosine or 5-hydroxymethylcytosine at the two stages, indicating that epigenetic dysregulation was not a major driver of transformation to sPCL. The present study constitutes the first attempt to provide a comprehensive map of the altered protein expression profile accompanying transformation of MM to sPCL in a single patient, identifying several candidate proteins that can be targeted by currently available small molecule drugs. Our dataset furthermore constitutes a reference dataset for further proteomic analysis of sPCL transformation.
Collapse
Affiliation(s)
- Alexey Zatula
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Aida Dikic
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Celine Mulder
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Present address: University of Utrecht, Utrecht, Holland
| | - Animesh Sharma
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, Trondheim, and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Cathrine B Vågbø
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, Trondheim, and the Central Norway Regional Health Authority, Stjørdal, Norway
| | - Mirta M L Sousa
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Anders Waage
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,Department of Hematology, Department of Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, Norway.,PROMEC Core Facility for Proteomics and Metabolomics, Norwegian University of Science and Technology, NTNU, Trondheim, and the Central Norway Regional Health Authority, Stjørdal, Norway
| |
Collapse
|
7
|
Starheim KK, Holien T, Misund K, Johansson I, Baranowska KA, Sponaas AM, Hella H, Buene G, Waage A, Sundan A, Bjørkøy G. Intracellular glutathione determines bortezomib cytotoxicity in multiple myeloma cells. Blood Cancer J 2016; 6:e446. [PMID: 27421095 PMCID: PMC5141348 DOI: 10.1038/bcj.2016.56] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (myeloma in short) is an incurable cancer of antibody-producing plasma cells that comprise 13% of all hematological malignancies. The proteasome inhibitor bortezomib has improved treatment significantly, but inherent and acquired resistance to the drug remains a problem. We here show that bortezomib-induced cytotoxicity was completely dampened when cells were supplemented with cysteine or its derivative, glutathione (GSH) in ANBL-6 and INA-6 myeloma cell lines. GSH is a major component of the antioxidative defense in eukaryotic cells. Increasing intracellular GSH levels fully abolished bortezomib-induced cytotoxicity and transcriptional changes. Elevated intracellular GSH levels blocked bortezomib-induced nuclear factor erythroid 2-related factor 2 (NFE2L2, NRF2)-associated stress responses, including upregulation of the xCT subunit of the Xc- cystine-glutamate antiporter. INA-6 cells conditioned to increasing bortezomib doses displayed reduced bortezomib sensitivity and elevated xCT levels. Inhibiting Xc- activity potentiated bortezomib-induced cytotoxicity in myeloma cell lines and primary cells, and re-established sensitivity to bortezomib in bortezomib-conditioned cells. We propose that intracellular GSH level is the main determinant of bortezomib-induced cytotoxicity in a subset of myeloma cells, and that combined targeting of the proteasome and the Xc- cystine-glutamate antiporter can circumvent bortezomib resistance.
Collapse
Affiliation(s)
- K K Starheim
- Department of Cancer Research and Molecular Medicine, K.G. Jebsen Center for Myeloma Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - T Holien
- Department of Cancer Research and Molecular Medicine, K.G. Jebsen Center for Myeloma Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - K Misund
- Department of Cancer Research and Molecular Medicine, K.G. Jebsen Center for Myeloma Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - I Johansson
- Department of Cancer Research and Molecular Medicine, Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - K A Baranowska
- Department of Cancer Research and Molecular Medicine, K.G. Jebsen Center for Myeloma Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - A-M Sponaas
- Department of Cancer Research and Molecular Medicine, K.G. Jebsen Center for Myeloma Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - H Hella
- Department of Cancer Research and Molecular Medicine, K.G. Jebsen Center for Myeloma Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - G Buene
- Department of Cancer Research and Molecular Medicine, K.G. Jebsen Center for Myeloma Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - A Waage
- Department of Cancer Research and Molecular Medicine, K.G. Jebsen Center for Myeloma Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Hematology, St. Olavs University Hospital, Trondheim, Norway
| | - A Sundan
- Department of Cancer Research and Molecular Medicine, K.G. Jebsen Center for Myeloma Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - G Bjørkøy
- Department of Cancer Research and Molecular Medicine, K.G. Jebsen Center for Myeloma Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Medical Laboratory Technology, Faculty of Technology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
8
|
Våtsveen TK, Børset M, Dikic A, Tian E, Micci F, Lid AHB, Meza-Zepeda LA, Coward E, Waage A, Sundan A, Kuehl WM, Holien T. VOLIN and KJON-Two novel hyperdiploid myeloma cell lines. Genes Chromosomes Cancer 2016; 55:890-901. [PMID: 27311012 DOI: 10.1002/gcc.22388] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/12/2016] [Indexed: 12/21/2022] Open
Abstract
Multiple myeloma can be divided into two distinct genetic subgroups: hyperdiploid (HRD) or nonhyperdiploid (NHRD) myeloma. Myeloma cell lines are important tools to study myeloma cell biology and are commonly used for preclinical screening and testing of new drugs. With few exceptions human myeloma cell lines are derived from NHRD patients, even though about half of the patients have HRD myeloma. Thus, there is a need for cell lines of HRD origin to enable more representative preclinical studies. Here, we present two novel myeloma cell lines, VOLIN and KJON. Both of them were derived from patients with HRD disease and shared the same genotype as their corresponding primary tumors. The cell lines' chromosomal content, genetic aberrations, gene expression, immunophenotype as well as some of their growth characteristics are described. Neither of the cell lines was found to harbor immunoglobulin heavy chain translocations. The VOLIN cell line was established from a bone marrow aspirate and KJON from peripheral blood. We propose that these unique cell lines may be used as tools to increase our understanding of myeloma cell biology. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thea Kristin Våtsveen
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pathology and Medical Genetics, St. Olav's University Hospital, Trondheim, Norway
| | - Magne Børset
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Aida Dikic
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Erming Tian
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Francesca Micci
- Section for Cancer Cytogenetics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Ana H B Lid
- Department of Core Facilities, Oslo University Hospital, Oslo, Norway
| | - Leonardo A Meza-Zepeda
- Department of Core Facilities, Oslo University Hospital, Oslo, Norway.,Department of Tumor Biology, Oslo University Hospital, Oslo, Norway
| | - Eivind Coward
- Bioinformatics Core Facility, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Anders Waage
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.,Department of Hematology, St. Olav's University Hospital, Trondheim, Norway
| | - Anders Sundan
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.,Centre of Molecular Inflammation Research, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Toril Holien
- K.G. Jebsen Center for Myeloma Research, Department of Cancer Research and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
9
|
Vandsemb EN, Bertilsson H, Abdollahi P, Størkersen Ø, Våtsveen TK, Rye MB, Rø TB, Børset M, Slørdahl TS. Phosphatase of regenerating liver 3 (PRL-3) is overexpressed in human prostate cancer tissue and promotes growth and migration. J Transl Med 2016; 14:71. [PMID: 26975394 PMCID: PMC4791872 DOI: 10.1186/s12967-016-0830-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/05/2016] [Indexed: 01/04/2023] Open
Abstract
Background PRL-3 is a phosphatase implicated in oncogenesis in multiple cancers. In some cancers, notably carcinomas, PRL-3 is also associated with inferior prognosis and increased metastatic potential. In this study we investigated the expression of PRL-3 mRNA in fresh-frozen samples from patients undergoing radical prostatectomy because of prostate cancer (PC) and the biological function of PRL-3 in prostate cancer cells. Methods Samples from 41 radical prostatectomy specimens (168 samples in total) divided into low (Gleason score ≤ 6), intermediate (Gleason score = 7) and high (Gleason score ≥ 8) risk were analyzed with gene expression profiling and compared to normal prostate tissue. PRL-3 was identified as a gene with differential expression between healthy and cancerous tissue in these analyses. We used the prostate cancer cell lines PC3 and DU145 and a small molecular inhibitor of PRL-3 to investigate whether PRL-3 had a functional role in cancer. Relative ATP-measurement and thymidine incorporation were used to assess the effect of PRL-3 on growth of the cancer cells. We performed an in vitro scratch assay to investigate the involvement of PRL-3 in migration. Immunohistochemistry was used to identify PRL-3 protein in prostate cancer primary tumor and corresponding lymph node metastases. Results Compared to normal prostate tissue, the prostate cancer tissue expressed a significantly higher level of PRL-3. We found PRL-3 to be present in both PC3 and DU145, and that inhibition of PRL-3 led to growth arrest and apoptosis in these two cell lines. Inhibition of PRL-3 led to reduced migration of the PC3 cells. Immunohistochemistry showed PRL-3 expression in both primary tumor and corresponding lymph node metastases. Conclusions PRL-3 mRNA was expressed to a greater extent in prostate cancer tissue compared to normal prostate tissue. PRL-3 protein was expressed in both prostate cancer primary tumor and corresponding lymph node metastases. The results from our in vitro assays suggest that PRL-3 promotes growth and migration in prostate cancer. In conclusion, these results imply that PRL-3 has a role in the pathogenesis of prostate cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0830-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Esten N Vandsemb
- K. G. Jebsen Center for Myeloma Research, Norwegian University of Science and Technology, PO Box 8905, 7491, Trondheim, Norway. .,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Helena Bertilsson
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Urology, St Olavs University Hospital, Trondheim, Norway
| | - Pegah Abdollahi
- K. G. Jebsen Center for Myeloma Research, Norwegian University of Science and Technology, PO Box 8905, 7491, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øystein Størkersen
- Department of Pathology, Trondheim University Hospital, Trondheim, Norway
| | - Thea Kristin Våtsveen
- K. G. Jebsen Center for Myeloma Research, Norwegian University of Science and Technology, PO Box 8905, 7491, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pathology, Trondheim University Hospital, Trondheim, Norway
| | - Morten Beck Rye
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Torstein Baade Rø
- K. G. Jebsen Center for Myeloma Research, Norwegian University of Science and Technology, PO Box 8905, 7491, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Pediatrics, St Olavs University Hospital, Trondheim, Norway
| | - Magne Børset
- K. G. Jebsen Center for Myeloma Research, Norwegian University of Science and Technology, PO Box 8905, 7491, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Immunology and Transfusion Medicine, St Olavs University Hospital, Trondheim, Norway
| | - Tobias S Slørdahl
- K. G. Jebsen Center for Myeloma Research, Norwegian University of Science and Technology, PO Box 8905, 7491, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Medicine, St Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
10
|
Türkmen S, Binder A, Gerlach A, Niehage S, Theodora Melissari M, Inandiklioglu N, Dörken B, Burmeister T. High prevalence of immunoglobulin light chain gene aberrations as revealed by FISH in multiple myeloma and MGUS. Genes Chromosomes Cancer 2014; 53:650-6. [PMID: 24729354 DOI: 10.1002/gcc.22175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/31/2014] [Indexed: 01/09/2023] Open
Abstract
Multiple myeloma (MM) is a malignant B-cell neoplasm characterized by an uncontrolled proliferation of aberrant plasma cells in the bone marrow. Chromosome aberrations in MM are complex and represent a hallmark of the disease, involving many chromosomes that are altered both numerically and structurally. Nearly half of the cases are nonhyperdiploid and show IGH translocations with the following partner genes: CCND1, FGFR3 and MMSET, MAF, MAFB, and CCND3. The remaining 50% are grouped into a hyperdiploid group that is characterized by multiple trisomies involving chromosomes 3, 5, 7, 9, 11, 15, 19, and 21. In this study, we analyzed the immunoglobulin light chain kappa (IGK, 2p12) and lambda (IGL, 22q11) loci in 150 cases, mostly with MM but in a few cases monoclonal gammopathy of undetermined significance (MGUS), without IGH translocations. We identified aberrations in 27% (= 40 patients) including rearrangements (12%), gains (12%), and deletions (4.6%). In 6 of 18 patients with IGK or/and IGL rearrangements, we detected a MYC rearrangement which suggests that MYC is the translocation partner in the majority of these cases.
Collapse
Affiliation(s)
- Seval Türkmen
- Labor Berlin, Tumorzytogenetik, Berlin, Germany; Institut für Medizinische Genetik und Humangenetik, Charité, CVK, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Rampa C, Tian E, Våtsveen TK, Buene G, Slørdahl TS, Børset M, Waage A, Sundan A. Identification of the source of elevated hepatocyte growth factor levels in multiple myeloma patients. Biomark Res 2014; 2:8. [PMID: 24716444 PMCID: PMC4022385 DOI: 10.1186/2050-7771-2-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/29/2014] [Indexed: 12/20/2022] Open
Abstract
Background Hepatocyte growth factor (HGF) is a pleiotropic cytokine which can lead to cancer cell proliferation, migration and metastasis. In multiple myeloma (MM) patients it is an abundant component of the bone marrow. HGF levels are elevated in 50% of patients and associated with poor prognosis. Here we aim to investigate its source in myeloma. Methods HGF mRNA levels in bone marrow core biopsies from healthy individuals and myeloma patients were quantified by real-time PCR. HGF gene expression profiling in CD138+ cells isolated from bone marrow aspirates of healthy individuals and MM patients was performed by microarray analysis. HGF protein concentrations present in peripheral blood of MM patients were measured by enzyme-linked immunosorbent assay (ELISA). Cytogenetic status of CD138+ cells was determined by fluorescence in situ hybridization (FISH) and DNA sequencing of the HGF gene promoter. HGF secretion in co-cultures of human myeloma cell lines and bone marrow stromal cells was measured by ELISA. Results HGF gene expression profiling in both bone marrow core biopsies and CD138+ cells showed elevated HGF mRNA levels in myeloma patients. HGF mRNA levels in biopsies and in myeloma cells correlated. Quantification of HGF protein levels in serum also correlated with HGF mRNA levels in CD138+ cells from corresponding patients. Cytogenetic analysis showed myeloma cell clones with HGF copy numbers between 1 and 3 copies. There was no correlation between HGF copy number and HGF mRNA levels. Co-cultivation of the human myeloma cell lines ANBL-6 and JJN3 with bone marrow stromal cells or the HS-5 cell line resulted in a significant increase in secreted HGF. Conclusions We here show that in myeloma patients HGF is primarily produced by malignant plasma cells, and that HGF production by these cells might be supported by the bone marrow microenvironment. Considering the fact that elevated HGF serum and plasma levels predict poor prognosis, these findings are of particular importance for patients harbouring a myeloma clone which produces large amounts of HGF.
Collapse
Affiliation(s)
- Christoph Rampa
- The K. G. Jebsen Center for Myeloma Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Erming Tian
- The Donna D. and Donald M. Lambert Laboratory of Myeloma Genetics, Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Thea Kristin Våtsveen
- The K. G. Jebsen Center for Myeloma Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Glenn Buene
- The K. G. Jebsen Center for Myeloma Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tobias Schmidt Slørdahl
- The K. G. Jebsen Center for Myeloma Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Magne Børset
- The K. G. Jebsen Center for Myeloma Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anders Waage
- The K. G. Jebsen Center for Myeloma Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Section of Hematology, St. Olavs University Hospital, Trondheim, Norway
| | - Anders Sundan
- The K. G. Jebsen Center for Myeloma Research and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
12
|
Downregulation of specific miRNAs in hyperdiploid multiple myeloma mimics the oncogenic effect of IgH translocations occurring in the non-hyperdiploid subtype. Leukemia 2012; 27:925-31. [PMID: 23174883 DOI: 10.1038/leu.2012.302] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Currently, multiple myeloma (MM) patients are broadly grouped into a non-hyperdiploid (nh-MM) group, highly enriched for IgH translocations, or into a hyperdiploid (h-MM) group, which is typically characterized by trisomies of some odd-numbered chromosomes. We compared the micro RNA (miRNA) expression profiles of these two groups and we identified 16 miRNAs that were downregulated in the h-MM group, relative to the nh-MM group. We found that target genes of the most differentially expressed miRNAs are directly involved in the pathogenesis of MM; specifically, the inhibition of hsa-miR-425, hsa-miR-152 and hsa-miR-24, which are all downregulated in h-MM, leads to the overexpression of CCND1, TACC3, MAFB, FGFR3 and MYC, which are the also the oncogenes upregulated by the most frequent IgH chromosomal translocations occurring in nh-MM. Importantly, we showed that the downregulation of these specific miRNAs and the upregulation of their targets also occur simultaneously in primary cases of h-MM. These data provide further evidence on the unifying role of cyclin D pathways deregulation as the key mechanism involved in the development of both groups of MM. Finally, they establish the importance of miRNA deregulation in the context of MM, thereby opening up the potential for future therapeutic approaches based on this molecular mechanism.
Collapse
|
13
|
Abstract
In multiple myeloma, c-MYC is activated and contributes to the malignant phenotype. Targeting MYC by short hairpin RNA induced cell death in myeloma cell lines; however, cell lines are generated from samples taken in advanced stages of the disease and may not reflect patient cells adequately. In this study, we used the selective small molecule inhibitor of MYC-MAX heterodimerization, 10058-F4, on myeloma cell lines as well as primary myeloma cells, and we show that inhibition of c-MYC activity efficiently induces myeloma cell death. Moreover, in cocultures of cell lines with bone marrow stromal cells from myeloma patients, the inhibitor still induces apoptosis. Our results provide further evidence that myeloma cells are addicted to c-MYC activity and that c-MYC is a promising therapeutic target in multiple myeloma.
Collapse
|
14
|
Våtsveen TK, Brenne AT, Dai HY, Waage A, Sundan A, Børset M. FGFR3 is expressed and is important for survival in INA-6, a human myeloma cell line without a t(4;14). Eur J Haematol 2009; 83:471-6. [PMID: 19594619 DOI: 10.1111/j.1600-0609.2009.01312.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Fibroblast growth factor receptor 3 (FGFR3) is a proto-oncogene that is often dysregulated together with multiple myeloma SET-domain (MMSET) by the immunoglobulin heavy chain (IGH) gene in t(4;14)(pos) multiple myeloma (MM) cells, and which is usually not expressed in MM cells without this translocation. Whether FGFR3 may play a role in MM cells without t(4;14) and the IGH-MMSET fusion protein is unclear and is the focus of this report. METHODS FGFR3 expression was explored in cell lines with and without t(4;14) by fluorescence in situ hybridization (FISH), RT-PCR and Western Blot. FGFR3 inhibitors SU5402 and PD173074 were used to explore the role of FGFR3 in these cells. RESULTS We discovered an amplification of the FGFR3 locus in INA-6, a human MM cell line. We also demonstrated expression of FGFR3 mRNA and protein in the cells, probably caused by the extra copy of the gene. INA-6 cells did not have t(4;14) and neither was there any involvement of the other IG loci in translocations with the FGFR3 gene. The FGFR3 inhibitors decreased the proliferation of INA-6. CONCLUSION The decreased viability and proliferation in INA-6, following inhibition with FGFR3 inhibitors, indicates that FGFR3 may play a role also in cells without t(4;14) - and hence without high expression of MMSET, the ubiquitous oncoprotein in MM cells with t(4;14). This gives further credibility to the notion that FGFR3 expression is not just an epiphenomenon in t(4;14) MM, but an important part of the malignant phenotype.
Collapse
Affiliation(s)
- Thea K Våtsveen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Olav Kyrres gt. 9, N-7489 Trondheim, Norway.
| | | | | | | | | | | |
Collapse
|